
Quarkus - Asynchronous messages
between beans

Quarkus allows different beans to interact using asynchronous messages,
enforcing loose-coupling. The messages are sent to virtual addresses. It offers 3
types of delivery mechanism:

• point-to-point - send the message, one consumer receives it. If several consumers listen to the
address, a round robin is applied;

• publish/subscribe - publish a message, all the consumers listening to the address are receiving the
message;

• request/reply - send the message and expect a response. The receiver can respond to the
message in an asynchronous-fashion

All these delivery mechanism are non-blocking, and are providing one of the fundamental brick to
build reactive applications.


The asynchronous message passing feature allows replying to messages which is
not supported by Reactive Messaging. However, it is limited to single-event behavior
(no stream) and to local messages.

Installing
This mechanism uses the Vert.x EventBus, so you need to enable the vertx extension to use this
feature. If you are creating a new project, set the extensions parameter are follows:

mvn io.quarkus:quarkus-maven-plugin:1.2.1.Final:create \
 -DprojectGroupId=org.acme \
 -DprojectArtifactId=vertx-quickstart \
 -Dextensions="vertx"
cd vertx-quickstart

If you have an already created project, the vertx extension can be added to an existing Quarkus
project with the add-extension command:

./mvnw quarkus:add-extension -Dextensions="vertx"

Otherwise, you can manually add this to the dependencies section of your pom.xml file:

1

<dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-vertx</artifactId>
</dependency>

Consuming events
To consume events, use the io.quarkus.vertx.ConsumeEvent annotation:

package org.acme.vertx;

import io.quarkus.vertx.ConsumeEvent;

import javax.enterprise.context.ApplicationScoped;

@ApplicationScoped
public class GreetingService {

 @ConsumeEvent ①
 public String consume(String name) { ②
 return name.toUpperCase();
 }
}

① If not set, the address is the fully qualified name of the bean, for instance, in this snippet it’s
org.acme.vertx.GreetingService.

② The method parameter is the message body. If the method returns something it’s the message
response.



By default, the code consuming the event must be non-blocking, as it’s called on the
Vert.x event loop. If your processing is blocking, use the blocking attribute:

@ConsumeEvent(value = "blocking-consumer", blocking =
true)
void consumeBlocking(String message) {
 // Something blocking
}

Configuring the address
The @ConsumeEvent annotation can be configured to set the address:

2

@ConsumeEvent("greeting") ①
public String consume(String name) {
 return name.toUpperCase();
}

① Receive the messages sent to the greeting address

Replying
The return value of a method annotated with @ConsumeEvent is used as response to the incoming
message. For instance, in the following snippet, the returned String is the response.

@ConsumeEvent("greeting")
public String consume(String name) {
 return name.toUpperCase();
}

You can also return a CompletionStage<T> to handle asynchronous reply:

@ConsumeEvent("greeting")
public CompletionStage<String> consume2(String name) {
 return CompletableFuture.supplyAsync(name::toUpperCase,
executor);
}

Implementing fire and forget interactions
You don’t have to reply to received messages. Typically for a fire and forget interaction, the messages
are consumed and the sender does not need to know about it. To implement this, your consumer
method just returns void

@ConsumeEvent("greeting")
public void consume(String event) {
 // Do something with the event
}

Dealing with messages
As said above, this mechanism is based on the Vert.x event bus. So, you can also use Message
directly:

3

@ConsumeEvent("greeting")
public void consume(Message<String> msg) {
 System.out.println(msg.address());
 System.out.println(msg.body());
}

Sending messages
Ok, we have seen how to receive messages, let’s now switch to the other side: the sender. Sending and
publishing messages use the Vert.x event bus:

package org.acme;

import io.vertx.axle.core.eventbus.EventBus;
import io.vertx.axle.core.eventbus.Message;

import javax.inject.Inject;
import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.PathParam;
import java.util.concurrent.CompletionStage;

@Path("/async")
public class EventResource {

 @Inject
 EventBus bus;
①

 @GET
 @Path("/{name}")
 public CompletionStage<String> hello(String name) {
 return bus.<String>send("greeting", name)
②
 .thenApply(Message::body);
 }
}

① Inject the Event bus

② Send a message to the address greeting. Message payload is name

The EventBus object provides methods to:

1. send a message to a specific address - one single consumer receives the message.

2. publish a message to a specific address - all consumers receive the messages.

4

3. send a message and expect reply

// Case 1
bus.send("address", "hello");
// Case 2
bus.publish("address", "hello");
// Case 3
bus.send("address", "hello, how are you?").thenAccept(message -> {
 // response
});

Putting things together - bridging HTTP and
messages
Let’s revisit a greeting HTTP endpoint and use asynchronous message passing to delegate the call to a
separated bean. It uses the request/reply dispatching mechanism. Instead of implementing the
business logic inside the JAX-RS endpoint, we are sending a message. This message is consumed by
another bean and the response is sent using the reply mechanism.

First create a new project using:

mvn io.quarkus:quarkus-maven-plugin:1.2.1.Final:create \
 -DprojectGroupId=org.acme \
 -DprojectArtifactId=vertx-http-quickstart \
 -Dextensions="vertx"
cd vertx-http-quickstart

You can already start the application in dev mode using ./mvnw compile quarkus:dev.

Then, creates a new JAX-RS resource with the following content:

5

src/main/java/org/acme/vertx/EventResource.java

package org.acme.vertx;

import io.vertx.axle.core.eventbus.EventBus;
import io.vertx.axle.core.eventbus.Message;

import javax.inject.Inject;
import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.PathParam;
import java.util.concurrent.CompletionStage;

@Path("/hello")
public class EventResource {

 @Inject EventBus bus;

 @GET
 @Path("/async/{name}")
 public CompletionStage<String> hello(@PathParam("name") String
name) {
 return bus.<String>send("greeting", name)
①
 .thenApply(Message::body);
②
 }
}

① send the name to the greeting address

② when we get the reply, extract the body and send this as response to the user

If you call this endpoint, you will wait and get a timeout. Indeed, no one is listening. So, we need a
consumer listening on the greeting address. Create a GreetingService bean with the following
content:

6

src/main/java/org/acme/vertx/GreetingService.java

package org.acme.vertx;

import io.quarkus.vertx.ConsumeEvent;

import javax.enterprise.context.ApplicationScoped;

@ApplicationScoped
public class GreetingService {

 @ConsumeEvent("greeting")
 public String greeting(String name) {
 return "Hello " + name;
 }

}

This bean receives the name, and returns the greeting message.

Now, open your browser to http://localhost:8080/async/Quarkus, and you should see:

Hello Quarkus

To better understand, let’s detail how the HTTP request/response has been handled:

1. The request is received by the hello method

2. a message containing the name is sent to the event bus

3. Another bean receives this message and computes the response

4. This response is sent back using the reply mechanism

5. Once the reply is received by the sender, the content is written to the HTTP response

This application can be packaged using:

./mvnw clean package

You can also compile it as a native executable with:

./mvnw clean package -Pnative

7

http://localhost:8080/async/Quarkus
http://localhost:8080/async/Quarkus
http://localhost:8080/async/Quarkus
http://localhost:8080/async/Quarkus
http://localhost:8080/async/Quarkus

	Quarkus - Asynchronous messages between beans
	Installing
	Consuming events
	Configuring the address
	Replying
	Implementing fire and forget interactions
	Dealing with messages

	Sending messages
	Putting things together - bridging HTTP and messages

