Using Software Transactional Memory
in Quarkus

Software Transactional Memory (STM) has been around in research environments
since the late 1990’s and has relatively recently started to appear in products and
various programming languages. We won’t go into all of the details behind STM but
the interested reader could look at this paper. However, suffice it to say that STM
offers an approach to developing transactional applications in a highly concurrent
environment with some of the same characteristics of ACID transactions, which
you’ve probably already used through JTA. Importantly though, the Durability
property is relaxed (removed) within STM implementations, or at least made
optional. This is not the situation with JTA, where state changes are made durable
to a relational database which supports the X/Open XA standard.

Note, the STM implementation provided by Quarkus is based on the Narayana STM implementation.
This document isn’t meant to be a replacement for that project’s documentation so you may want to
look at that for more detail. However, we will try to focus more on how you can combine some of the
key capabilities into Quarkus when developing Kubernetes native applications and microservices.

Why use STM with Quarkus?

Now you may still be asking yourself "Why STM instead of JTA?" or "What are the benefits to STM that
| don’t get from JTA?" Let’s try to answer those or similar questions, with a particular focus on why we
think they’re great for Quarkus, microservices and Kubernetes native applications. So in no specific
order ...

* The goal of STM is to simplify object reads and writes from multiple threads/protect state from
concurrent updates. The Quarkus STM implementation will safely manage any conflicts between
these threads using whatever isolation model has been chosen to protect that specific state
instance (object in the case of Quarkus). In Quarkus STM, there are two isolation implementations,
pessimistic (the default), which would cause conflicting threads to be blocked until the original has
completed its updates (committed or aborted the transaction); then there’s the optimistic
approach which allows all of the threads to proceed and checks for conflicts at commit time, where
one or more of the threads may be forced to abort if there have been conflicting updates.

* STM objects have state but it doesn’t need to be persistent (durable). In fact the default behaviour
is for objects managed within transactional memory to be volatile, such that if the service or
microservice within which they are being used crashes or is spawned elsewhere, e.g., by a
scheduler, all state in memory is lost and the objects start from scratch. But surely you get this
and more with JTA (and a suitable transactional datastore) and don’t need to worry about
restarting your application? Not quite. There’s a trade-off here: we’re doing away with persistent
state and the overhead of reading from and then writing (and sync-ing) to the datastore during
each transaction. This makes updates to (volatile) state very fast but you still get the benefits of
atomic updates across multiple STM objects (e.g., objects your team wrote then calling objects you


https://groups.csail.mit.edu/tds/papers/Shavit/ShavitTouitou-podc95.pdf
https://pubs.opengroup.org/onlinepubs/009680699/toc.pdf
https://narayana.io/docs/project/index.html#d0e16066

inherited from another team and requiring them to make all-or-nothing updates), as well as
consistency and isolation in the presence of concurrent threads/users (common in distributed
microservices architectures). Furthermore, not all stateful applications need to be durable - even
when JTA transactions are used, it tends to be the exception and not the rule. And as you’ll see
later, because applications can optionally start and control transactions, it’s possible to build
microservices which can undo state changes and try alternative paths.

Another benefit of STM is composability and modularity. You can write concurrent Quarkus
objects/services that can be easily composed with any other services built using STM, without
exposing the details of how the objects/services are implemented. As we discussed earlier, this
ability to compose objects you wrote with those other teams may have written weeks, months or
years earlier, and have A, C and | properties can be hugely beneficial. Furthermore, some STM
implementations, including the one Quarkus uses, support nested transactions and these allow
changes made within the context of a nested (sub) transaction to later be rolled back by the parent
transaction.

Although the default for STM object state is volatile, it is possible to configure the STM
implementation such that an object’s state is durable. Although it’s possible to configure Narayana
such that different backend datastores can be used, including relational databases, the default is
the local operating system file system, which means you don’t need to configure anything else
with Quarkus such as a database.

Many STM implementations allow "plain old language objects" to be made STM-aware with little or
no changes to the application code. You can build, test and deploy applications without wanting
them to be STM-aware and then later add those capabilities if they become necessary and without
much development overhead at all.

Building STM applications

There is also a fully worked example in the quickstarts which you may access by cloning the Git
repository: git clone https://github.com/quarkusio/quarkus—-quickstarts.git, or
by downloading an archive. Look for the software-transactional-memory-quickstart
example. This will help to understand how you can build STM-aware applications with Quarkus.
However, before we do so there are a few basic concepts which we need to cover.

Note, as you will see, STM in Quarkus relies on a number of annotations to define behaviours. The lack
of these annotations causes sensible defaults to be assumed but it is important for the developer to
understand what these may be. Please refer to the Narayana STM manual and the STM annotations
guide for more details on all of the annotations Narayana STM provides.

This technology is considered preview.

In preview, backward compatibility and presence in the ecosystem is not guaranteed.

o Specific improvements might require to change configuration or APIs and plans to
become stable are under way. Feedback is welcome on our mailing list or as issues in
our GitHub issue tracker.

For a full list of possible extension statuses, check our FAQ entry.


https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts/archive/master.zip
https://narayana.io/docs/project/index.html#d0e16066
https://narayana.io//docs/project/index.html#d0e16133
https://narayana.io//docs/project/index.html#d0e16133
https://groups.google.com/d/forum/quarkus-dev
https://github.com/quarkusio/quarkus/issues
https://quarkus.io/faq/#extension-status

Setting it up

To use the extension include it as a dependency in your application pom:

<dependencies>
<!-— STM extension -->
<dependency>
<groupId>io.quarkus</groupld>
<artifactId>quarkus—-narayana-stm</artifactId>
<version>${quarkus.version}</version>
</dependency>
</dependencies>

Defining STM-aware classes

In order for the STM subsytem to have knowledge about which classes are to be managed within the
context of transactional memory it is necessary to provide a minimal level of instrumentation. This
occurs by categorising STM-aware and STM-unaware classes through an interface boundary;
specifically all STM-aware objects must be instances of classes which inherit from interfaces that
themselves have been annotated to identify them as STM-aware. Any other objects (and their classes)
which do not follow this rule will not be managed by the STM subsystem and hence any of their state
changes will not be rolled back, for example.

The specific annotation that STM-aware application interfaces must use s
org.jboss.stm.annotations.Transactional. For example:

public interface FlightService ({
int getNumberOfBookings();
void makeBooking(String details);

Classes which implement this interface are able to use additional annotations from Narayana to tell
the STM subsystem about things such as whether a method will modify the state of the object, or what
state variables within the class should be managed transactionally, e.g., some instance variables may
not need to be rolled back if a transaction aborts. As mentioned earlier, if those annotations are not
present then defaults are chosen to quarantee safety, such as assuming all methods will modify state.



public class FlightServiceImpl implements FlightService {

public int getNumberOfBookings() { ... }
public void makeBooking(String details) {...}

private int timesCalled;

For example, by using the @ReadLock annotation on the getNumberOfBookings method, we are
able to tell the STM subsystem that no state modifications will occur in this object when it is used in
the transactional memory. Also, the @NotState annotation tells the system to ignore timesCalled
when transactions commit or abort, so this value only changes due to application code.

Please refer to the Narayana guide for details of how to exert finer grained control over the
transactional behaviour of objects that implement interfaces marked with the @Transactional
annotation.

Creating STM objects

The STM subsystem needs to be told about which objects it should be managing. The Quarkus (aka
Narayana) STM implementation does this by providing containers of transactional memory within
which these object instances reside. Until an object is placed within one of these STM containers it
cannot be managed within transactions and any state changes will not possess the A, C, | (or even D)
properties.

Note, the term "container" was defined within the STM implementation years before Linux containers
came along. It may be confusing to use especially in a Kubernetes native environment such as
Quarkus, but hopefully the reader can do the mental mapping.

The default STM container (org. jboss.stm.Container) provides support for volatile objects that
can only be shared between threads in the same microservice/JVM instance. When a STM-aware
object is placed into the container it returns a handle through which that object should then be used in
the future. It is important to use this handle as continuing to access the object through the original
reference will not allow the STM subsystem to track access and manage state and concurrency
control.

import org.jboss.stm.Container;

Container<FlightService> container = new Container<>(); @®
FlightServiceImpl instance = new FlightServiceImpl(); @
FlightService flightServiceProxy = container.create(instance);

®

@ You need to tell each Container about the type of objects for which it will be responsible. In this



example it will be instances that implement the FlightService interface.

@ Then you create an instance that implements FlightService. You should not use it directly at
this stage because access to it is not being managed by the STM subsystem.

® To obtain a managed instance, pass the original object to the STM container which then returns
a reference through which you will be able perform transactional operations. This reference can be
used safely from multiple threads.

Defining transaction boundaries

Once an object is placed within an STM container the application developer can manage the scope of
transactions within which it is used. There are some annotations which can be applied to the STM-
aware class to have the container automatically create a transaction whenever a specific method is
invoked.

Declarative approach

If the @NestedTopLevel or @Nested annotation is placed on a method signature then the STM
container will start a new transaction when that method is invoked and attempt to commit it when the
method returns. If there is a transaction already associated with the calling thread then each of these
annotations behaves slightly differently: the former annotation will always create a new top-level
transaction within which the method will execute, so the enclosing transaction does not behave as a
parent, i.e., the nested top-level transaction will commit or abort independently; the latter annotation
will create a transaction with is properly nested within the calling transaction, i.e., that transaction acts
as the parent of this newly created transaction.

Programmatic approach

The application can programmatically start a transaction before accessing the methods of STM
objects:

AtomicAction aa = new AtomicAction(); @

aa.begin(); @
{
try {
flightService.makeBooking("BA123 ...");
taxiService.makeBooking("East Coast Taxis ..."); ®
@

aa.commit();

®
} catch (Exception e) {

aa.abort(); ®

@ An object for manually controlling transaction boundaries (AtomicAction and many other useful



classes are included in the extension). Refer to the javadoc for more detail.

@ Programmatically begin a transaction.

3 Notice that object updates can be composed which means that updates to multiple objects can be
committed together as a single action. [Note that it is also possible to begin nested transactions so
that you can perform speculative work which may then be abandoned without abandoning other
work performed by the outer transaction].

@ Since the transaction has not yet been committed the changes made by the flight and taxi services
are not visible outside of the transaction.

® Since the commit was successful the changes made by the flight and taxi services are now visible
to other threads. Note that other transactions that relied on the old state may or may not now
incur conflicts when they commit (the STM library provides a number of features for managing
conflicting behaviour and these are covered in the Narayana STM manual).

® Programmatically decide to abort the transaction which means that the changes made by the flight
and taxi services are discarded.

Distributed transactions

Sharing a transaction between multiple services is possible but is currently an advanced use case only
and the Narayana documentation should be consulted if this behaviour is required. In particular, STM
does not yet support the features described in the Context Propagation guide.


https://narayana.io//docs/api/com/arjuna/ats/arjuna/AtomicAction.html
context-propagation

	Using Software Transactional Memory in Quarkus
	Why use STM with Quarkus?
	Building STM applications
	Setting it up
	Defining STM-aware classes
	Creating STM objects
	Defining transaction boundaries
	Declarative approach
	Programmatic approach

	Distributed transactions

