Quarkus - Openshift extension

This quide covers generating and deploying Openshift resources based on sane
default and user supplied configuration.

Prerequisites

To complete this guide, you need:

* roughly 5 minutes

* an IDE

* JDK 1.8+ installed with JAVA_HOME configured appropriately
* Apache Maven 3.5.3+

* access to an Openshift or cluster (Minishift is a viable options)

Creating the Maven project

First, we need a new project that contains the Openshift extension. This can be done using the
following command:

mvn io.quarkus:quarkus-maven-plugin:1.3.0.Final:create \
-DprojectGroupId=org.acme \
-DprojectArtifactId=openshift-quickstart \
-DclassName="org.acme.rest.GreetingResource" \
-Dpath="/greeting" \
-Dextensions="openshift"

cd openshift-quickstart

Openshift

Quarkus offers the ability to automatically generate Openshift resources based on sane default and
user supplied configuration. The Openshift extension is actually a wrapper extension that brings
together the kubernetes and container-image-s2i extensions with sensible defaults so that it’s easier
for the user to get started with Quarkus on Openshift.

When we added the openshift extension to the command line invocation above, the following
dependency was added to the pom. xml


kubernetes
container-image-s2i

<dependency>
<groupId>io.quarkus</groupIld>
<artifactId>quarkus-openshift</artifactId>
</dependency>

By adding this dependency, we now have the ability to configure the Openshift resource generation
and application using the usual application.properties approach that Quarkus provides. The
configuration items that are available can be found in:
io.quarkus.kubernetes.deployment.OpenshiftConfig class. Furthermore, the items
provided by io.quarkus.deployment.ApplicationConfig affect the Openshift resources.

Building

Building is handled by the container-image-s2i extension. To trigger a build:
./mvnw clean package -Dquarkus.container-image.build=true

The command above will trigger an s2i binary build.

Deploying

To trigger a deployment:
./mvnw clean package -Dquarkus.kubernetes.deploy=true

The command above will trigger a container image build and will apply the generated Openshift
resources, right after. The generated resources are using Openshift’s DeploymentConfig that is
configured to automatically trigger a redeployment when a change in the ImageStreamis noticed. In
other words, any container image build after the inital deployment will automatically trigger
redeployment, without the need to delete, update or re-apply the generated resources.

Customizing
All available customization options are available in the Openshift configuration options.

Some examples are provided in the sections below:

Exposing Routes

To expose a Route for the Quarkus application:

quarkus.openshift.expose=true


container-image#s2i
kubenretes#openshift

Tip: You don’t necesserily need to add this property in the application.properties. You can
pass it as a command line argument:

./mvnw clean package -Dquarkus.openshift.expose=true

The same applies to all properties listed below.

Labels

To add a label in the generated resources:

quarkus.openshift.labels.foo=bar

Annotations

To add an annotation in the generated resources:

quarkus.openshift.annotations.foo=bar

Environment variables

To add an annotation in the generated resources:

quarkus.openshift.env-vars.my-env-var.value=foobar

The command above will add MY_ENV_VAR=foobar as an environment variable. Please note that the
key my—env-var will be converted to uppercase and dashes will be replaced by underscores resulting
in MY_ENV_VAR.

You may also noticed that in contrast to labels, and annotations for environment variables you don’t
just use a key=value approach. That is because for environment variables there are additional options
rather than just value.

Environment variables from Secret

To add all key value pairs of a Secret as environment variables:

quarkus.openshift.env-vars.my-env-var.secret=my-secret

Environment variables from ConfigMap

To add all key value pairs of a ConfigMap as environment variables:



quarkus.openshift.env-vars.my-env-var.configmap=my-secret

Mounting volumes

The Openshift extension allows the user to configure both volumes and mounts for the application.

Any volume can be mounted with a simple configuration:

quarkus.openshift.mounts.my-volume.path=/where/to/mount

This will add a mount to my pod for volume my—-voume to path /where/to/mount

The volumes themselves can be configured as shown in the sections below:

Secret volumes

quarkus.openshift.secret-volumes.my-volume.secret-name=my-secret

ConfigMap volumes

guarkus.openshift.config-map-volumes.my-volume.config-map—-name=my-
secret



	Quarkus - Openshift extension
	Prerequisites
	Creating the Maven project
	Openshift
	Building
	Deploying
	Customizing


