
Quarkus - Simplified MongoDB with
Panache

MongoDB is a well known NoSQL Database that is widely used, but using its raw
API can be cumbersome as you need to express your entities and your queries as a
MongoDB Document.

MongoDB with Panache provides active record style entities (and repositories) like you have in
Hibernate ORM with Panache and focuses on making your entities trivial and fun to write in Quarkus.

It is built on top of the MongoDB Client extension.



This technology is considered preview.

In preview, backward compatibility and presence in the ecosystem is not guaranteed.
Specific improvements might require to change configuration or APIs and plans to
become stable are under way. Feedback is welcome on our mailing list or as issues in
our GitHub issue tracker.

For a full list of possible extension statuses, check our FAQ entry.

First: an example
Panache allows you to write your MongoDB entities like this:

public class Person extends PanacheMongoEntity {
 public String name;
 public LocalDate birth;
 public Status status;

 public static Person findByName(String name){
 return find("name", name).firstResult();
 }

 public static List<Person> findAlive(){
 return list("status", Status.Alive);
 }

 public static void deleteLoics(){
 delete("name", "Loïc");
 }
}

You have noticed how much more compact and readable the code is compared to using the MongoDB
API? Does this look interesting? Read on!

1

https://mongodb.github.io/mongo-java-driver/3.11/bson/documents/#document
hibernate-orm-panache
mongodb
https://groups.google.com/d/forum/quarkus-dev
https://github.com/quarkusio/quarkus/issues
https://quarkus.io/faq/#extension-status


the list() method might be surprising at first. It takes fragments of PanacheQL
queries (subset of JPQL) and contextualizes the rest. That makes for very concise
but yet readable code. MongoDB native queries are also supported.

Solution
We recommend that you follow the instructions in the next sections and create the application step by
step. However, you can go right to the completed example.

Clone the Git repository: git clone https://github.com/quarkusio/quarkus-
quickstarts.git, or download an archive.

The solution is located in the mongodb-panache-quickstart directory.

Creating the Maven project
First, we need a new project. Create a new project with the following command:

mvn io.quarkus:quarkus-maven-plugin:1.2.0.Final:create \
 -DprojectGroupId=org.acme \
 -DprojectArtifactId=mongodb-panache-quickstart \
 -DclassName="org.acme.mongodb.panache.FruitResource" \
 -Dpath="/fruits" \
 -Dextensions="resteasy-jsonb,mongodb-panache"
cd mongodb-panache-quickstart

This command generates a Maven structure importing the RESTEasy/JAX-RS, JSON-B and MongoDB
with Panache extensions. After this, the quarkus-mongodb-panache extension has been added to
your pom.xml.

If you don’t want to generate a new project you can add the dependency in your pom.xml:

<dependencies>
 <dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-mongodb-panache</artifactId>
 </dependency>
</dependencies>

Setting up and configuring MongoDB with
Panache
To get started:

2

https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts/archive/master.zip
https://github.com/quarkusio/quarkus-quickstarts/tree/master/mongodb-panache-quickstart

• add your settings in application.properties

• Make your entities extend PanacheMongoEntity, you can use the @MongoEntity annotation
to specify the name of the database and the name of the collection (it will default to the name of
your entity).

• place your entity logic in static methods in your entities

Then add the relevant configuration properties in application.properties.

configure the MongoDB client for a replica set of two nodes
quarkus.mongodb.connection-string =
mongodb://mongo1:27017,mongo2:27017
mandatory if you don't specify the name of the database using
@MongoEntity
quarkus.mongodb.database = person

The quarkus.mongodb.database property will be used by MongoDB with Panache to determine
the name of the database where your entities will be persisted.

For advanced configuration of the MongoDB client, you can follow the Configuring the MongoDB
database guide.

Defining your entity
To define a Panache entity, simply extend PanacheMongoEntity and add your columns as public
fields. You can add the @MongoEntity annotation to your entity if you need to customize the name
of the collection and/or the database.

@MongoEntity(collection="ThePerson")
public class Person extends PanacheMongoEntity {
 public String name;

 // will be persisted as a 'birth' field in MongoDB
 @BsonProperty("birth")
 public LocalDate birthDate;

 public Status status;
}


annotating with @MongoEntity is optional, it allows you to configure the name of
the collection and the name of the database. Here the entity will be stored in the
ThePerson collection instead of the default Person collection.

MongoDB with Panache uses the PojoCodecProvider to map your entities to a MongoDB Document.

You will be allowed to use the following annotations to customize this mapping:

3

mongodb#configuring-the-mongodb-database
mongodb#configuring-the-mongodb-database
https://mongodb.github.io/mongo-java-driver/3.10/bson/pojos/

• @BsonId: allows you to customize the ID field, see Custom IDs.

• @BsonProperty: customize the serialized name of the field.

• @BsonIgnore: ignore a field during the serialization.

If you need to write accessors, you can:

public class Person extends PanacheMongoEntity {
 public String name;
 public LocalDate birth;
 public Status status;

 // return name as uppercase in the model
 public String getName(){
 return name.toUpperCase();
 }

 // store all names in lowercase in the DB
 public void setName(String name){
 this.name = name.toLowerCase();
 }
}

And thanks to our field access rewrite, when your users read person.name they will actually call your
getName() accessor, and similarly for field writes and the setter. This allows for proper encapsulation
at runtime as all fields calls will be replaced by the corresponding getter/setter calls.

Most useful operations
Once you have written your entity, here are the most common operations you will be able to do:

4

// creating a person
Person person = new Person();
person.name = "Loïc";
person.birth = LocalDate.of(1910, Month.FEBRUARY, 1);
person.status = Status.Alive;

// persist it
person.persist();

person.status = Status.Dead;

// Your must call update() in order to send your entity
modifications to MongoDB
person.update();

// delete it
person.delete();

// getting a list of all Person entities
List<Person> allPersons = Person.listAll();

// finding a specific person by ID
person = Person.findById(personId);

// finding a specific person by ID via an Optional
Optional<Person> optional = Person.findByIdOptional(personId);
person = optional.orElseThrow(() -> new NotFoundException());

// finding all living persons
List<Person> livingPersons = Person.list("status", Status.Alive);

// counting all persons
long countAll = Person.count();

// counting all living persons
long countAlive = Person.count("status", Status.Alive);

// delete all living persons
Person.delete("status", Status.Alive);

// delete all persons
Person.deleteAll();

All list methods have equivalent stream versions.

5

Stream<Person> persons = Person.streamAll();
List<String> namesButEmmanuels = persons
 .map(p -> p.name.toLowerCase())
 .filter(n -> ! "emmanuel".equals(n))
 .collect(Collectors.toList());


A persistOrUpdate() method exist that persist or update an entity in the
database, it uses the upsert capability of MongoDB to do it in a single query.

Paging
You should only use list and stream methods if your collection contains small enough data sets.
For larger data sets you can use the find method equivalents, which return a PanacheQuery on
which you can do paging:

// create a query for all living persons
PanacheQuery<Person> livingPersons = Person.find("status", Status
.Alive);

// make it use pages of 25 entries at a time
livingPersons.page(Page.ofSize(25));

// get the first page
List<Person> firstPage = livingPersons.list();

// get the second page
List<Person> secondPage = livingPersons.nextPage().list();

// get page 7
List<Person> page7 = livingPersons.page(Page.of(7, 25)).list();

// get the number of pages
int numberOfPages = livingPersons.pageCount();

// get the total number of entities returned by this query without
paging
int count = livingPersons.count();

// and you can chain methods of course
return Person.find("status", Status.Alive)
 .page(Page.ofSize(25))
 .nextPage()
 .stream()

The PanacheQuery type has many other methods to deal with paging and returning streams.

6

Sorting
All methods accepting a query string also accept an optional Sort parameter, which allows you to
abstract your sorting:

List<Person> persons = Person.list(Sort.by("name").and("birth"));

// and with more restrictions
List<Person> persons = Person.list("status", Sort.by("name").and(
"birth"), Status.Alive);

The Sort class has plenty of methods for adding columns and specifying sort direction.

Adding entity methods
In general, we recommend not adding custom queries for your entities outside of the entities
themselves, to keep all model queries close to the models they operate on. So we recommend adding
them as static methods in your entity class:

public class Person extends PanacheMongoEntity {
 public String name;
 public LocalDate birth;
 public Status status;

 public static Person findByName(String name){
 return find("name", name).firstResult();
 }

 public static List<Person> findAlive(){
 return list("status", Status.Alive);
 }

 public static void deleteLoics(){
 delete("name", "Loïc");
 }
}

Simplified queries
Normally, MongoDB queries are of this form: {'firstname': 'John', 'lastname':'Doe'},
this is what we call MongoDB native queries.

You can use them if you want, but we also support what we call PanacheQL that can be seen as a
subset of JPQL (or HQL) and allows you to easily express a query. MongoDB with Panache will then
map it to a MongoDB native query.

7

https://docs.oracle.com/javaee/7/tutorial/persistence-querylanguage.htm#BNBTG
https://docs.jboss.org/hibernate/orm/5.4/userguide/html_single/Hibernate_User_Guide.html#hql

If your query does not start with {, we will consider it a PanacheQL query:

• <singlePropertyName> (and single parameter) which will expand to
{'singleColumnName': '?'}

• <query> will expand to {<query>} where we will map the PanacheQL query to MongoDB native
query form. We support the following operators that will be mapped to the corresponding
MongoDB operators: 'and', 'or' (mixing 'and' and 'or' is not currently supported), '=', '>', '>=', '<', '
⇐', '!=', 'is null', 'is not null', and 'like' that is mapped to the MongoDB $regex operator.

Here are some query examples:

• firstname = ?1 and status = ?2 will be mapped to {'firstname': ?1, 'status':
?2}

• amount > ?1 and firstname != ?2 will be mapped to {'amount': {'$gt': ?1},
'firstname': {'$ne': ?2}}

• lastname like ?1 will be mapped to {'lastname': {'$regex': ?1}}. Be careful that
this will be MongoDB regex support and not SQL like pattern.

• lastname is not null will be mapped to {'lastname':{'$exists': true}}

We also handle some basic date type transformations: all fields of type Date, LocalDate or
LocalDateTime will be mapped to the BSON Date using the ISODate type (UTC datetime).

MongoDB with Panache also supports extended MongoDB queries by providing a Document query,
this is supported by the find/list/stream/count/delete methods.

Query parameters
You can pass query parameters, for both native and PanacheQL queries, by index (1-based) as shown
below:

Person.find("name = ?1 and status = ?2", "Loïc", Status.Alive);
Person.find("{'name': ?1, 'status': ?2}", "Loïc", Status.Alive);

Or by name using a Map:

Map<String, Object> params = new HashMap<>();
params.put("name", "Loïc");
params.put("status", Status.Alive);
Person.find("name = :name and status = :status", params);
Person.find("{'name': :name, 'status', :status}", params);

Or using the convenience class Parameters either as is or to build a Map:

8

https://docs.mongodb.com/manual/reference/operator/query/regex/#op._S_regex
https://docs.mongodb.com/manual/reference/bson-types/#document-bson-type-date

// generate a Map
Person.find("name = :name and status = :status",
 Parameters.with("name", "Loïc").and("status", Status.
Alive).map());

// use it as-is
Person.find("{'name': :name, 'status': :status}",
 Parameters.with("name", "Loïc").and("status", Status.
Alive));

Every query operation accepts passing parameters by index (Object…), or by name
(Map<String,Object> or Parameters).

When you use query parameters, be careful that PanacheQL queries will refer to the Object
parameters name but native queries will refer to MongoDB field names.

Imagine the following entity:

public class Person extends PanacheMongoEntity {
 @BsonProperty("lastname")
 public String name;
 public LocalDate birth;
 public Status status;

 public static Person findByNameWithPanacheQLQuery(String name){
 return find("name", name).firstResult();
 }

 public static Person findByNameWithNativeQuery(String name){
 return find("{'lastname': ?1}", name).firstResult();
 }
}

Both findByNameWithPanacheQLQuery() and findByNameWithNativeQuery() methods will
return the same result but query written in PanacheQL will use the entity field name: name, and native
query will use the MongoDB field name: lastname.

Query projection
Query projection can be done with the project(Class) method on the PanacheQuery object that
is returned by the find() methods.

You can use it to restrict which fields will be returned by the database, the ID field will always be
returned but it’s not mandatory to include it inside the projection class.

For this, you need to create a class (a Pojo) that will only contain the projected fields. This pojo needs
to be annotated with @ProjectionFor(Entity.class) where Entity is the name of your entity

9

class. The field names, or getters, of the projection class will be used to restrict which properties will
be loaded from the database.

Projection can be done for both PanacheQL and native queries.

import io.quarkus.mongodb.panache.ProjectionFor;
import org.bson.codecs.pojo.annotations.BsonProperty;

// using public fields
@ProjectionFor(Person.class)
public class PersonName {
 public String name;
}

// using getters
@ProjectionFor(Person.class)
public class PersonNameWithGetter {
 private String name;

 public String getName(){
 return name;
 }

 public void setName(String name){
 this.name = name;
 }
}

// only 'name' will be loaded from the database
PanacheQuery<PersonName> shortQuery = Person.find("status ",
Status.Alive).project(PersonName.class);
PanacheQuery<PersonName> query = Person.find("'status': ?1",
Status.Alive).project(PersonNameWithGetter.class);
PanacheQuery<PersonName> nativeQuery = Person.find("{'status':
'ALIVE'}", Status.Alive).project(PersonName.class);


Using @BsonProperty is not needed to define custom column mappings, as the
mappings from the entity class will be used.


You can have your projection class extends from another class. In this case, the
parent class also needs to have use @ProjectionFor annotation.

The DAO/Repository option
Repository is a very popular pattern and can be very accurate for some use case, depending on the
complexity of your needs.

10

Whether you want to use the Entity based approach presented above or a more traditional Repository
approach, it is up to you, Panache and Quarkus have you covered either way.

If you lean towards using Repositories, you can get the exact same convenient methods injected in
your Repository by making it implement PanacheMongoRepository:

@ApplicationScoped
public class PersonRepository implements PanacheMongoRepository
<Person> {

 // put your custom logic here as instance methods

 public Person findByName(String name){
 return find("name", name).firstResult();
 }

 public List<Person> findAlive(){
 return list("status", Status.Alive);
 }

 public void deleteLoics(){
 delete("name", "Loïc");
 }
}

Absolutely all the operations that are defined on PanacheMongoEntityBase are available on your
DAO, so using it is exactly the same except you need to inject it:

@Inject
PersonRepository personRepository;

@GET
public long count(){
 return personRepository.count();
}

So if Repositories are your thing, you can keep doing them. Even with repositories, you can keep your
entities as subclasses of PanacheMongoEntity in order to get the ID and public fields working, but
you can even skip that and go back to specifying your ID and using getters and setters if that’s your
thing. Use what works for you.

Transactions


MongoDB offers ACID transactions since version 4.0. MongoDB with Panache
doesn’t provide support for them.

11

Custom IDs
IDs are often a touchy subject. In MongoDB, they are usually auto-generated by the database with an
ObjectId type. In MongoDB with Panache the ID are defined by a field named id of the
org.bson.types.ObjectId type, but if you want ot customize them, once again we have you
covered.

You can specify your own ID strategy by extending PanacheMongoEntityBase instead of
PanacheMongoEntity. Then you just declare whatever ID you want as a public field by annotating it
by @BsonId:

@MongoEntity
public class Person extends PanacheMongoEntityBase {

 @BsonId
 public Integer myId;

 //...
}

If you’re using repositories, then you will want to extend PanacheMongoRepositoryBase instead
of PanacheMongoRepository and specify your ID type as an extra type parameter:

@ApplicationScoped
public class PersonRepository implements
PanacheMongoRepositoryBase<Person,Integer> {
 //...
}


When using ObjectId, MongoDB will automatically provide a value for you, but if
you use a custom field type, you need to provide the value by yourself.

ObjectId can be difficult to use if you want to expose its value in your REST service. So we created
JSON-B and Jackson providers to serialize/deserialize them as a String which are are automatically
registered if your project depends on one of the RESTEasy with JSON-B or RESTEasy with Jackson
extensions.

How and why we simplify MongoDB API
When it comes to writing MongoDB entities, there are a number of annoying things that users have
grown used to reluctantly deal with, such as:

• Duplicating ID logic: most entities need an ID, most people don’t care how it’s set, because it’s not
really relevant to your model.

• Dumb getters and setters: since Java lacks support for properties in the language, we have to

12

create fields, then generate getters and setters for those fields, even if they don’t actually do
anything more than read/write the fields.

• Traditional EE patterns advise to split entity definition (the model) from the operations you can do
on them (DAOs, Repositories), but really that requires an unnatural split between the state and its
operations even though we would never do something like that for regular objects in the Object
Oriented architecture, where state and methods are in the same class. Moreover, this requires two
classes per entity, and requires injection of the DAO or Repository where you need to do entity
operations, which breaks your edit flow and requires you to get out of the code you’re writing to
set up an injection point before coming back to use it.

• MongoDB queries are super powerful, but overly verbose for common operations, requiring you to
write queries even when you don’t need all the parts.

• MongoDB queries are JSON based, so you will need some String manipulation or using the
Document type and it will need a lot of boilerplate code.

With Panache, we took an opinionated approach to tackle all these problems:

• Make your entities extend PanacheMongoEntity: it has an ID field that is auto-generated. If you
require a custom ID strategy, you can extend PanacheMongoEntityBase instead and handle
the ID yourself.

• Use public fields. Get rid of dumb getter and setters. Under the hood, we will generate all getters
and setters that are missing, and rewrite every access to these fields to use the accessor methods.
This way you can still write useful accessors when you need them, which will be used even though
your entity users still use field accesses.

• Don’t use DAOs or Repositories: put all your entity logic in static methods in your entity class. Your
entity superclass comes with lots of super useful static methods and you can add your own in your
entity class. Users can just start using your entity Person by typing Person. and getting
completion for all the operations in a single place.

• Don’t write parts of the query that you don’t need: write Person.find("order by name") or
Person.find("name = ?1 and status = ?2", "Loïc", Status.Alive) or even
better Person.find("name", "Loïc").

That’s all there is to it: with Panache, MongoDB has never looked so trim and neat.

Defining entities in external projects or jars
MongoDB with Panache relies on compile-time bytecode enhancements to your entities. If you define
your entities in the same project where you build your Quarkus application, everything will work fine. If
the entities come from external projects or jars, you can make sure that your jar is treated like a
Quarkus application library by indexing it via Jandex, see How to Generate a Jandex Index in the CDI
guide. This will allow Quarkus to index and enhance your entities as if they were inside the current
project.

13

cdi-reference#how-to-generate-a-jandex-index

	Quarkus - Simplified MongoDB with Panache
	First: an example
	Solution
	Creating the Maven project
	Setting up and configuring MongoDB with Panache
	Defining your entity
	Most useful operations
	Paging
	Sorting
	Adding entity methods
	Simplified queries
	Query parameters
	Query projection
	The DAO/Repository option
	Transactions
	Custom IDs
	How and why we simplify MongoDB API
	Defining entities in external projects or jars

