
Context Propagation in Quarkus
Traditional blocking code uses ThreadLocal variables to store contextual
objects in order to avoid passing them as parameters everywhere. Many Quarkus
extensions require those contextual objects to operate properly: RESTEasy, ArC
and Transaction for example.

If you write reactive/async code, you have to cut your work into a pipeline of code blocks that get
executed "later", and in practice after the method you defined them in have returned. As such,
try/finally blocks as well as ThreadLocal variables stop working, because your reactive code
gets executed in another thread, after the caller ran its finally block.

MicroProfile Context Propagation was made to make those Quarkus extensions work properly in
reactive/async settings. It works by capturing those contextual values that used to be in thread-locals,
and restoring them when your code is called.

Setting it up
If you are using Mutiny (the quarkus-mutiny extension), you just need to add the the quarkus-
smallrye-context-propagation extension to enable context propagation.

In other words, add the following dependencies to your pom.xml:

<dependencies>
 <!-- Mutiny and RestEasy support extensions if not already
included -->
 <dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-mutiny</artifactId>
 </dependency>
 <dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-resteasy-mutiny</artifactId>
 </dependency>
 <!-- Context Propagation extension -->
 <dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-smallrye-context-
propagation</artifactId>
 </dependency>
</dependencies>

With this, you will get context propagation for ArC, RESTEasy and transactions, if you are using them.

1

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ThreadLocal.html
rest-json
cdi-reference
transaction
https://github.com/eclipse/microprofile-context-propagation
http://smallrye.io/smallrye-mutiny

Usage example with Mutiny


Mutiny

This section uses Mutiny reactive types, if you’re not familiar with them, read the
Getting Started with Reactive guide first.

Let’s write a REST endpoint that reads the next 3 items from a Kafka topic, stores them in a database
using Hibernate ORM with Panache (all in the same transaction) before returning them to the client,
you can do it like this:

 // Get the prices stream
 @Inject
 @Channel("prices") Publisher<Double> prices;

 @Transactional
 @GET
 @Path("/prices")
 @Produces(MediaType.SERVER_SENT_EVENTS)
 @SseElementType(MediaType.TEXT_PLAIN)
 public Publisher<Double> prices() {
 // get the next three prices from the price stream
 return Multi.createFrom().publisher(prices)
 .transform().byTakingFirstItems(3)
 .map(price -> {
 // store each price before we send them
 Price priceEntity = new Price();
 priceEntity.value = price;
 // here we are all in the same transaction
 // thanks to context propagation
 priceEntity.persist();
 return price;
 // the transaction is committed once the stream
completes
 });
 }

Notice that thanks to Mutiny support for context propagation, this works out of the box. The 3 items
are persisted using the same transaction and this transaction is committed when the stream
completes.

Usage example for CompletionStage
If you are using CompletionStage you need manual context propagation. You can do that by
injecting a ThreadContext or ManagedExecutor that will propagate every context. For example,
here we use the Vert.x Web Client to get the list of Star Wars people, then store them in the database
using Hibernate ORM with Panache (all in the same transaction) before returning them to the client as

2

getting-started-reactive#mutiny
kafka
hibernate-orm-panache
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/CompletionStage.html
vertx
hibernate-orm-panache

JSON using JSON-B or Jackson:

 @Inject ThreadContext threadContext;
 @Inject ManagedExecutor managedExecutor;
 @Inject Vertx vertx;

 @Transactional
 @GET
 @Path("/people")
 @Produces(MediaType.APPLICATION_JSON)
 public CompletionStage<List<Person>> people() throws
SystemException {
 // Create a REST client to the Star Wars API
 WebClient client = WebClient.create(vertx,
 new WebClientOptions()
 .setDefaultHost("swapi.co")
 .setDefaultPort(443)
 .setSsl(true));
 // get the list of Star Wars people, with context capture
 return threadContext.withContextCapture(client.get(
"/api/people/").send())
 .thenApplyAsync(response -> {
 JsonObject json = response.bodyAsJsonObject();
 List<Person> persons = new ArrayList<>(json
.getInteger("count"));
 // Store them in the DB
 // Note that we're still in the same
transaction as the outer method
 for (Object element : json.getJsonArray(
"results")) {
 Person person = new Person();
 person.name = ((JsonObject) element)
.getString("name");
 person.persist();
 persons.add(person);
 }
 return persons;
 }, managedExecutor);
 }

Using ThreadContext or ManagedExecutor you can wrap most useful functional types and
CompletionStage in order to get context propagated.

 The injected ManagedExecutor uses the Quarkus thread pool.

3

rest-json

Adding support for RxJava2
If you use Reactive Streams Operators (the quarkus-smallrye-reactive-streams-
operators module), you get support for RxJava2 context propagation automatically, but if you don’t,
you may want to include the following modules to get RxJava2 support:

<dependencies>
 <!-- Automatic context propagation for RxJava2 -->
 <dependency>
 <groupId>io.smallrye</groupId>
 <artifactId>smallrye-context-propagation-propagators-
rxjava2</artifactId>
 </dependency>
 <!--
 Required if you want transactions extended to the end of
methods returning
 an RxJava2 type.
 -->
 <dependency>
 <groupId>io.smallrye.reactive</groupId>
 <artifactId>smallrye-reactive-converter-
rxjava2</artifactId>
 </dependency>
 <!-- Required if you return RxJava2 types from your REST
endpoints -->
 <dependency>
 <groupId>org.jboss.resteasy</groupId>
 <artifactId>resteasy-rxjava2</artifactId>
 </dependency>
</dependencies>

4

https://github.com/ReactiveX/RxJava

	Context Propagation in Quarkus
	Setting it up
	Usage example with Mutiny
	Usage example for CompletionStage
	Adding support for RxJava2

