
Quarkus - Deploying Knative
Application to Kubernetes or

OpenShift
This guide covers:

• The deployment of the application to Kubernetes

This guide takes as input the application developed in the native application guide. So, you should
have been able to package your application as a binary executable, copied it in a Docker image and run
this image.

Depending on whether you are a bare Kubernetes user or an OpenShift user, pick the section you
need. The OpenShift section leverages OpenShift build and route features which are not available in
bare Kubernetes.

Prerequisites
For this guide you need:

• roughly 20 minutes

• having access to a Kubernetes and/or OpenShift cluster. Minikube and Minishift are valid options.

• having deployed Knative components on Minikube or Minishift

Solution
We recommend to follow the instructions in the next sections and build the application step by step.
However, you can go right to the completed example.

Clone the Git repository: git clone https://github.com/quarkusio/quarkus-
quickstarts.git, or download an archive.

The solution is located in the getting-started-knative directory.

Deploying the application in Knative
Before we deploy the application to Knative in Minikube or Minishift we need to create the following
Kubernetes objects:

• Container registry secrets :- This is required to for the built container image to be pushed to the
container registry of your choice

• Deploy Key :- This is required only if you are going to pull the sources from private repository.

1

building-native-image
https://knative.dev/docs/install/knative-with-minikube/
https://knative.dev/v0.6-docs/install/knative-with-minishift/
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts/archive/master.zip
https://github.com/knative/docs/blob/master/docs/serving/deploying-with-private-registry.md#provide-container-registry-credentials-to-knative
https://developer.github.com/v3/guides/managing-deploy-keys/#deploy-keys

• Build Service Account :- The Kubernetes Service Account that will have access to Container
Registry secret and Deploy Key secret


If you are not using private GitHub repo then you dont need the Deploy Key
created and added to the Build Service Account

Run the following commands to kick start Knative Build which will build the quarkus application
container image using Dockerfile and Kaniko. After a successful build you will have the Knative serving
application deployed with the built container image. You can watch the application build pods using
the command kubectl get pods -w. You can terminate the watch using the command CTRL + c

Since there are some parameters that you need to pass to the builds, which are right now configurable
via maven properties, you need to run the following maven command to make them passed to the
Knative resource yamls.

Table 1. Maven Parameters

Name Use Example

github.deploy.key the base64 encoded private key
that is configured to be used as
the GitHub private repo Deploy
key

cat ~/.ssh/quarkus-
quickstarts | base64 -w
0

github.keyscan the base64 encoded value of
ssh-keyscan github.com

ssh-keyscan github.com
| base64 -w 0

container.registry.url the container registry url, NOTE:
this should be a v2 container
registry

https://index.docker.io/v1/

container.registry.user The user name to authenticate
with the container registry

container.registry.password The user password to
authenticate with the container
registry

git.source.revision The revision of the source to
checkout from GitHub

master

git.source.repo.url The GitHub repo url https://github.com/quarkusio/
quarkus-quickstarts.git

app.container.image The fully qualified name of the
container image that will be
pushed to the container registry
after build

docker.io/demo/quarkus-
knative-quickstart

The following is the example command to generate the need knative resource files

2

https://github.com/knative/docs/tree/master/serving/samples/build-private-repo-go#setting-up-our-build-service-account
https://github.com/knative/build
https://github.com/GoogleContainerTools/kaniko
https://index.docker.io/v1/
https://index.docker.io/v1/
https://index.docker.io/v1/
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git

mvn -Dgithub.deploy.key=$(cat ~/.ssh/quarkus-quickstarts | base64
-w 0) \
 -Dgithub.keyscan=$(ssh-keyscan github.com | base64 -w 0) \
 -Dcontainer.registry.url='https://quay.io/v2' \
 -Dcontainer.registry.user='demo' \
 -Dcontainer.registry.password='password' \
 -Dgit.source.revision='master' \
 -Dgit.source.repo.url='https://github.com/quarkusio/quarkus
-quickstarts.git' \ ①
 -Dapp.container.image='docker.io/demo/getting-started-knative'
\
 clean process-resources

① If your are using a private repo then you might need to use git ssh url

The above command will apply the property values to the Knative resources found in
${project.basedir}/src/main/knative and copy them to
${project.build.directory}/knative

Run the following command to create the Knative resources:

kubectl apply --recursive --filename target/knative

Accessing your application
The application is now exposed as an internal service. If you are using minikube or minishift, you
can access it using:

INGRESSGATEWAY=istio-ingressgateway
IP_ADDRESS="$(minikube ip):$(kubectl get svc $INGRESSGATEWAY
--namespace istio-system --output
'jsonpath={.spec.ports[?(@.port==80)].nodePort}')" ①

curl -v -H 'Host: getting-started-knative.example.com'
$IP_ADDRESS/hello/greeting/redhat

① you can replace minikube ip with minishift ip if you are using OpenShift

Going further
This guide covered the deployment of a Quarkus application as Knative application on Kubernetes
However, there is much more, and the integration with these environments has been tailored to make
Quarkus applications execution very smooth. For instance, the health extension can be used for health
check; the configuration support allows mounting the application configuration using config map, the
metric extension produces data scrapable by Prometheus and so on.

3

	Quarkus - Deploying Knative Application to Kubernetes or OpenShift
	Prerequisites
	Solution
	Deploying the application in Knative
	Accessing your application
	Going further

