
Quarkus - Amazon Lambda with
RESTEasy, Undertow, or Vert.x Web

The quarkus-amazon-lambda-http extension allows you to write
microservices with RESTEasy (JAX-RS), Undertow (servlet), or Vert.x Web and
make these microservices deployable as an Amazon Lambda using Amazon’s API
Gateway and Amazon’s SAM framework.

You can deploy your Lambda as a pure Java jar, or you can compile your project to a native image and
deploy that for a smaller memory footprint and startup time.



This technology is considered preview.

In preview, backward compatibility and presence in the ecosystem is not guaranteed.
Specific improvements might require to change configuration or APIs and plans to
become stable are under way. Feedback is welcome on our mailing list or as issues in
our GitHub issue tracker.

For a full list of possible extension statuses, check our FAQ entry.

Prerequisites
To complete this guide, you need:

• less than 30 minutes

• JDK 1.8 (AWS requires JDK 1.8)

• Apache Maven 3.5.3+

• An Amazon AWS account

• AWS SAM CLI

Getting Started
This guide walks you through generating an example Java project via a maven archetype. Later on it
walks through the structure of the project so you can adapt any existing projects you have to use
Amazon Lambda.

Installing AWS bits
Installing all the AWS bits is probably the most difficult thing about this guide. Make sure that you
follow all the steps for installing AWS SAM CLI.

1

https://aws.amazon.com/api-gateway/
https://aws.amazon.com/api-gateway/
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/what-is-sam.html
https://groups.google.com/d/forum/quarkus-dev
https://github.com/quarkusio/quarkus/issues
https://quarkus.io/faq/#extension-status
https://aws.amazon.com
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-cli-install.html

Creating the Maven Deployment Project
Create the Quarkus AWS Lambda maven project using our Maven Archetype.

mvn archetype:generate \
 -DarchetypeGroupId=io.quarkus \
 -DarchetypeArtifactId=quarkus-amazon-lambda-http-archetype \
 -DarchetypeVersion=1.3.0.Final

Build and Deploy
Build the project using maven.

./mvnw clean install

This will compile the code and run the unit tests included within the generated project. Unit testing is
the same as any other Java project and does not require running on Amazon. Quarkus dev-mode is
also available with this extension.

If you want to build for native too, make sure you have GraalVM installed correctly and just add a
native property to the build

./mvnw clean install -Dnative

Simulate Amazon Lambda Deployment
The AWS SAM CLI allows you to run your lambda’s locally on your laptop in a simulated Lambda
environment. This requires docker to be installed (see their install docs). After you have built your
maven project, execute this command

sam local start-api --template sam.jvm.yaml

This will start a docker container that mimics Amazon’s Lambda’s deployment environment. Once the
environment is started you can invoke the example lambda in your browser by going to

http://127.0.0.1:3000/hello

In the console you’ll see startup messages from the lambda. This particular deployment starts a JVM
and loads your lambda as pure Java.

If you want to deploy a native executable of your lambda, use a different yaml template that is
provided in your generated project:

2

http://127.0.0.1:3000/hello
http://127.0.0.1:3000/hello
http://127.0.0.1:3000/hello

sam local start-api --template sam.native.yaml

Deploy to AWS
There are a few steps to get your lambda running on AWS.

Package your deployment.

sam package --template-file sam.jvm.yaml --output-template-file
packaged.yaml --s3-bucket <YOUR_S3_BUCKET>

Type the simple name of your S3 bucket you created during. If you’ve built a native executable,
replace sam.jvm.yaml with sam.native.yaml.

Deploy your package

sam deploy --template-file packaged.yaml --capabilities
CAPABILITY_IAM --stack-name <YOUR_STACK_NAME>

The stack name can be anything you want.

Debugging AWS Deployment Problems
If sam deploy, run the describe-stack-events command to get information about your
deployment and what happened.

aws cloudformation describe-stack-events --stack-name
<YOUR_STACK_NAME>

One common issue that you may run across is that your S3 bucket has to be in the same region as
Amazon Lambda. Look for this error from describe-stack-events output:

Error occurred while GetObject. S3 Error Code:
AuthorizationHeaderMalformed. S3 Error Message:
The authorization header is malformed; the region 'us-east-1' is
wrong; expecting 'us-east-2'
(Service: AWSLambdaInternal; Status Code: 400; Error Code:
InvalidParameterValueException;
Request ID: aefcf978-ad2a-4b53-9ffe-cea3fcd0f868)

The above error is stating that my S3 bucket should be in us-east-2, not us-east-1. To fix this

3

error you’ll need to create an S3 bucket in that region and redo steps 1 and 2 from above.

Another annoying this is that if there is an error in deployment, you also have to completely delete it
before trying to deploy again:

aws cloudformation delete-stack --stack-name <YOUR_STACK_NAME>

Execute your REST Lambda on AWS
To get the root URL for your service, type the following command and see the following output:

aws cloudformation describe-stacks --stack-name <YOUR_STACK_NAME>

It should give you something like the following output:

{
 "Stacks": [
 {
 "StackId": "arn:aws:cloudformation:us-east-
1:502833056128:stack/QuarkusNativeRestExample2/b35b0200-f685-11e9-
aaa0-0e8cd4caae34",
 "DriftInformation": {
 "StackDriftStatus": "NOT_CHECKED"
 },
 "Description": "AWS Serverless Quarkus HTTP -
io.demo::rest-example",
 "Tags": [],
 "Outputs": [
 {
 "Description": "URL for application",
 "ExportName": "RestExampleNativeApi",
 "OutputKey": "RestExampleNativeApi",
 "OutputValue": "https://234234234.execute-
api.us-east-1.amazonaws.com/Prod/"
 }
],

The OutputValue attribute is the root URL for your lambda. Copy it to your browser and add hello
at the end.

4



Responses for binary types will be automatically encoded with base64. This is
different than the behavior using quarkus:dev which will return the raw bytes.
Amazon’s API has additional restrictions requiring the base64 encoding. In general,
client code will automatically handle this encoding but in certain custom situations,
you should be aware you may need to manually manage that encoding.

Examine the POM
If you want to adapt an existing RESTEasy, Undertow, or Vert.x Web project to Amazon Lambda,
there’s a couple of things you need to do. Take a look at the generate example project to get an
example of what you need to adapt.

1. Include the quarkus-amazon-lambda-http extension as a pom dependency

2. Configure Quarkus build an uber-jar

3. If you are doing a native GraalVM build, Amazon requires you to rename your executable to
bootstrap and zip it up. Notice that the pom.xml uses the maven-assembly-plugin to
perform this requirement.

Examine sam.yaml
The sam.yaml syntax is beyond the scope of this document. There’s a couple of things to note though
that are particular to the quarkus-amazon-lambda-http extension.

Amazon’s API Gateway assumes that HTTP response bodies are text unless you explicitly tell it which
media types are binary through configuration. To make things easier, the Quarkus extension forces a
binary (base 64) encoding of all HTTP response messages and the sam.yaml file must configure the
API Gateway to assume all media types are binary:

 Globals:
 Api:
 EndpointConfiguration: REGIONAL
 BinaryMediaTypes:
 - "*/*"

Another thing to note is that for pure Java lambda deployments, do not change the Lambda handler
name.

 Properties:
 Handler:
io.quarkus.amazon.lambda.runtime.QuarkusStreamHandler::handleReques
t
 Runtime: java8

This particular handler handles all the intricacies of integrating with the Quarkus runtime. So you must

5

use that handler.

Finally, there’s an environment variable that must be set for native GraalVM deployments. If you look
at sam.native.yaml you’ll see this:

 Environment:
 Variables:
 DISABLE_SIGNAL_HANDLERS: true

This environment variable resolves some incompatibilities between Quarkus and the Amazon Lambda
Custom Runtime environment.

Tracing with AWS XRay and GraalVM
If you are building native images, and want to use AWS X-Ray Tracing with your lambda you will need
to include quarkus-amazon-lambda-xray as a dependency in your pom. The AWS X-Ray library is
not fully compatible with GraalVM so we had to do some integration work to make this work.

6

https://aws.amazon.com/xray

	Quarkus - Amazon Lambda with RESTEasy, Undertow, or Vert.x Web
	Prerequisites
	Getting Started
	Installing AWS bits
	Creating the Maven Deployment Project
	Build and Deploy
	Simulate Amazon Lambda Deployment
	Deploy to AWS
	Package your deployment.
	Deploy your package
	Debugging AWS Deployment Problems

	Execute your REST Lambda on AWS
	Examine the POM
	Examine sam.yaml
	Tracing with AWS XRay and GraalVM

