
Quarkus - Simplified Hibernate ORM
with Panache

Hibernate ORM is the de facto JPA implementation and offers you the full breadth
of an Object Relational Mapper. It makes complex mappings possible, but it does
not make simple and common mappings trivial. Hibernate ORM with Panache
focuses on making your entities trivial and fun to write in Quarkus.

First: an example
What we’re doing in Panache is allow you to write your Hibernate ORM entities like this:

@Entity
public class Person extends PanacheEntity {
 public String name;
 public LocalDate birth;
 public Status status;

 public static Person findByName(String name){
 return find("name", name).firstResult();
 }

 public static List<Person> findAlive(){
 return list("status", Status.Alive);
 }

 public static void deleteStefs(){
 delete("name", "Stef");
 }
}

You have noticed how much more compact and readable the code is? Does this look interesting? Read
on!


the list() method might be surprising at first. It takes fragments of HQL (JP-QL)
queries and contextualizes the rest. That makes for very concise but yet readable
code.

Setting up and configuring Hibernate ORM with
Panache
To get started:

1

• add your settings in application.properties

• annotate your entities with @Entity and make them extend PanacheEntity

• place your entity logic in static methods in your entities

Follow the Hibernate set-up guide for all configuration.

In your pom.xml, add the following dependencies:

• the Panache JPA extension

• your JDBC driver extension (quarkus-jdbc-postgresql, quarkus-jdbc-h2, quarkus-
jdbc-mariadb, …)

<dependencies>
 <!-- Hibernate ORM specific dependencies -->
 <dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-hibernate-orm-panache</artifactId>
 </dependency>

 <!-- JDBC driver dependencies -->
 <dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-jdbc-postgresql</artifactId>
 </dependency>
</dependencies>

Then add the relevant configuration properties in application.properties.

configure your datasource
quarkus.datasource.url =
jdbc:postgresql://localhost:5432/mydatabase
quarkus.datasource.driver = org.postgresql.Driver
quarkus.datasource.username = sarah
quarkus.datasource.password = connor

drop and create the database at startup (use `update` to only
update the schema)
quarkus.hibernate-orm.database.generation = drop-and-create

Defining your entity
To define a Panache entity, simply extend PanacheEntity, annotate it with @Entity and add your
columns as public fields:

2

hibernate-orm#setting-up-and-configuring-hibernate-orm

@Entity
public class Person extends PanacheEntity {
 public String name;
 public LocalDate birth;
 public Status status;
}

You can put all your JPA column annotations on the public fields. If you need a field to not be
persisted, use the @Transient annotation on it. If you need to write accessors, you can:

@Entity
public class Person extends PanacheEntity {
 public String name;
 public LocalDate birth;
 public Status status;

 // return name as uppercase in the model
 public String getName(){
 return name.toUpperCase();
 }

 // store all names in lowercase in the DB
 public void setName(String name){
 this.name = name.toLowerCase();
 }
}

And thanks to our field access rewrite, when your users read person.name they will actually call your
getName() accessor, and similarly for field writes and the setter. This allows for proper encapsulation
at runtime as all fields calls will be replaced by the corresponding getter/setter calls.

Most useful operations
Once you have written your entity, here are the most common operations you will be able to do:

3

// creating a person
Person person = new Person();
person.name = "Stef";
person.birth = LocalDate.of(1910, Month.FEBRUARY, 1);
person.status = Status.Alive;

// persist it
person.persist();

// note that once persisted, you don't need to explicitly save your
entity: all
// modifications are automatically persisted on transaction commit.

// check if it's persistent
if(person.isPersistent()){
 // delete it
 person.delete();
}

// getting a list of all Person entities
List<Person> allPersons = Person.listAll();

// finding a specific person by ID
person = Person.findById(personId);

// finding a specific person by ID via an Optional
Optional<Person> optional = Person.findByIdOptional(personId);
person = optional.orElseThrow(() -> new NotFoundException());

// finding all living persons
List<Person> livingPersons = Person.list("status", Status.Alive);

// counting all persons
long countAll = Person.count();

// counting all living persons
long countAlive = Person.count("status", Status.Alive);

// delete all living persons
Person.delete("status", Status.Alive);

// delete all persons
Person.deleteAll();

// update all living persons
Person.update("name = 'Moral' where status = ?1", Status.Alive);

All list methods have equivalent stream versions.

4

Stream<Person> persons = Person.streamAll();
List<String> namesButEmmanuels = persons
 .map(p -> p.name.toLowerCase())
 .filter(n -> ! "emmanuel".equals(n))
 .collect(Collectors.toList());

 The stream methods require a transaction to work.

Paging
You should only use list and stream methods if your table contains small enough data sets. For
larger data sets you can use the find method equivalents, which return a PanacheQuery on which
you can do paging:

// create a query for all living persons
PanacheQuery<Person> livingPersons = Person.find("status", Status
.Alive);

// make it use pages of 25 entries at a time
livingPersons.page(Page.ofSize(25));

// get the first page
List<Person> firstPage = livingPersons.list();

// get the second page
List<Person> secondPage = livingPersons.nextPage().list();

// get page 7
List<Person> page7 = livingPersons.page(Page.of(7, 25)).list();

// get the number of pages
int numberOfPages = livingPersons.pageCount();

// get the total number of entities returned by this query without
paging
int count = livingPersons.count();

// and you can chain methods of course
return Person.find("status", Status.Alive)
 .page(Page.ofSize(25))
 .nextPage()
 .stream()

The PanacheQuery type has many other methods to deal with paging and returning streams.

5

Sorting
All methods accepting a query string also accept the following simplified query form:

List<Person> persons = Person.list("order by name,birth");

But these methods also accept an optional Sort parameter, which allows your to abstract your
sorting:

List<Person> persons = Person.list(Sort.by("name").and("birth"));

// and with more restrictions
List<Person> persons = Person.list("status", Sort.by("name").and(
"birth"), Status.Alive);

The Sort class has plenty of methods for adding columns and specifying sort direction.

Adding entity methods
In general, we recommend not adding custom queries for your entities outside of the entities
themselves, to keep all model queries close to the models they operate on. So we recommend adding
them as static methods in your entity class:

@Entity
public class Person extends PanacheEntity {
 public String name;
 public LocalDate birth;
 public Status status;

 public static Person findByName(String name){
 return find("name", name).firstResult();
 }

 public static List<Person> findAlive(){
 return list("status", Status.Alive);
 }

 public static void deleteStefs(){
 delete("name", "Stef");
 }
}

6

Simplified queries
Normally, HQL queries are of this form: from EntityName [where …] [order by …], with
optional elements at the end.

If your select query does not start with from, we support the following additional forms:

• order by … which will expand to from EntityName order by …

• <singleColumnName> (and single parameter) which will expand to from EntityName where
<singleColumnName> = ?

• <query> will expand to from EntityName where <query>

If your update query does not start with update, we support the following additional forms:

• from EntityName … which will expand to update from EntityName …

• set? <singleColumnName> (and single parameter) which will expand to update from
EntityName set <singleColumnName> = ?

• set? <update-query> will expand to update from EntityName set <update-query>

 You can also write your queries in plain HQL:

Order.find("select distinct o from Order o left join fetch
o.lineItems");
Order.update("update from Person set name = 'Moral' where status =
?", Status.Alive);

Query parameters
You can pass query parameters by index (1-based) as shown below:

Person.find("name = ?1 and status = ?2", "stef", Status.Alive);

Or by name using a Map:

Map<String, Object> params = new HashMap<>();
params.put("name", "stef");
params.put("status", Status.Alive);
Person.find("name = :name and status = :status", params);

Or using the convenience class Parameters either as is or to build a Map:

7

https://docs.jboss.org/hibernate/orm/5.4/userguide/html_single/Hibernate_User_Guide.html#hql

// generate a Map
Person.find("name = :name and status = :status",
 Parameters.with("name", "stef").and("status", Status.
Alive).map());

// use it as-is
Person.find("name = :name and status = :status",
 Parameters.with("name", "stef").and("status", Status.
Alive));

Every query operation accepts passing parameters by index (Object…), or by name
(Map<String,Object> or Parameters).

The DAO/Repository option
Repository is a very popular pattern and can be very accurate for some use case, depending on the
complexity of your needs.

Whether you want to use the Entity based approach presented above or a more traditional Repository
approach, it is up to you, Panache and Quarkus have you covered either way.

If you lean towards using Repositories, you can get the exact same convenient methods injected in
your Repository by making it implement PanacheRepository:

@ApplicationScoped
public class PersonRepository implements PanacheRepository<Person>
{

 // put your custom logic here as instance methods

 public Person findByName(String name){
 return find("name", name).firstResult();
 }

 public List<Person> findAlive(){
 return list("status", Status.Alive);
 }

 public void deleteStefs(){
 delete("name", "Stef");
 }
}

Absolutely all the operations that are defined on PanacheEntityBase are available on your DAO, so
using it is exactly the same except you need to inject it:

8

@Inject
PersonRepository personRepository;

@GET
public long count(){
 return personRepository.count();
}

So if Repositories are your thing, you can keep doing them. Even with repositories, you can keep your
entities as subclasses of PanacheEntity in order to get the ID and public fields working, but you can
even skip that and go back to specifying your ID and using getters and setters if that’s your thing. Use
what works for you.

Transactions
Make sure to wrap methods modifying your database (e.g. entity.persist()) within a transaction.
Marking a CDI bean method @Transactional will do that for you and make that method a
transaction boundary. We recommend doing so at your application entry point boundaries like your
REST endpoint controllers.

JPA batches changes you make to your entities and sends changes (it’s called flush) at the end of the
transaction or before a query. This is usually a good thing as it’s more efficient. But if you want to
check optimistic locking failures, do object validation right away or generally want to get immediate
feedback, you can force the flush operation by calling entity.flush() or even use
entity.persistAndFlush() to make it a single method call. This will allow you to catch any
PersistenceException that could occur when JPA send those changes to the database.
Remember, this is less efficient so don’t abuse it. And your transaction still has to be committed.

Here is an example of the usage of the flush method to allow making a specific action in case of
PersistenceException:

@Transactional
public void create(Parameter parameter){
 try {
 //Here I use the persistAndFlush() shorthand method on a
Panache repository to persist to database then flush the changes.
 return parameterRepository.persistAndFlush(parameter);
 }
 catch(PersistenceException pe){
 LOG.error("Unable to create the parameter", pe);
 //in case of error, I save it to disk
 diskPersister.save(parameter);
 }
}

9

Lock management
Panache provides direct support for database locking with your entity/repository, using
findById(Object, LockModeType) or find().withLock(LockModeType).

The following examples are for the entity pattern but the same can be used with repositories.

First: Locking using findById().

public class PersonEndpoint {

 @GET
 @Transactional
 public Person findByIdForUpdate(Long id){
 Person p = Person.findById(id, LockModeType
.PESSIMISTIC_WRITE);
 //do something useful, the lock will be released when the
transaction ends.
 return person;
 }

}

Second: Locking in a find().

public class PersonEndpoint {

 @GET
 @Transactional
 public Person findByNameForUpdate(String name){
 Person p = Person.find("name", name).withLock(LockModeType
.PESSIMISTIC_WRITE).findOne();
 //do something useful, the lock will be released when the
transaction ends.
 return person;
 }

}

Be careful that locks are released when the transaction ends, so the method that invokes the lock
query must be annotated with the @Transactional annotation.

10

Custom IDs
IDs are often a touchy subject, and not everyone’s up for letting them handled by the framework, once
again we have you covered.

You can specify your own ID strategy by extending PanacheEntityBase instead of
PanacheEntity. Then you just declare whatever ID you want as a public field:

@Entity
public class Person extends PanacheEntityBase {

 @Id
 @SequenceGenerator(
 name = "personSequence",
 sequenceName = "person_id_seq",
 allocationSize = 1,
 initialValue = 4)
 @GeneratedValue(strategy = GenerationType.SEQUENCE, generator =
"personSequence")
 public Integer id;

 //...
}

If you’re using repositories, then you will want to extend PanacheRepositoryBase instead of
PanacheRepository and specify your ID type as an extra type parameter:

@ApplicationScoped
public class PersonRepository implements PanacheRepositoryBase
<Person,Integer> {
 //...
}

How and why we simplify Hibernate ORM
mappings
When it comes to writing Hibernate ORM entities, there are a number of annoying things that users
have grown used to reluctantly deal with, such as:

• Duplicating ID logic: most entities need an ID, most people don’t care how it’s set, because it’s not
really relevant to your model.

• Dumb getters and setters: since Java lacks support for properties in the language, we have to
create fields, then generate getters and setters for those fields, even if they don’t actually do
anything more than read/write the fields.

11

• Traditional EE patterns advise to split entity definition (the model) from the operations you can do
on them (DAOs, Repositories), but really that requires an unnatural split between the state and its
operations even though we would never do something like that for regular objects in the Object
Oriented architecture, where state and methods are in the same class. Moreover, this requires two
classes per entity, and requires injection of the DAO or Repository where you need to do entity
operations, which breaks your edit flow and requires you to get out of the code you’re writing to
set up an injection point before coming back to use it.

• Hibernate queries are super powerful, but overly verbose for common operations, requiring you to
write queries even when you don’t need all the parts.

• Hibernate is very general-purpose, but does not make it trivial to do trivial operations that make
up 90% of our model usage.

With Panache, we took an opinionated approach to tackle all these problems:

• Make your entities extend PanacheEntity: it has an ID field that is auto-generated. If you
require a custom ID strategy, you can extend PanacheEntityBase instead and handle the ID
yourself.

• Use public fields. Get rid of dumb getter and setters. Under the hood, we will generate all getters
and setters that are missing, and rewrite every access to these fields to use the accessor methods.
This way you can still write useful accessors when you need them, which will be used even though
your entity users still use field accesses.

• Don’t use DAOs or Repositories: put all your entity logic in static methods in your entity class. Your
entity superclass comes with lots of super useful static methods and you can add your own in your
entity class. Users can just start using your entity Person by typing Person. and getting
completion for all the operations in a single place.

• Don’t write parts of the query that you don’t need: write Person.find("order by name") or
Person.find("name = ?1 and status = ?2", "stef", Status.Alive) or even
better Person.find("name", "stef").

That’s all there is to it: with Panache, Hibernate ORM has never looked so trim and neat.

Defining entities in external projects or jars
Hibernate ORM with Panache relies on compile-time bytecode enhancements to your entities. If you
define your entities in the same project where you build your Quarkus application, everything will work
fine. If the entities come from external projects or jars, you can make sure that your jar is treated like a
Quarkus application library by indexing it via Jandex, see How to Generate a Jandex Index in the CDI
guide. This will allow Quarkus to index and enhance your entities as if they were inside the current
project.

12

cdi-reference#how-to-generate-a-jandex-index

	Quarkus - Simplified Hibernate ORM with Panache
	First: an example
	Setting up and configuring Hibernate ORM with Panache
	Defining your entity
	Most useful operations
	Paging
	Sorting
	Adding entity methods
	Simplified queries
	Query parameters
	The DAO/Repository option
	Transactions
	Lock management
	First: Locking using findById().
	Second: Locking in a find().
	Custom IDs
	How and why we simplify Hibernate ORM mappings
	Defining entities in external projects or jars

