
Quarkus - Testing Your Application
Learn how to test your Quarkus Application. This guide covers:

• Testing in JVM mode

• Testing in native mode

• Injection of resources into tests

1. Prerequisites
To complete this guide, you need:

• less than 15 minutes

• an IDE

• JDK 1.8+ installed with JAVA_HOME configured appropriately

• Apache Maven 3.5.3+

• The completed greeter application from the Getting Started Guide

2. Architecture
In this guide, we expand on the initial test that was created as part of the Getting Started Guide. We
cover injection into tests and also how to test native executables.

3. Solution
We recommend that you follow the instructions in the next sections and create the application step by
step. However, you can go right to the completed example.

Clone the Git repository: git clone https://github.com/quarkusio/quarkus-
quickstarts.git, or download an archive.

The solution is located in the getting-started-testing directory.

This guide assumes you already have the completed application from the getting-started
directory.

4. Recap of HTTP based Testing in JVM mode
If you have started from the Getting Started example you should already have a completed test,
including the correct pom.xml setup.

In the pom.xml file you should see 2 test dependencies:

1

getting-started
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts/archive/master.zip

<dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-junit5</artifactId>
 <scope>test</scope>
</dependency>
<dependency>
 <groupId>io.rest-assured</groupId>
 <artifactId>rest-assured</artifactId>
 <scope>test</scope>
</dependency>

quarkus-junit5 is required for testing, as it provides the @QuarkusTest annotation that controls
the testing framework. rest-assured is not required but is a convenient way to test HTTP
endpoints, we also provide integration that automatically sets the correct URL so no configuration is
required.

Because we are using JUnit 5, the version of the Surefire Maven Plugin must be set, as the default
version does not support Junit 5:

<plugin>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>${surefire-plugin.version}</version>
 <configuration>
 <systemProperties>

<java.util.logging.manager>org.jboss.logmanager.LogManager</java.ut
il.logging.manager>
 </systemProperties>
 </configuration>
</plugin>

We also set the java.util.logging system property to make sure tests will use the correct
logmanager.

The project should also contain a simple test:

2

https://maven.apache.org/surefire/maven-surefire-plugin/

package org.acme.quickstart;

import io.quarkus.test.junit.QuarkusTest;
import org.junit.jupiter.api.Test;

import java.util.UUID;

import static io.restassured.RestAssured.given;
import static org.hamcrest.CoreMatchers.is;

@QuarkusTest
public class GreetingResourceTest {

 @Test
 public void testHelloEndpoint() {
 given()
 .when().get("/hello")
 .then()
 .statusCode(200)
 .body(is("hello"));
 }

 @Test
 public void testGreetingEndpoint() {
 String uuid = UUID.randomUUID().toString();
 given()
 .pathParam("name", uuid)
 .when().get("/hello/greeting/{name}")
 .then()
 .statusCode(200)
 .body(is("hello " + uuid));
 }

}

This test uses HTTP to directly test our REST endpoint. When the test is run the application will be
started before the test is run.

4.1. Controlling the test port
While Quarkus will listen on port 8080 by default, when running tests it defaults to 8081. This allows
you to run tests while having the application running in parallel.

3



Changing the test port

You can configure the port used by tests by configuring quarkus.http.test-
port in your application.properties:

quarkus.http.test-port=8083

Quarkus also provides RestAssured integration that updates the default port used by RestAssured
before the tests are run, so no additional configuration should be required.

4.2. Injecting a URI
It is also possible to directly inject the URL into the test which can make is easy to use a different
client. This is done via the @TestHTTPResource annotation.

Let’s write a simple test that shows this off to load some static resources. First create a simple HTML
file in src/main/resources/META-INF/resources/index.html :

<html>
 <head>
 <title>Testing Guide</title>
 </head>
 <body>
 Information about testing
 </body>
</html>

We will create a simple test to ensure that this is being served correctly:

4

package org.acme.quickstart;

import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.net.URL;
import java.nio.charset.StandardCharsets;

import org.junit.jupiter.api.Assertions;
import org.junit.jupiter.api.Test;

import io.quarkus.test.common.http.TestHTTPResource;
import io.quarkus.test.junit.QuarkusTest;

@QuarkusTest
public class StaticContentTest {

 @TestHTTPResource("index.html") ①
 URL url;

 @Test
 public void testIndexHtml() throws Exception {
 try (InputStream in = url.openStream()) {
 String contents = readStream(in);
 Assertions.assertTrue(contents.contains("<title>Testing
Guide</title>"));
 }
 }

 private static String readStream(InputStream in) throws
IOException {
 byte[] data = new byte[1024];
 int r;
 ByteArrayOutputStream out = new ByteArrayOutputStream();
 while ((r = in.read(data)) > 0) {
 out.write(data, 0, r);
 }
 return new String(out.toByteArray(), StandardCharsets.
UTF_8);
 }
}

① This annotation allows you to directly inject the URL of the Quarkus instance, the value of the
annotation will be the path component of the URL

For now @TestHTTPResource allows you to inject URI, URL and String representations of the
URL.

5

5. Injection into tests
So far we have only covered integration style tests that test the app via HTTP endpoints, but what if
we want to do unit testing and test our beans directly?

Quarkus supports this by allowing you to inject CDI beans into your tests via the @Inject annotation
(in fact, tests in Quarkus are full CDI beans, so you can use all CDI functionality). Let’s create a simple
test that tests the greeting service directly without using HTTP:

package org.acme.quickstart;

import javax.inject.Inject;

import org.junit.jupiter.api.Assertions;
import org.junit.jupiter.api.Test;

import io.quarkus.test.junit.QuarkusTest;

@QuarkusTest
public class GreetingServiceTest {

 @Inject ①
 GreetingService service;

 @Test
 public void testGreetingService() {
 Assertions.assertEquals("hello Quarkus", service.greeting(
"Quarkus"));
 }
}

① The GreetingService bean will be injected into the test

6. Applying Interceptors to Tests
As mentioned above Quarkus tests are actually full CDI beans, and as such you can apply CDI
interceptors as you would normally. As an example, if you want a test method to run within the context
of a transaction you can simply apply the @Transactional annotation to the method and the
transaction interceptor will handle it.

In addition to this you can also create your own test stereotypes. For example we could create a
@TransactionalQuarkusTest as follows:

6

@QuarkusTest
@Stereotype
@Transactional
@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.TYPE)
public @interface TransactionalQuarkusTest {
}

If we then apply this annotation to a test class it will act as if we had applied both the @QuarkusTest
and @Transactional annotations, e.g.:

@TransactionalQuarkusTest
public class TestStereotypeTestCase {

 @Inject
 UserTransaction userTransaction;

 @Test
 public void testUserTransaction() throws Exception {
 Assertions.assertEquals(Status.STATUS_ACTIVE,
userTransaction.getStatus());
 }

}

7. Mock Support
Quarkus supports the use of mock objects using the CDI @Alternative mechanism. To use this
simply override the bean you wish to mock with a class in the src/test/java directory, and put the
@Alternative and @Priority(1) annotations on the bean. Alternatively, a convenient
io.quarkus.test.Mock stereotype annotation could be used. This built-in stereotype declares
@Alternative, @Priority(1) and @Dependent. For example if I have the following service:

@ApplicationScoped
public class ExternalService {

 public String service() {
 return "external";
 }

}

I could mock it with the following class in src/test/java:

7

@Mock
@ApplicationScoped ①
public class MockExternalService extends ExternalService {

 @Override
 public String service() {
 return "mock";
 }
}

① Overrides the @Dependent scope declared on the @Mock stereotype.

It is important that the alternative be present in the src/test/java directory rather than
src/main/java, as otherwise it will take effect all the time, not just when testing.

Note that at present this approach does not work with native image testing, as this would required the
test alternatives to be baked into the native image.

8. Test Bootstrap Configuration Options
There are a few system properties that can be used to tune the bootstrap of the test, specifically its
classpath.

• quarkus-bootstrap-offline - (boolean) if set by the user, depending on the value, will enable or
disable the offline mode for the Maven artifact resolver used by the bootstrap to resolve the
deployment dependencies of the Quarkus extensions used in the test. If the property is not set to
any value, the artifact resolver will use the system’s default (user’s settings.xml).

• quarkus-workspace-discovery - (boolean) controls whether the bootstrap artifact resolver should
look for the test dependencies among the projects in the current workspace and use their output
(classes) directories when setting up the classpath for the test to run. The default value is true.

• quarkus-classpath-cache - (boolean) enables or disables the bootstrap classpath cache. With the
number of the project dependencies growing, the dependency resolution will take more time which
could at some point become annoying. The Quarkus bootstrap allows to cache the resolved
classpath and store it in the output directory of the project. The cached classpath will be
recalculated only after any of the pom.xml file in the workspace has been changed. The cache
directory is also removed each time the project’s output directory is cleaned, of course. The
default value is true.

9. Native Executable Testing
It is also possible to test native executables using @NativeImageTest. This supports all the features
mentioned in this guide except injecting into tests (and the native executable runs in a separate non-
JVM process this is not really possible).

This is covered in the Native Executable Guide.

8

building-native-image

	Quarkus - Testing Your Application
	1. Prerequisites
	2. Architecture
	3. Solution
	4. Recap of HTTP based Testing in JVM mode
	4.1. Controlling the test port
	4.2. Injecting a URI

	5. Injection into tests
	6. Applying Interceptors to Tests
	7. Mock Support
	8. Test Bootstrap Configuration Options
	9. Native Executable Testing

