Quarkus - HTTP Reference

This document explains various HTTP features that you can use in Quarkus.

HTTP is provided using Eclipse Vert.x as the base HTTP layer. Servlet’s are supported using a modified
version of Undertow that runs on top of Vert.x, and RESTEasy is used to provide JAX-RS support. If
Undertow is present RESTEasy will run as a Servlet filter, otherwise it will run directly on top of Vert.x
with no Servlet involvement.

1. Serving Static Resources

To serve static resources you must place them in the META-INF/resources directory of your
application. This location was chosen as it is the standard location for resources in jar files as defined
by the Servlet spec. Even though Quarkus can be used without Servlet following this convention allows
existing code that places its resources in this location to function correctly.

2. Configuring the Context path

By default Quarkus will serve content from under the root context. If you want to change this you can
use the quarkus.http.root-path config key to set the context path.

If you are using Servlet you can control the Servlet context path via quarkus.servlet.context-
path. This item is relative to the http root above, and will only affect Servlet and things that run on
top of Servlet. Most applications will want to use the HTTP root as this affects everything that Quarkus
serves.

If both are specified then all non-Serviet web endpoints will be relative to quarkus.http.root-
path, while Servlet’s will be served relative to {quarkus.http.root-
path}/{quarkus.servlet.context-path}.

If REST Assured is used for testing and quarkus.http.root-path is set then Quarkus will
automatically configure the base URL for use in Quarkus tests, so test URL’s should not include the
root path.

3. Supporting secure connections with SSL

In order to have Quarkus support secure connections, you must either provide a certificate and
associated key file, or supply a keystore.

In both cases, a password must be provided. See the designated paragraph for a detailed description
of how to provide it.

(r') To enable SSL support with native executables, please refer to our Using SSL With
- Native Executables quide.


native-and-ssl
native-and-ssl

3.1. Providing a certificate and key file

If the certificate has not been loaded into a keystore, it can be provided directly using the properties
listed below. Quarkus will first try to load the given files as resources, and uses the filesystem as a
fallback. The certificate / key pair will be loaded into a newly created keystore on startup.

Your application.properties would then look like this:

quarkus.http.ssl.certificate.file=/path/to/certificate
quarkus.http.ssl.certificate.key-file=/path/to/key

3.2. Providing a keystore

An alternate solution is to directly provide a keystore which already contains a default entry with a
certificate You will need to at least provide the file and a password.

As with the certificate/key file combination, Quarkus will first try to resolve the given path as a
resource, before attempting to read it from the filesystem.

Add the following property to your application.properties:
quarkus.http.ssl.certificate.key-store-file=/path/to/keystore

As an optional hint, the type of keystore can be provided as one of the options listed. If the type is not
provided, Quarkus will try to deduce it from the file extensions, defaulting to type JKS.

quarkus.http.ssl.certificate.key-store-file-type=[one of JKS,
JCEKS, P12, PKCS12, PFX]

3.3. Setting the password

In both aforementioned scenarios, a password needs to be provided to create/load the keystore with.
The password can be set in your application.properties (in plain-text) using the following
property:

guarkus.http.ssl.certificate.key-store-password=your-password

However, instead of providing the password as plain-text in the configuration file (which is considered
bad practice), it can instead be supplied (using MicroProfile config) as the environment variable
QUARKUS_HTTP_SSL_CERTIFICATE_KEY_STORE_PASSWORD. This will also work in tandem with
Kubernetes secrets.

Note: in order to remain compatible with earlier versions of Quarkus (before 0.16) the default password is
set to "password". It is therefore not a mandatory parameter!


https://microprofile.io/project/eclipse/microprofile-config
https://kubernetes.io/docs/concepts/configuration/secret/#using-secrets-as-environment-variables

4. CORS filter

Cross-origin resource sharing (CORS) is a mechanism that allows restricted resources on a web page
to be requested from another domain outside the domain from which the first resource was served.

Quarkus comes with a CORS filter which implements the javax.servlet.Filter interface and
intercepts all incoming HTTP requests. It can be enabled in the Quarkus configuration file,
src/main/resources/application.properties:

quarkus.http.cors=true

If the filter is enabled and an HTTP request is identified as cross-origin, the CORS policy and headers
defined using the following properties will be applied before passing the request on to its actual target
(servlet, JAX-RS resource, etc.):

Property Name

quarkus.http.cors
.origins

quarkus.http.cors
.methods

guarkus.http.cors
.headers

quarkus.http.cors
.exposed-headers

quarkus.http.cors
.access—-control-
max—-age

Default

Description

The comma-separated list of origins allowed for
CORS. The filter allows any origin if this is not set.

The comma-separated list of HTTP methods
allowed for CORS. The filter allows any method if
this is not set.

The comma-separated list of HTTP headers
allowed for CORS. The filter allows any header if
this is not set.

The comma-separated list of HTTP headers
exposed in CORS.

The duration (see note below) indicating how long
the results of a pre-flight request can be cached.
This value will be returned ina Access-
Control-Max—Age response header.

The format for durations uses the standard java.time.Duration format. You
can learn more about it in the Duration#parse() javadoc.

o You can also provide duration values starting with a number. In this case, if the value
consists only of a number, the converter treats the value as seconds. Otherwise, PT
is implicitly prepended to the value to obtain a standard java.time.Duration

format.

Here’s what a full CORS filter configuration could look like:


https://en.wikipedia.org/wiki/Cross-origin_resource_sharing
https://docs.oracle.com/javase/8/docs/api/java/time/Duration.html#parse-java.lang.CharSequence-

quarkus.http.cors=true
quarkus.http.cors.origins=http://foo.com,http://www.bar.io
quarkus.http.cors.methods=GET,PUT,POST
quarkus.http.cors.headers=X-Custom
quarkus.http.cors.exposed-headers=Content-Disposition
quarkus.http.cors.access—-control-max—-age=24H

5. HTTP Limits Configuration

The following properties are supported.

Property Name Default Description

guarkus.http.limi unlimited The maximum size of request body.
ts.max-body-size

quarkus.http.limi 20K The maximum length of all headers.
ts.max-header-
size

The following config options will recognize sizes expressed as strings in this format
(shown as a reqgular expression): [0-9 ]+ [KkMmGgTtPpEeZzYy 1?. If no unit suffix

o is given, bytes are assumed.

* quarkus.http.limits.max-body-size,

* quarkus.http.limits.max-header-size

6. Servlet Config

To use Servlet you need to explicitly include quarkus-undertow:

<dependency>
<groupId>io.quarkus</groupId>
<artifactId>quarkus—-undertow</artifactId>
</dependency>

6.1. undertow-handlers.conf

You can make use of the Undertow predicate language using an undertow-handlers.conf file.
This file should be placed in the META-INF directory of your application jar. This file contains handlers
defined using the Undertow predicate language.


http://undertow.io/undertow-docs/undertow-docs-2.0.0/index.html#predicates-attributes-and-handlers

6.2. Configuring HTTP Access Logs

You can add HTTP request logging by configuring the AccessHandler in the undertow-
handlers.conf file.

The simplest possible configuration can be a standard Apache common Log Format:
access—-log('common')

This will log every request using the standard Quarkus logging infrastructure under the
io.undertow.accesslog category.

You can customize the category like this:
access—-log(format='common', category='my.own.category')
Finally the logging format can be customized:

access—-log(format="%h %1 %u %t "%r" %s %b %D "%{i,Referer}"
"%{1i,User-Agent}" "%{i,X-Request-ID}"', category='my.own.category')

6.3. web.xml

If you are using a web.xml file as your configuration file, you can place it in the
src/main/resources/META-INF directory.



	Quarkus - HTTP Reference
	1. Serving Static Resources
	2. Configuring the Context path
	3. Supporting secure connections with SSL
	3.1. Providing a certificate and key file
	3.2. Providing a keystore
	3.3. Setting the password

	4. CORS filter
	5. HTTP Limits Configuration
	6. Servlet Config
	6.1. undertow-handlers.conf
	6.2. Configuring HTTP Access Logs
	6.3. web.xml


