
Quarkus - Container Images
Quarkus provides extensions for building (and pushing) container images.
Currently it supports:

• jib

• docker

• s2i

Container Image extensions

JIB
The extension quarkus-container-image-jib is powered by Jib for performing container builds.
The major benefit of using Jib with Quarkus, is that all dependencies (everything found under
target/lib) are cached in a different layer than the actual application making rebuilds extra fast and
extra small (when it comes to pushing). Another important benefit of using this extension is that it
provides the ability to create a container image without having to have any dedicated client side
tooling (like Docker) or running daemon processes (like the Docker daemon) when all that is needed is
the ability to push to a container image registry.

To use this image extension, you just need to add the following dependency into your project.

 <dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-container-image-jib</artifactId>
 </dependency>

Docker
The extension quarkus-container-image-docker is using the docker binary and the generated
Dockerfiles under src/main/docker in order to perform docker builds.

To use this image extension, you just need to add the following dependency into your project.

 <dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-container-image-docker</artifactId>
 </dependency>

1

https://github.com/GoogleContainerTools/jib

S2i
The extension quarkus-container-image-s2i is using s2i binary builds in order to perform
container builds inside the Openshift cluster. The idea behind the binary build is that you just upload
the the artifact and its dependencies to the cluster and during the build they will be merged to a
builder image (defaults to fabric8/s2i-java).

The benefit of this approach, is that it can be combined with Openshift’s DeploymentConfig that
makes it easy to rollout changes to the cluster.

To use this image extension, you just need to add the following dependency into your project.

 <dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-container-image-s2i</artifactId>
 </dependency>

S2i builds, require creating a BuildConfig and two ImageStream resources, one of the builder
image and one for the output image. The creation of such objects is being taken care of by the
Quarkus kubernetes extension.

Building
To build a container image for your project, you just need to specify quarkus.container-
image.build=true either to the application.properties or as a system property.

mvn clean package -Dquarkus.container-image.build=true

Setting the environment variable QUARKUS_CONTAINER_IMAGE_EXECUTION to build can be used
instead of the system propery.

Pushing
If the execution is set to push then after the build, the image will also be pushed to an image registry.
The registry can be specified using quarkus.container-image.registry and will default to
docker.io.

Customizing
For customizing the extension the following properties are available:

Table 1. Container Image

Property Type Description Default Value

2

quarkus.container-
image.group

String The group/repository of
the image

The ${user.name}

quarkus.container-
image.name

String The name of the image The application name

quarkus.container-
image.tag

String The tag of the image The application version

quarkus.container-
image.registry

String The registry to use for
pushing

quarkus.container-
image.username

String The registry username

quarkus.container-
image.password

String The registry password

quarkus.container-
image.insecure

Boolean Flag to allow insecure
registries

false

quarkus.container-
image.build

Boolean Flag to enable building
of a container image

false

quarkus.container-
image.push

Boolean Flag to enable pushing
of a container image to
the configured registry

false

Jib Options
On top the the global container image options, the following jib specific options are available:

Property Type Description Default Value

quarkus.container-
image-jib.base-jvm-
image

String The base image to use
for the jib build

fabric8/java-alpine-
openjdk8-jre

quarkus.container-
image-jib.base-native-
image

String The base image to use
for the native build

registry.access.redhat.c
om/ubi8/ubi-minimal

quarkus.container-
image-jib.jvm-
arguments

String The arguments to pass
to java

-Dquarkus.http.host=0.
0.0.0,-
Djava.util.logging.mana
ger=org.jboss.logmanag
er.LogManager

quarkus.container-
image-jib.native-
arguments

String The arguments to pass
to the native application

-Dquarkus.http.host=0.
0.0.0

3

quarkus.container-
image-jib.environment-
variables

Map<String, String> The container
environment variables

Docker Options
On top the the global container image options, the following docker specific options are available:

Property Type Description Default Value

quarkus.container-
image-
docker.dockerfile-jvm-
path

String Path to the JVM
Dockerfile

${project.root}/src/mai
n/docker/Dockerfile.jv
m

quarkus.container-
image-
docker.dockerfile-
native-path

String Path to the native
Dockerfile

${project.root}/src/mai
n/docker/Dockerfile.nat
ive

S2i Options
On top the the global container image options, the following s2i specific options are available:

Property Type Description Default Value

quarkus.container-
image-s2i.base-jvm-
image

String The base image to use
for the s2i build

fabric8/java-alpine-
openjdk8-jre

quarkus.container-
image-s2i.base-native-
image

String The base image to use
for the native build

registry.access.redhat.c
om/ubi8/ubi-minimal

4

	Quarkus - Container Images
	Container Image extensions
	JIB
	Docker
	S2i

	Building
	Pushing
	Customizing
	Jib Options
	Docker Options
	S2i Options

