
Quarkus - Qute Reference Guide



This technology is considered experimental.

In experimental mode, early feedback is requested to mature the idea. There is no
guarantee of stability nor long term presence in the platform until the solution
matures. Feedback is welcome on our mailing list or as issues in our GitHub issue
tracker.

For a full list of possible extension statuses, check our FAQ entry.

1. Hello World Example
In this example, we’d like to demonstrate the basic workflow when working with Qute templates. Let’s
start with a simple hello world example. We will always need some template contents:

hello.html

<html>
 <p>Hello {name}! ①
</html>

① {name} is a value expression that is evaluated when the template is rendered.

Then, we will need to parse the contents into a template definition Java object. A template definition
is an instance of io.quarkus.qute.Template.

If using Qute "standalone" you’ll need to create an instance of io.quarkus.qute.Engine first. The
Engine represents a central point for template management with dedicated configuration. Let’s use
the convenient builder:

Engine engine = Engine.builder().addDefaults().build();


In Quarkus, there is a preconfigured Engine available for injection - see Quarkus
Integration.

If we have an Engine instance we could parse the template contents:

Template helloTemplate = engine.parse(helloHtmlContent);


In Quarkus, you can simply inject the template definition. The template is
automatically parsed and cached - see Quarkus Integration.

Finally, we will create a template instance, set the data and render the output:

1

https://groups.google.com/d/forum/quarkus-dev
https://github.com/quarkusio/quarkus/issues
https://github.com/quarkusio/quarkus/issues
https://quarkus.io/faq/#extension-status

// Renders <html><p>Hello Jim!</p></html>
helloTemplate.data("name", "Jim").render(); ①

① Template.data(String, Object) is a convenient method that creates a template instance
and sets the data in one step.

So the workflow is simple:

1. Create template contents (hello.html),

2. Parse template definition (io.quarkus.qute.Template),

3. Create template instance (io.quarkus.qute.TemplateInstance),

4. Render output.

The Engine is able to cache the definitions so that it’s not necessary to parse the contents again and
again.

 In Quarkus, the caching is done automatically.

2. Core Features

2.1. Syntax and Building Blocks
The dynamic parts of a template include:

• Comment

◦ {! This is a comment !},

◦ Could be multi-line,

◦ May contain expressions and sections: {! {#if true} !}.

• Expression

◦ Outputs the evaluated value,

◦ Simple properties: {foo}, {item.name},

◦ Virtual methods: {item.get(name)}, {name ?: 'John'},

◦ With namespace: {inject:colors}.

• Section

◦ May contain expressions and sections: {#if foo}{foo.name}{/if},

◦ The name in the closing tag is optional: {#if active}ACTIVE!{/},

◦ Can be empty: {#myTag image=true /},

◦ May declare nested section blocks: {#if item.valid} Valid. {#else} Invalid.
{/if} and decide which block to render.

2

2.2. Identifiers
Expressions/tags must start with a curly bracket ({) followed by a valid identifier. A valid identifier is a
digit, an alphabet character, underscore (_), or a section command (#). Expressions/tags starting with
an invalid identifier are ignored. A closing curly bracket (}) is ignored if not inside an expression/tag.

hello.html

<html>
 <body>
 {_foo} ①
 { foo} ②
 {{foo}} ③
 {"foo":true} ④
 </body>
</html>

① Evaluated: expression starts with underscore.

② Ignored: expression starts with whitespace.

③ Ignored: expression starts with {.

④ Ignored: expression starts with ".


It is also possible to use escape sequences \{ and \} to insert delimiters in the text.
In fact, an escape sequence is usually only needed for the start delimiter, ie. \{foo}
will be rendered as {foo} (no evaluation will happen).

2.2.1. Expressions

An expression consists of:

• an optional namespace followed by a colon (:),

• one or more parts separated by dot (.).

The first part of the expression is always resolved against the current context object. If no result is
found for the first part it’s resolved against the parent context object (if available). For an expression
that starts with a namespace the current context object is found using all the available
NamespaceResolvers. For an expression that does not start with a namespace the current context
object is derived from the position of the tag. All other parts are resolved using ValueResolvers
against the result of the previous resolution.

For example, expression {name} has no namespace and single part - name. The "name" will be
resolved using all available value resolvers against the current context object. However, the
expression {global:colors} has the namespace global and single part - colors. First, all
available NamespaceResolvers will be used to find the current context object. And afterwards value
resolvers will be used to resolve "colors" against the context object found.

3

{name} ①
{item.name} ②
{global:colors} ③

① no namespace, one part -name

② no namespace, two parts - item, name

③ namespace global, one part - colors

An expression part could be a "virtual method" in which case the name can be followed by a list of
comma-separated parameters in parentheses:

{item.getLabels(1)} ①
{name or 'John'} ②

① no namespace, two parts - item, getLabels(1), the second part is a virtual method with name
getLabels and params 1

② infix notation, translated to name.or('John'); no namespace, two parts - name, or('John')

2.2.1.1. Current Context

If an expression does not specify a namespace the current context object is derived from the position
of the tag. By default, the current context object represents the data passed to the template instance.
However, sections may change the current context object. A typical example is the for/each loop -
during iteration the content of the section is rendered with each element as the current context
object:

{#each items}
 {count}. {it.name} ①
{/each}

{! Another form of iteration... !}
{#for item in items}
 {count}. {item.name} ②
{/for}

① it is an implicit alias. name is resolved against the current iteration element.

② Loop with an explicit alias item.

4



Data passed to the template instance are always accessible using the data
namespace. This could be useful to access data for which the key is overriden:

<html>
{item.name} ①

{#for item in item.getDerivedItems()} ②

 {item.name} ③
 is derived from
 {data:item.name} ④

{/for}

</html>

① item is passed to the template instance as a data object.

② Iterate over the list of derived items.

③ item is an alias for the iterated element.

④ Use the data namespace to access the item data object.

2.2.1.2. Built-in Operators

Operator Description Examples

Elvis Outputs the default value if the
previous part cannot be resolved
or resolves to null.

{person.name ?: 'John'},
{person.name or 'John'}

Ternary Shorthand for if-then-else
statement. Unlike in If Section
nested operators are not
supported.

{item.isActive ?
item.name : 'Inactive
item'} outputs the value of
item.name if item.isActive
resolves to true.


In fact, the operators are implemented as "virtual methods" that consume one
parameter and can be used with infix notation, i.e. {person.name or 'John'} is
translated to {person.name.or('John')}.

2.2.1.3. Character Escapes

For HTML and XML templates the ', ", <, >, & characters are escaped by default. If you need to render
the unescaped value:

1. Use the raw or safe properties implemented as extension methods of the java.lang.Object,

2. Wrap the String value in a io.quarkus.qute.RawString.

5

<html>
<h1>{title}</h1> ①
{paragraph.raw} ②
</html>

① title that resolves to Expressions & Escapes will be rendered as Expressions &
Escapes

② paragraph that resolves to <p>My text!</p> will be rendered as <p>My text!</p>

2.2.2. Sections

A section:

• has a start tag

◦ starts with #, followed by the name of the section such as {#if} and {#each},

• may be empty

◦ tag ends with /, ie. {#emptySection /}

• may contain other expression, sections, etc.

◦ the end tag starts with / and contains the name of the section (optional): {#if
foo}Foo!{/if} or {#if foo}Foo!{/},

The start tag can also define parameters. The parameters have optional names. A section may contain
several content blocks. The "main" block is always present. Additional/nested blocks also start with #
and can have parameters too - {#else if item.isActive}. A section helper that defines the
logic of a section can "execute" any of the blocks and evaluate the parameters.

{#if item.name is 'sword'}
 It's a sword!
{#else if item.name is 'shield'}
 It's a shield!
{#else}
 Item is neither a sword nor a shield.
{/if}

2.2.2.1. Loop Section

The loop section makes it possible to iterate over an instance of Iterable, Map 's entry set, Stream
and an Integer. It has two flavors. The first one is using the each name alias.

{#each items}
 {it.name} ①
{/each}

6

① it is an implicit alias. name is resolved against the current iteration element.

The other form is using the for name alias and can specify the alias used to reference the iteration
element:

{#for item in items}
 {item.name}
{/for}

It’s also possible to access the iteration metadata inside the loop:

{#each items}
 {count}. {it.name} ①
{/each}

① count represents one-based index. Metadata also include zero-based index, hasNext, odd,
even.

The for statement also works with integers, starting from 1. In the example below, considering that
total = 3:

{#for i in total}
 {i}:
{/for}

The output will be:

1:2:3:

2.2.2.2. If Section

A basic control flow section. The simplest possible version accepts a single parameter and renders the
content if it’s evaluated to true (or Boolean.TRUE).

{#if item.active}
 This item is active.
{/if}

You can also use the following operators:

Operator Aliases Precedence (higher wins)

logical complement ! 4

7

Operator Aliases Precedence (higher wins)

greater than gt, > 3

greater than or equal to ge, >= 3

less than lt, < 3

less than or equal to le, <= 3

equals eq, ==, is 2

not equals ne, != 2

logical AND (short-circuiting) &&, and 1

logical OR (short-circuiting) ||, or 1

A simple operator example

{#if item.age > 10}
 This item is very old.
{/if}

Multiple conditions are also supported.

Multiple conditions example

{#if item.age > 10 && item.price > 500}
 This item is very old and expensive.
{/if}

Precedence rules can be overridden by parentheses.

Parentheses example

{#if (item.age > 10 || item.price > 500) && user.loggedIn}
 User must be logged in and item age must be > 10 or price must be
> 500.
{/if}

You can add any number of else blocks:

8

{#if item.age > 10}
 This item is very old.
{#else if item.age > 5}
 This item is quite old.
{#else if item.age > 2}
 This item is old.
{#else}
 This item is not old at all!
{/if}

2.2.2.3. With Section

This section can be used to set the current context object. This could be useful to simplify the
template structure:

{#with item.parent}
 <h1>{name}</h1> ①
 <p>{description}</p> ②
{/with}

① The name will be resolved against the item.parent.

② The description will be also resolved against the item.parent.

It’s also possible to specify an alias for the context object:

{#with item.parent as myParent} ①
 <h1>{myParent.name}</h1>
{/with}

① myParent is the alias that can be used inside the tag.

This section might also come in handy when we’d like to avoid multiple expensive invocations:

{#with item.callExpensiveLogicToGetTheValue(true) as it}
 {#if it is "fun"} ①
 <h1>Yay!</h1>
 {#else}
 <h1>{it} is not fun at all!</h1>
 {/if}
{/with}

① it is the result of item.callExpensiveLogicToGetTheValue(1,'foo',bazinga). The
method is only invoked once even though the result may be used in multiple expressions.

9

2.2.2.4. Include/Insert Sections

These sections can be used to include another template and possibly override some parts of the
template (template inheritance).

Template "base"

<html>
<head>
<meta charset="UTF-8">
<title>{#insert title}Default Title{/}</title> ①
</head>
<body>
 {#insert body}No body!{/} ②
</body>
</html>

① insert sections are used to specify parts that could be overriden by a template that includes the
given template.

② An insert section may define the default content that is rendered if not overriden.

Template "detail"

{#include base} ①
 {#title}My Title{/title} ②
 {#body}
 <div>
 My body.
 </div>
 {/body}
{/include}

① include section is used to specify the extended template.

② Nested blocks are used to specify the parts that should be overriden.

 Section blocks can also define an optional end tag - {/title}.

2.2.2.5. User-defined Tags

User-defined tags can be used to include a template and optionally pass some parameters. Let’s
suppose we have a template called item.html:

{#if showImage} ①
 {it.image} ②
{/if}

① showImage is a named parameter.

10

② it is a special key that is replaced with the first unnamed param of the tag.

Now if we register this template under the name item and if we add a UserTagSectionHelper to
the engine:

Engine engine = Engine.builder()
 .addSectionHelper(new UserTagSectionHelper
.Factory("item"))
 .build();


In Quarkus, all files from the src/main/resources/templates/tags are
registered and monitored automatically.

We can include the tag like this:

{#each items}

 {#item this showImage=true /} ①

{/each}

① this is resolved to an iteration element and can be referenced using the it key in the tag
template.

2.3. Engine Configuration

2.3.1. Template Locator

Manual registration is sometimes handy but it’s also possible to register a template locator using
EngineBuilder.addLocator(Function<String, Optional<Reader>>). This locator is
used whenever the Engine.getTemplate() method is called and the engine has no template for a
given id stored in the cache.


In Quarkus, all templates from the src/main/resources/templates are
located automatically.

3. Quarkus Integration
If you want to use Qute in your Quarkus application add the following dependency to your project:

11

<dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-qute</artifactId>
</dependency>

In Quarkus, a preconfigured engine instance is provided and available for injection - a bean with scope
@Singleton, bean type io.quarkus.qute.Engine and qualifier @Default is registered
automatically. Moreover, all templates located in the src/main/resources/templates directory
are validated and can be easily injected.

import io.quarkus.qute.Engine;
import io.quarkus.qute.Template;
import io.quarkus.qute.api.ResourcePath;

class MyBean {

 @Inject
 Template items; ①

 @ResourcePath("detail/items2_v1.html") ②
 Template items2;

 @Inject
 Engine engine; ③
}

① If there is no ResourcePath qualifier provided, the field name is used to locate the template. In
this particular case, the container will attempt to locate a template with path
src/main/resources/templates/items.html.

② The ResourcePath qualifier instructs the container to inject a template from a path relative from
src/main/resources/templates. In this case, the full path is
src/main/resources/templates/detail/items2_v1.html.

③ Inject the configured Engine instance.

3.1. Injecting Beans Directly In Templates
A CDI bean annotated with @Named can be referenced in any template through the inject
namespace:

{inject:foo.price} ①

① First, a bean with name foo is found and then used as the base object.

All expressions using the inject namespace are validated during build. For the expression
inject:foo.price the implementation class of the injected bean must either have the price

12

property (e.g. a getPrice() method) or a matching template extension method must exist.


A ValueResolver is also generated for all beans annotated with @Named so that
it’s possible to access its properties without reflection.

3.2. Parameter Declarations
It is possible to specify optional parameter declarations in a template. Quarkus attempts to validate all
expressions that reference such parameters. If an invalid/incorrect expression is found the build fails.

{@org.acme.Foo foo} ①
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>Qute Hello</title>
</head>
<body>
 <h1>{title}</h1> ②
 Hello {foo.message}! ③
</body>
</html>

① Parameter declaration - maps foo to org.acme.Foo.

② Not validated - not matching a param declaration.

③ This expression is validated. org.acme.Foo must have a property message or a matching
template extension method must exist.


A value resolver is also generated for all types used in parameter declarations so
that it’s possible to access its properties without reflection.

3.2.1. Overriding Parameter Declarations

13

{@org.acme.Foo foo}
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>Qute Hello</title>
</head>
<body>
 <h1>{foo.message}</h1> ①
 {#for foo in baz.foos}
 <p>Hello {foo.message}!</p> ②
 {/for}
</body>
</html>

① Validated against org.acme.Foo.

② Not validated - foo is overridden in the loop section.

3.3. Template Extension Methods
Extension methods can be used to extend the data classes with new functionality. For example, it is
possible to add "computed properties" and "virtual methods". A value resolver is automatically
generated for a method annotated with @TemplateExtension. If declared on a class a value
resolver is generated for every non-private method declared on the class. Methods that do not meet
the following requirements are ignored.

A template extension method:

• must be static,

• must not return void,

• must accept at least one parameter.

The class of the first parameter is always used to match the base object. The method name is used to
match the property name by default. However, it is possible to specify the matching name with
TemplateExtension#matchName().


A special constant - ANY - may be used to specify that the extension method
matches any name. In that case, the method must declare at least two parameters
and the second parameter must be a string.

14

Extension Method Example

package org.acme;

class Item {

 public final BigDecimal price;

 public Item(BigDecimal price) {
 this.price = price;
 }
}

@TemplateExtension
class MyExtensions {

 static BigDecimal discountedPrice(Item item) { ①
 return item.getPrice().multiply(new BigDecimal("0.9"));
 }
}

① This method matches an expression with base object of the type Item.class and the
discountedPrice property name.

This template extension method makes it possible to render the following template:

{item.discountedPrice} ①

① item is resolved to an instance of org.acme.Item.

3.3.1. Method Parameters

An extension method may accept multiple parameters. The first parameter is always used to pass the
base object, ie. org.acme.Item in the previous example. Other parameters are resolved when
rendering the template and passed to the extension method.

Multiple Parameters Example

@TemplateExtension
class MyExtensions {

 static BigDecimal scale(BigDecimal val, int scale, RoundingMode
mode) { ①
 return val.setScale(scale, mode);
 }
}

① This method matches an expression with base object of the type BigDecimal.class, with the

15

scale virtual method name and two virtual method parameters.

{item.discountedPrice.scale(2,mode)} ①

① item.discountedPrice is resolved to an instance of BigDecimal.

3.3.2. Built-in Template Extension methods

Quarkus provides a set of built-in extension methods.

3.3.2.1. Map extension methods:

• keys or keySet: Returns a Set view of the keys contained in a map

◦ {#for key in map.keySet}

• values: Returns a Collection view of the values contained in a map

◦ {#for value in map.values}

• size: Returns the number of key-value mappings in a map

◦ {map.size}

• isEmpty: Returns true if a map contains no key-value mappings

◦ {#if map.isEmpty}

• get(key): Returns the value to which the specified key is mapped

◦ {map.get('foo')} or {map['foo']}

3.3.2.2. Collection extension methods:

• get(index): Returns the element at the specified position in a list

◦ {list.get(0)} or {list[0]}

3.3.2.3. Number extension methods:

• mod: Modulo operation

◦ {#if counter.mod(5) == 0}

3.4. @TemplateData
A value resolver is automatically generated for a type annotated with @TemplateData. This allows
Quarkus to avoid using reflection to access the data at runtime.


Non-public members, constructors, static initializers, static, synthetic and void
methods are always ignored.

16

package org.acme;

@TemplateData
class Item {

 public final BigDecimal price;

 public Item(BigDecimal price) {
 this.price = price;
 }

 public BigDecimal getDiscountedPrice() {
 return price.multiply(new BigDecimal("0.9"));
 }
}

Any instance of Item can be used directly in the template:

{#each items} ①
 {it.price} / {it.discountedPrice}
{/each}

① items is resolved to a list of org.acme.Item instances.

Furthermore, @TemplateData.properties() and @TemplateData.ignore() can be used to
fine-tune the generated resolver. Finally, it is also possible to specify the "target" of the annotation -
this could be useful for third-party classes not controlled by the application:

@TemplateData(target = BigDecimal.class)
@TemplateData
class Item {

 public final BigDecimal price;

 public Item(BigDecimal price) {
 this.price = price;
 }
}

{#each items} ①
 {it.price.setScale(2, rounding)} ①
{/each}

① The generated value resolver knows how to invoke the BigDecimal.setScale() method.

17

3.5. RESTEasy Integration
If you want to use Qute in your JAX-RS application, you’ll need to add the quarkus-resteasy-
qute extension first. In your pom.xml file, add:

<dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-resteasy-qute</artifactId>
</dependency>

This extension registers a special ContainerResponseFilter implementation so that a resource
method can return a TemplateInstance and the filter takes care of all necessary steps. A simple
JAX-RS resource may look like this:

HelloResource.java

package org.acme.quarkus.sample;

import javax.inject.Inject;
import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.QueryParam;

import io.quarkus.qute.TemplateInstance;
import io.quarkus.qute.Template;

@Path("hello")
public class HelloResource {

 @Inject
 Template hello; ①

 @GET
 @Produces(MediaType.TEXT_PLAIN)
 public TemplateInstance get(@QueryParam("name") String name) {
 return hello.data("name", name); ② ③
 }
}

① If there is no @ResourcePath qualifier provided, the field name is used to locate the template. In
this particular case, we’re injecting a template with path templates/hello.txt.

② Template.data() returns a new template instance that can be customized before the actual
rendering is triggered. In this case, we put the name value under the key name. The data map is
accessible during rendering.

③ Note that we don’t trigger the rendering - this is done automatically by a special
ContainerResponseFilter implementation.

18

3.5.1. Variant Templates

Sometimes it could be useful to render a specific variant of the template based on the content
negotiation. VariantTemplate is a perfect match for this use case:

@Path("/detail")
class DetailResource {

 @Inject
 VariantTemplate item; ①

 @GET
 @Produces({ MediaType.TEXT_HTML, MediaType.TEXT_PLAIN })
 public Rendering item() {
 return item.data(new Item("Alpha", 1000)); ②
 }
}

① Inject a variant template with base path derived from the injected field -
src/main/resources/templates/item.

② The resulting output depends on the Accept header received from the client. For text/plain
the src/main/resources/templates/item.txt template is used. For text/html the
META-INF/resources/templates/item.html template is used.

3.6. Development Mode
In the development mode, all files located in src/main/resources/templates are watched for
changes and modifications are immediately visible.

3.7. Configuration Reference
 Configuration property fixed at build time - All other configuration properties are overridable at
runtime

Configuration property Type Default

 quarkus.qute.suffixes

The set of suffixes used when attempting to locate a template file.

By default, engine.getTemplate("foo") would result in several lookups:
foo, foo.html, foo.txt, etc.

list of
string

qute.h
tml,qu
te.txt
,html,
txt

4. Extension Points
TODO

19

#quarkus-qute_configuration
#quarkus-qute_quarkus.qute.suffixes

	Quarkus - Qute Reference Guide
	1. Hello World Example
	2. Core Features
	2.1. Syntax and Building Blocks
	2.2. Identifiers
	2.3. Engine Configuration

	3. Quarkus Integration
	3.1. Injecting Beans Directly In Templates
	3.2. Parameter Declarations
	3.3. Template Extension Methods
	3.4. @TemplateData
	3.5. RESTEasy Integration
	3.6. Development Mode
	3.7. Configuration Reference

	4. Extension Points

