
Quarkus - Quarkus Extension for
Spring Security API

While users are encouraged to use Java standard annotations for security
authorizations, Quarkus provides a compatibility layer for Spring Security in the
form of the spring-security extension.

This guide explains how a Quarkus application can leverage the well known Spring Security
annotations to define authorizations on RESTful services using roles.



This technology is considered preview.

In preview, backward compatibility and presence in the ecosystem is not guaranteed.
Specific improvements might require to change configuration or APIs and plans to
become stable are under way. Feedback is welcome on our mailing list or as issues in
our GitHub issue tracker.

For a full list of possible extension statuses, check our FAQ entry.

Prerequisites
To complete this guide, you need:

• less than 15 minutes

• an IDE

• JDK 1.8+ installed with JAVA_HOME configured appropriately

• Apache Maven 3.5.3+

• Some familiarity with the Spring Web extension

Solution
We recommend that you follow the instructions in the next sections and create the application step by
step. However, you can go right to the completed example.

Clone the Git repository: git clone https://github.com/quarkusio/quarkus-
quickstarts.git, or download an archive.

The solution is located in the spring-security-quickstart directory.

Creating the Maven project
First, we need a new project. Create a new project with the following command:

1

security#standard-security-annotations
security#standard-security-annotations
https://groups.google.com/d/forum/quarkus-dev
https://github.com/quarkusio/quarkus/issues
https://quarkus.io/faq/#extension-status
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts/archive/master.zip
https://github.com/quarkusio/quarkus-quickstarts/tree/master/spring-security-quickstart

mvn io.quarkus:quarkus-maven-plugin:1.3.0.Alpha1:create \
 -DprojectGroupId=org.acme \
 -DprojectArtifactId=spring-security-quickstart \
 -DclassName="org.acme.spring.security.GreetingController" \
 -Dpath="/greeting" \
 -Dextensions="spring-web, spring-security, quarkus-elytron-
security-properties-file"
cd spring-security-quickstart

This command generates a Maven project with a REST endpoint and imports the spring-web,
spring-security and security-properties-file extensions.

For more information about security-properties-file, you can check out the guide of the
quarkus-elytron-security-properties-file extension.

GreetingController
The Quarkus Maven plugin automatically generated a controller with the Spring Web annotations to
define our REST endpoint (instead of the JAX-RS ones used by default). The
src/main/java/org/acme/spring/web/GreetingController.java file looks as follows:

package org.acme.spring.security;

import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
import org.springframework.web.bind.annotation.PathVariable;

@RestController
@RequestMapping("/greeting")
public class GreetingController {

 @GetMapping
 public String hello() {
 return "hello";
 }
}

GreetingControllerTest
Note that a test for the controller has been created as well:

2

security-properties

package org.acme.spring.security;

import io.quarkus.test.junit.QuarkusTest;
import org.junit.jupiter.api.Test;

import static io.restassured.RestAssured.given;
import static org.hamcrest.CoreMatchers.is;

@QuarkusTest
public class GreetingControllerTest {

 @Test
 public void testHelloEndpoint() {
 given()
 .when().get("/greeting")
 .then()
 .statusCode(200)
 .body(is("hello"));
 }

}

Package and run the application
Run the application with: ./mvn quarkus:dev. Open your browser to http://localhost:8080/
greeting.

The result should be: {"message": "hello"}.

Modify the controller to secure the hello
method
In order to restrict access to the hello method to users with certain roles, the @Secured annotation
will be utilized. The updated controller will be:

3

http://localhost:8080/greeting
http://localhost:8080/greeting
http://localhost:8080/greeting

package org.acme.spring.security;

import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
import org.springframework.web.bind.annotation.PathVariable;

@RestController
@RequestMapping("/greeting")
public class GreetingController {

 @Secured("admin")
 @GetMapping
 public String hello() {
 return "hello";
 }
}

The easiest way to setup users and roles for our example is to use the security-properties-
file extension. This extension essentially allows users and roles to be defined in the main Quarkus
configuration file - application.properties. For more information about this extension check
the associated guide. An example configuration would be the following:

quarkus.security.users.embedded.enabled=true
quarkus.security.users.embedded.plain-text=true
quarkus.security.users.embedded.users.scott=jb0ss
quarkus.security.users.embedded.roles.scott=admin,user
quarkus.security.users.embedded.users.stuart=test
quarkus.security.users.embedded.roles.stuart=user

Note that the test also needs to be updated. It could look like:

GreetingControllerTest

4

security-properties

package org.acme.spring.security;

import io.quarkus.test.junit.QuarkusTest;
import org.junit.jupiter.api.Test;

import static io.restassured.RestAssured.given;
import static org.hamcrest.CoreMatchers.is;

@QuarkusTest
public class GreetingControllerTest {

 @Test
 public void testHelloEndpointForbidden() {
 given().auth().preemptive().basic("stuart", "test")
 .when().get("/greeting")
 .then()
 .statusCode(403);
 }

 @Test
 public void testHelloEndpoint() {
 given().auth().preemptive().basic("scott", "jb0ss")
 .when().get("/greeting")
 .then()
 .statusCode(200)
 .body(is("hello"));
 }

}

Test the changes
Access allowed

Open your browser again to http://localhost:8080/greeting and introduce scott and jb0ss in
the dialog displayed.

The word hello should be displayed.

Access forbidden

Open your browser again to http://localhost:8080/greeting and let empty the dialog displayed.

The result should be:

Access to localhost was denied
You don't have authorization to view this page.
HTTP ERROR 403

5

http://localhost:8080/greeting
http://localhost:8080/greeting
http://localhost:8080/greeting
http://localhost:8080/greeting
http://localhost:8080/greeting
http://localhost:8080/greeting

Run the application as a native executable
You can of course create a native image using the instructions of the Building a native executable
guide.

Supported Spring Security functionalities
Quarkus currently only supports a subset of the functionalities that Spring Security provides with
more features being planned. More specifically, Quarkus supports the security related features of role-
based authorization semantics (think of @Secured instead of @RolesAllowed).

Annotations
The table below summarizes the supported annotations:

Table 1. Supported Spring Security annotations

Name Comments

@Secured

@PreAuthorize See next section for more details

@PreAuthorize

Quarkus provides support for some of the most used features of Spring Security’s @PreAuthorize
annotation. The expressions that are supported are the following:

hasRole
To test if the current user has a specific role, the hasRole expression can be used inside
@PreAuthorize.

Some examples are: @PreAuthorize("hasRole('admin')"),
@PreAuthorize("hasRole(@roles.USER)") where the roles is a bean that could be
defined like so:

import org.springframework.stereotype.Component;

@Component
public class Roles {

 public final String ADMIN = "admin";
 public final String USER = "user";
}

hasAnyRole

In the same fashion as hasRole, users can use hasAnyRole to check if the logged in user has any

6

building-native-image
building-native-image

of the specified roles.

Some examples are: @PreAuthorize("hasAnyRole('admin')"),
@PreAuthorize("hasAnyRole(@roles.USER, 'view')")

permitAll

Adding @PreAuthorize("permitAll()") to a method will ensure that that method is
accessible by any user (including anonymous users). Adding it to a class will ensure that all public
methods of the class that are not annotated with any other Spring Security annotation will be
accessible.

denyAll

Adding @PreAuthorize("denyAll()") to a method will ensure that that method is not
accessible by any user. Adding it to a class will ensure that all public methods of the class that are
not annotated with any other Spring Security annotation will not be accessible to any user.

isAnonymous

When annotating a bean method with @PreAuthorize("isAnonymous()") the method will
only be accessible if the current user is anonymous - i.e. a non logged in user.

isAuthenticated

When annotating a bean method with @PreAuthorize("isAuthenticated()") the method
will only be accessible if the current user is a logged in user. Essentially the method is only
unavailable for anonymous users.

#paramName == authentication.principal.username

This syntax allows users to check if a parameter (or a field of the parameter) of the secured method
is equal to the logged in username.

Examples of this use case are:

7

public class Person {

 private final String name;

 public Person(String name) {
 this.name = name;
 }

 public String getName() {
 return name;
 }
}

@Component
public class MyComponent {

 @PreAuthorize("#username ==
authentication.principal.username") ①
 public void doSomething(String username, String other){

 }

 @PreAuthorize("#person.name ==
authentication.principal.username") ②
 public void doSomethingElse(Person person){

 }
}

① doSomething can be executed if the current logged in user is the same as the username
method parameter

② doSomethingElse can be executed if the current logged in user is the same as the name field
of person method parameter


the use of authentication. is optional, so using principal.username has
the same result.

#paramName != authentication.principal.username

This is similar to the previous expression with the difference being that the method parameter
must be different than the logged in username.

@beanName.method()

This syntax allows developers to specify that the execution of method of a specific bean will
determine if the current user can access the secured method.

The syntax is best explained with an example. Let’s assume that a MyComponent bean has been
created like so:

8

@Component
public class MyComponent {

 @PreAuthorize("@personChecker.check(#person,
authentication.principal.username)")
 public void doSomething(Person person){

 }
}

The doSomething method has been annotated with @PreAuthorize using an expression that
indicates that method check of a bean named personChecker needs to be invoked to determine
whether the current user is authorized to invoke the doSomething method.

An example of the PersonChecker could be:

@Component
public class PersonChecker {

 @Override
 public boolean check(Person person, String username) {
 return person.getName().equals(username);
 }
}

Note that for the check method the parameter types must match what is specified in
@PreAuthorize and that the return type must be a boolean.

Combining expressions

The @PreAuthorize annotations allows for the combination of expressions using logical AND / OR.
Currently there is a limitation where only a single logical operation can be used (meaning mixing AND
and OR isn’t allowed).

Some examples of allowed expressions are:

9

 @PreAuthorize("hasAnyRole('user', 'admin') AND #user ==
principal.username")
 public void allowedForUser(String user) {

 }

 @PreAuthorize("hasRole('user') OR hasRole('admin')")
 public void allowedForUserOrAdmin() {

 }

 @PreAuthorize("hasAnyRole('view1', 'view2') OR isAnonymous() OR
hasRole('test')")
 public void allowedForAdminOrAnonymous() {

 }

Also to be noted that currently parentheses are not supported and expressions are evaluated from left
to right when needed.

Important Technical Note
Please note that the Spring support in Quarkus does not start a Spring Application Context nor are
any Spring infrastructure classes run. Spring classes and annotations are only used for reading
metadata and / or are used as user code method return types or parameter types. What that means for
end users, is that adding arbitrary Spring libraries will not have any effect. Moreover Spring
infrastructure classes (like
org.springframework.beans.factory.config.BeanPostProcessor for example) will not
be executed.

Conversion Table
The following table shows how Spring Security annotations can be converted to JAX-RS annotations.

Spring JAX-RS Comments

@Secured("admin") @RolesAllowed("admin")

More Spring guides
Quarkus support has more Spring compatibility features. See the following guides for more details:

• Quarkus - Extension for Spring DI

• Quarkus - Extension for Spring Web

• Quarkus - Extension for Spring Data JPA

10

spring-di
spring-web
spring-data-jpa

	Quarkus - Quarkus Extension for Spring Security API
	Prerequisites
	Solution
	Creating the Maven project
	GreetingController
	GreetingControllerTest
	Package and run the application
	Modify the controller to secure the hello method
	GreetingControllerTest
	Test the changes
	Run the application as a native executable
	Supported Spring Security functionalities
	Annotations

	Important Technical Note
	Conversion Table
	More Spring guides

