
Quarkus - Contexts and Dependency
Injection

Quarkus DI solution is based on the Contexts and Dependency Injection for Java
2.0 specification. However, it is not a full CDI implementation verified by the TCK.
Only a subset of the CDI features is implemented - see also the list of supported
features and the list of limitations.


Most of the existing CDI code should work just fine but there are some small
differences which follow from the Quarkus architecture and goals.

1. Bean Discovery
Bean discovery in CDI is a complex process which involves legacy deployment structures and
accessibility requirements of the underlying module architecture. However, Quarkus is using a
simplified bean discovery. There is only single bean archive with the bean discovery mode
annotated and no visibility boundaries.

The bean archive is synthesized from:

• the application classes,

• dependencies that contain a beans.xml descriptor (content is ignored),

• dependencies that contain a Jandex index - META-INF/jandex.idx,

• dependencies referenced by quarkus.index-dependency in application.properties,

• and Quarkus integration code.

Bean classes that don’t have a bean defining annotation are not discovered. This behavior is defined
by CDI. But producer methods and fields and observer methods are discovered even if the declaring
class is not annotated with a bean defining annotation (this behavior is different to what is defined in
CDI). In fact, the declaring bean classes are considered annotated with @Dependent.


Quarkus extensions may declare additional discovery rules. For example,
@Scheduled business methods are registered even if the declaring class is not
annotated with a bean defining annotation.

1.1. How to Generate a Jandex Index
A dependency with a Jandex index is automatically scanned for beans. To generate the index just add
the following to your pom.xml:

1

http://docs.jboss.org/cdi/spec/2.0/cdi-spec.html
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.html
https://docs.jboss.org/cdi/spec/2.0/cdi-spec.html#default_bean_discovery
https://docs.jboss.org/cdi/spec/2.0/cdi-spec.html#default_bean_discovery
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.html#bean_defining_annotations

<build>
 <plugins>
 <plugin>
 <groupId>org.jboss.jandex</groupId>
 <artifactId>jandex-maven-plugin</artifactId>
 <version>1.0.7</version>
 <executions>
 <execution>
 <id>make-index</id>
 <goals>
 <goal>jandex</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>

If you can’t modify the dependency, you can still index it by adding quarkus.index-dependency
entries to your application.properties:

quarkus.index-dependency.<name>.group-id=
quarkus.index-dependency.<name>.artifact-id=
quarkus.index-dependency.<name>.classifier=(this one is optional)

For example, the following entries ensure that the org.acme:acme-api dependency is indexed:

quarkus.index-dependency.acme.group-id=org.acme ①
quarkus.index-dependency.acme.artifact-id=acme-api ②

① Value is a group id for a dependency identified by name acme.

② Value is an artifact id for a dependency identified by name acme.

2. Native Executables and Private Members
Quarkus is using GraalVM to build a native executable. One of the limitations of GraalVM is the usage
of Reflection. Reflective operations are supported but all relevant members must be registered for
reflection explicitly. Those registrations result in a bigger native executable.

And if Quarkus DI needs to access a private member it has to use reflection. That’s why Quarkus users
are encouraged not to use private members in their beans. This involves injection fields, constructors
and initializers, observer methods, producer methods and fields, disposers and interceptor methods.

How to avoid using private members? You can use package-private modifiers:

2

https://github.com/oracle/graal/blob/master/substratevm/LIMITATIONS.md#user-content-reflection

@ApplicationScoped
public class CounterBean {

 @Inject
 CounterService counterService; ①

 void onMessage(@Observes Event msg) { ②
 }
}

① A package-private injection field.

② A package-private observer method.

Or constructor injection:

@ApplicationScoped
public class CounterBean {

 private CounterService service;

 CounterBean(CounterService service) { ①
 this.service = service;
 }
}

① A package-private constructor injection. @Inject is optional in this particular case.

3. Supported Features
• Programming model

◦ Managed beans implemented by a Java class

▪ @PostConstruct and @PreDestroy lifecycle callbacks

◦ Producer methods and fields, disposers

◦ Qualifiers

◦ Alternatives

◦ Stereotypes

• Dependency injection and lookup

◦ Field, constructor and initializer/setter injection

◦ Type-safe resolution

◦ Programmatic lookup via javax.enterprise.inject.Instance

◦ Client proxies

3

◦ Injection point metadata

• Scopes and contexts

◦ @Dependent, @ApplicationScoped, @Singleton, @RequestScoped and
@SessionScoped

◦ Custom scopes and contexts

• Interceptors

◦ Business method interceptors: @AroundInvoke

◦ Interceptors for lifecycle event callbacks: @PostConstruct, @PreDestroy,
@AroundConstruct

• Events and observer methods, including asynchronous events and transactional observer methods

4. Limitations
• @ConversationScoped is not supported

• Decorators are not supported

• Portable Extensions are not supported

• BeanManager - only the following methods are implemented: getBeans(),
createCreationalContext(), getReference(), getInjectableReference() ,
resolve(), getContext(), fireEvent(), getEvent() and createInstance()

• Specialization is not supported

• beans.xml descriptor content is ignored

• Passivation and passivating scopes are not supported

• Interceptor methods on superclasses are not implemented yet

5. Non-standard Features

5.1. Eager Instantiation of Beans

5.1.1. Lazy By Default

By default, CDI beans are created lazily, when needed. What exactly "needed" means depends on the
scope of a bean.

• A normal scoped bean (@ApplicationScoped, @RequestScoped, etc.) is needed when a
method is invoked upon an injected instance (contextual reference per the specification).

In other words, injecting a normal scoped bean will not suffice because a client proxy is injected
instead of a contextual instance of the bean.

• A bean with a pseudo-scope (@Dependent and @Singleton) is created when injected.

4

Lazy Instantiation Example

@Singleton // => pseudo-scope
class AmazingService {
 String ping() {
 return "amazing";
 }
}

@ApplicationScoped // => normal scope
class CoolService {
 String ping() {
 return "cool";
 }
}

@Path("/ping")
public class PingResource {

 @Inject
 AmazingService s1; ①

 @Inject
 CoolService s2; ②

 @GET
 public String ping() {
 return s1.ping() + s2.ping(); ③
 }
}

① Injection triggers the instantiation of AmazingService.

② Injection itself does not result in the instantiation of CoolService. A client proxy is injected.

③ The first invocation upon the injected proxy triggers the instantiation of CoolService.

5.1.2. Startup Event

However, if you really need to instantiate a bean eagerly you can:

• Declare an observer of the StartupEvent - the scope of the bean does not matter in this case:

@ApplicationScoped
class CoolService {
 void startup(@Observes StartupEvent event) { ①
 }
}

5

① A CoolService is created during startup to service the observer method invocation.

• Use the bean in an observer of the StartupEvent - normal scoped beans must be used as
described in Lazy By Default:

@Dependent
class MyBeanStarter {

 void startup(@Observes StartupEvent event, AmazingService
amazing, CoolService cool) { ①
 cool.toString(); ②
 }
}

① The AmazingService is created during injection.

② The CoolService is a normal scoped bean so we have to invoke a method upon the injected
proxy to force the instantiation.


Quarkus users are encouraged to always prefer the @Observes StartupEvent
to @Initialized(ApplicationScoped.class) as explained in the
Application Initialization and Termination guide.

5.2. Request Context Lifecycle
The request context is also active:

• during notification of a synchronous observer method.

The request context is destroyed:

• after the observer notification completes for an event, if it was not already active when the
notification started.



An event with qualifier @Initialized(RequestScoped.class) is fired when
the request context is initialized for an observer notification. Moreover, the events
with qualifiers @BeforeDestroyed(RequestScoped.class) and
@Destroyed(RequestScoped.class) are fired when the request context is
destroyed.

5.3. Qualified Injected Fields
In CDI, if you declare a field injection point you need to use @Inject and optionally a set of qualifiers:

6

lifecycle

 @Inject
 @ConfigProperty(name = "cool")
 String coolProperty;

In Quarkus, you can skip the @Inject annotation completely if an injected field declares at least one
qualifier:

 @ConfigProperty(name = "cool")
 String coolProperty;


With the notable exception of one special case discussed below, @Inject is still
required for constructor and method injection.

5.4. Simplified Constructor Injection
In CDI, a normal scoped bean must always declare a no-args constructor (this constructor is normally
generated by the compiler unless you declare any other constructor). However, this requirement
complicates constructor injection - you need to provide a dummy no-args constructor to make things
work in CDI.

@ApplicationScoped
public class MyCoolService {

 private SimpleProcessor processor;

 MyCoolService() { // dummy constructor needed
 }

 @Inject // constructor injection
 MyCoolService(SimpleProcessor processor) {
 this.processor = processor;
 }
}

There is no need to declare dummy constructors for normal scoped bean in Quarkus - they are
generated automatically. Also if there’s only one constructor there is no need for @Inject.

7

@ApplicationScoped
public class MyCoolService {

 private SimpleProcessor processor;

 MyCoolService(SimpleProcessor processor) {
 this.processor = processor;
 }
}


We don’t generate a no-args constructor automatically if a bean class extends a
class that does not declare a no-args constructor.

5.5. Removing Unused Beans
The container attempts to remove all unused beans during build by default. This optimization can be
disabled by setting quarkus.arc.remove-unused-beans to none or false.

An unused bean:

• is not a built-in bean or an interceptor,

• is not eligible for injection to any injection point,

• is not excluded by any extension,

• does not have a name,

• does not declare an observer,

• does not declare any producer which is eligible for injection to any injection point,

• is not directly eligible for injection into any javax.enterprise.inject.Instance or
javax.inject.Provider injection point

This optimization applies to all forms of bean declarations: bean class, producer method, producer
field.

Users can instruct the container to not remove any of their specific beans (even if they satisfy all the
rules specified above) by annotating them with io.quarkus.arc.Unremovable. This annotation
can be placed on the types, producer methods, and producer fields.

Furthermore, extensions can eliminate possible false positives by producing
UnremovableBeanBuildItem.

Finally, Quarkus provides a middle ground for the bean removal optimization where application beans
are never removed whether or not they are unused, while the optimization proceeds normally for non
application classes. To use this mode, set quarkus.arc.remove-unused-beans to fwk or
framework.

When using the dev mode (running ./mvnw clean compile quarkus:dev), you can see more

8

information about which beans are being removed by enabling additional logging via the following line
in your application.properties.

quarkus.log.category."io.quarkus.arc.processor".level=DEBUG

5.6. Default Beans
Quarkus adds a capability that CDI currently does not support which is to conditionally declare a bean
if no other bean with equal types and qualifiers was declared by any available means (bean class,
producer, synthetic bean, …) This is done using the @io.quarkus.arc.DefaultBean annotation
and is best explained with an example.

Say there is a Quarkus extension that among other things declares a few CDI beans like the following
code does:

@Dependent
public class TracerConfiguration {

 @Produces
 public Tracer tracer(Reporter reporter, Configuration
configuration) {
 return new Tracer(reporter, configuration);
 }

 @Produces
 @DefaultBean
 public Configuration configuration() {
 // create a Configuration
 }

 @Produces
 @DefaultBean
 public Reporter reporter(){
 // create a Reporter
 }
}

The idea is that the extension auto-configures things for the user, eliminating a lot of boilerplate - we
can just @Inject a Tracer wherever it is needed. Now imagine that in our application we would like
to utilize the configured Tracer, but we need to customize it a little, for example by providing a
custom Reporter. The only thing that would be needed in our application would be something like
the following:

9

@Dependent
public class CustomTracerConfiguration {

 @Produces
 public Reporter reporter(){
 // create a custom Reporter
 }
}

@DefaultBean allows extensions (or any other code for that matter) to provide defaults while
backing off if beans of that type are supplied in any way Quarkus supports.

6. Build Time Extension Points

6.1. Portable Extensions
Quarkus incorporates build-time optimizations in order to provide instant startup and low memory
footprint. The downside of this approach is that CDI Portable Extensions cannot be supported.
Nevertheless, most of the functionality can be achieved using Quarkus extensions.

6.2. Additional Bean Defining Annotations
As described in Bean Discovery bean classes that don’t have a bean defining annotation are not
discovered. However, BeanDefiningAnnotationBuildItem can be used to extend the set of
default bean defining annotations (@Dependent, @Singleton, @ApplicationScoped,
@RequestScoped and @Stereotype annotations):

@BuildStep
BeanDefiningAnnotationBuildItem additionalBeanDefiningAnnotation()
{
 return new BeanDefiningAnnotationBuildItem(DotName.
createSimple("javax.ws.rs.Path")));
}


Bean registrations that are result of a BeanDefiningAnnotationBuildItem
are unremovable by default. See also Removing Unused Beans.

6.3. Resource Annotations
ResourceAnnotationBuildItem is used to specify resource annotations that make it possible to
resolve non-CDI injection points, such as Java EE resources.

10

writing-extensions


An integrator must also provide a corresponding
io.quarkus.arc.ResourceReferenceProvider implementation.

@BuildStep
void setupResourceInjection(BuildProducer
<ResourceAnnotationBuildItem> resourceAnnotations, BuildProducer
<GeneratedResourceBuildItem> resources) {
 resources.produce(new GeneratedResourceBuildItem("META-
INF/services/io.quarkus.arc.ResourceReferenceProvider",
 JPAResourceReferenceProvider.class.getName().getBytes()));
 resourceAnnotations.produce(new ResourceAnnotationBuildItem
(DotName.createSimple(PersistenceContext.class.getName())));
}

6.4. Additional Beans
AdditionalBeanBuildItem is used to specify additional bean classes to be analyzed during
discovery. Additional bean classes are transparently added to the application index processed by the
container.

@BuildStep
List<AdditionalBeanBuildItem> additionalBeans() {
 return Arrays.asList(
 new AdditionalBeanBuildItem(SmallRyeHealthReporter.class
),
 new AdditionalBeanBuildItem(HealthServlet.class));
}


A bean registration that is a result of an AdditionalBeanBuildItem is
removable by default. See also Removing Unused Beans.

6.5. Synthetic Beans
Sometimes it is very useful to register a synthetic bean, i.e. a bean that doesn’t need to have a
corresponding java class. In CDI, this could be achieved using AfterBeanDiscovery.addBean()
methods. In Quarkus, we produce a BeanRegistrarBuildItem and leverage the
io.quarkus.arc.processor.BeanConfigurator API to build a synthetic bean definition.

11

@BuildStep
BeanRegistrarBuildItem syntheticBean() {
 return new BeanRegistrarBuildItem(new BeanRegistrar() {

 @Override
 public void register(RegistrationContext
registrationContext) {
 registrationContext.configure(String.class).types
(String.class).qualifiers(new MyQualifierLiteral()).creator(mc ->
mc.returnValue(mc.load("foo"))).done();
 }
 }));
}


The output of a BeanConfigurator is recorded as bytecode. Therefore there are
some limitations in how a synthetic bean instance is created. See also
BeanConfigurator.creator() methods.


You can easily filter all class-based beans via the convenient BeanStream returned
from the RegistrationContext.beans() method.

If an extension needs to produce other build items during the "bean registration" phase it should use
the BeanRegistrationPhaseBuildItem instead. The reason is that injected objects are only valid
during a @BuildStep method invocation.

@BuildStep
void syntheticBean(BeanRegistrationPhaseBuildItem
beanRegistrationPhase,
 BuildProducer<MyBuildItem> myBuildItem,
 BuildProducer<BeanConfiguratorBuildItem>
beanConfigurators) {
 beanConfigurators.produce(new BeanConfiguratorBuildItem
(beanRegistrationPhase.getContext().configure(String.class).types(S
tring.class).qualifiers(new MyQualifierLiteral()).creator(mc -> mc
.returnValue(mc.load("foo")))));
 myBuildItem.produce(new MyBuildItem());
}

 See BeanRegistrationPhaseBuildItem javadoc for more information.

6.6. Annotation Transformations
A very common task is to override the annotations found on the bean classes. For example you might
want to add an interceptor binding to a specific bean class. Here is how to do it - use the
AnnotationsTransformerBuildItem:

12

@BuildStep
AnnotationsTransformerBuildItem transform() {
 return new AnnotationsTransformerBuildItem(new
AnnotationsTransformer() {

 public boolean appliesTo(org.jboss.jandex.AnnotationTarget
.Kind kind) {
 return kind == org.jboss.jandex.AnnotationTarget.Kind
.CLASS;
 }

 public void transform(TransformationContext context) {
 if (contex.getTarget().asClass().name().toString()
.equals("com.foo.Bar")) {
 context.transform().add(MyInterceptorBinding.class
).done();
 }
 }
 });
}

6.7. Additional Interceptor Bindings
In rare cases it might be handy to programmatically register an existing annotation as interceptor
binding. This is similar to what pure CDI achieves through
BeforeBeanDiscovery#addInterceptorBinding(). Though here we are going to use
InterceptorBindingRegistrarBuildItem to get it done. Note that you can register multiple
annotations in one go:

13

@BuildStep
InterceptorBindingRegistrarBuildItem addInterceptorBindings() {
 InterceptorBindingRegistrarBuildItem
additionalBindingsRegistrar = new
InterceptorBindingRegistrarBuildItem(new
InterceptorBindingRegistrar() {
 @Override
 public Collection<DotName> registerAdditionalBindings() {
 Collection<DotName> result = new HashSet<>();
 result.add(DotName.createSimple(MyAnnotation.class
.getName()));
 result.add(DotName.createSimple(MyOtherAnnotation.
class.getName()));
 return result;
 }
 });
 return additionalBindingsRegistrar;
}

6.8. Injection Point Transformation
Every now and then it is handy to be able to change qualifiers of an injection point programmatically.
You can do just that with InjectionPointTransformerBuildItem. The following sample shows
how to apply transformation to injection points with type Foo that contain qualifier MyQualifier:

14

@BuildStep
InjectionPointTransformerBuildItem transformer() {
 return new InjectionPointTransformerBuildItem(new
InjectionPointsTransformer() {

 public boolean appliesTo(Type requiredType) {
 return requiredType.name().equals(DotName.createSimple
(Foo.class.getName()));
 }

 public void transform(TransformationContext context) {
 if (context.getQualifiers().stream()
 .anyMatch(a -> a.name().equals(DotName
.createSimple(MyQualifier.class.getName())))) {
 context.transform()
 .removeAll()
 .add(DotName.createSimple(MyOtherQualifier
.class.getName()))
 .done();
 }
 }
 });
}

6.9. Observer Transformation
Any observer method definition can be vetoed or transformed using an
ObserverTransformerBuildItem. The attributes that can be transformed include:

• qualifiers

• reception

• priority

• transaction phase

• asynchronous

15

https://docs.jboss.org/cdi/spec/2.0/cdi-spec.html#observer_methods
https://docs.jboss.org/cdi/api/2.0/javax/enterprise/inject/spi/ObserverMethod.html#getObservedQualifiers--
https://docs.jboss.org/cdi/api/2.0/javax/enterprise/inject/spi/ObserverMethod.html#getReception--
https://docs.jboss.org/cdi/api/2.0/javax/enterprise/inject/spi/ObserverMethod.html#getPriority--
https://docs.jboss.org/cdi/api/2.0/javax/enterprise/inject/spi/ObserverMethod.html#getTransactionPhase--
https://docs.jboss.org/cdi/api/2.0/javax/enterprise/inject/spi/ObserverMethod.html#isAsync--

@BuildStep
ObserverTransformerBuildItem transformer() {
 return new ObserverTransformerBuildItem(new
ObserverTransformer() {

 public boolean appliesTo(Type observedType, Set
<AnnotationInstance> qualifiers) {
 return observedType.name.equals(DotName.createSimple
(MyEvent.class.getName()));
 }

 public void transform(TransformationContext context) {
 // Veto all observers of MyEvent
 context.veto();
 }
 });
}

6.10. Bean Deployment Validation
Once the bean deployment is ready an extension can perform additional validations and inspect the
found beans, observers and injection points. Register a BeanDeploymentValidatorBuildItem:

@BuildStep
BeanDeploymentValidatorBuildItem beanDeploymentValidator() {
 return new BeanDeploymentValidatorBuildItem(new
BeanDeploymentValidator() {
 public void validate(ValidationContext validationContext)
{
 for (InjectionPointInfo injectionPoint :
validationContext.get(Key.INJECTION_POINTS)) {
 System.out.println("Injection point: " +
injectionPoint);
 }
 }
 });
}


You can easily filter all registered beans via the convenient BeanStream returned
from the ValidationContext.beans() method.

If an extension needs to produce other build items during the "validation" phase it should use the
ValidationPhaseBuildItem instead. The reason is that injected objects are only valid during a
@BuildStep method invocation.

16

@BuildStep
void validate(ValidationPhaseBuildItem validationPhase,
 BuildProducer<MyBuildItem> myBuildItem,
 BuildProducer<ValidationErrorBuildItem> errors) {
 if (someCondition) {
 errors.produce(new ValidationErrorBuildItem(new
IllegalStateException()));
 myBuildItem.produce(new MyBuildItem());
 }
}

 See ValidationPhaseBuildItem javadoc for more information.

6.11. Custom Contexts
An extension can register a custom InjectableContext implementation by means of a
ContextRegistrarBuildItem:

@BuildStep
ContextRegistrarBuildItem customContext() {
 return new ContextRegistrarBuildItem(new ContextRegistrar() {
 public void register(RegistrationContext
registrationContext) {
 registrationContext.configure(CustomScoped.class)
.normal().contextClass(MyCustomContext.class).done();
 }
 });
}

If an extension needs to produce other build items during the "context registration" phase it should
use the ContextRegistrationPhaseBuildItem instead. The reason is that injected objects are
only valid during a @BuildStep method invocation.

@BuildStep
void addContext(ContextRegistrationPhaseBuildItem
contextRegistrationPhase,
 BuildProducer<MyBuildItem> myBuildItem,
 BuildProducer<ContextConfiguratorBuildItem> contexts) {
 contexts.produce(new ContextConfiguratorBuildItem
(contextRegistrationPhase.getContext().configure(CustomScoped.class
).normal().contextClass(MyCustomContext.class)));
 myBuildItem.produce(new MyBuildItem());
}

17

 See ContextRegistrationPhaseBuildItem javadoc for more information.

6.12. Available Build Time Metadata
Any of the above extensions that operates with BuildExtension.BuildContext can leverage
certain build time metadata that are generated during build. The built-in keys located in
io.quarkus.arc.processor.BuildExtension.Key are:

• ANNOTATION_STORE

◦ Contains an AnnotationStore that keeps information about all AnnotationTarget
annotations after application of annotation transformers

• INJECTION_POINTS

◦ Collection<InjectionPointInfo> containing all injection points

• BEANS

◦ Collection<BeanInfo> containing all beans

• REMOVED_BEANS

◦ Collection<BeanInfo> containing all the removed beans; see Removing Unused Beans for
more information

• OBSERVERS

◦ Collection<ObserverInfo> containing all observers

• SCOPES

◦ Collection<ScopeInfo> containing all scopes, including custom ones

• QUALIFIERS

◦ Map<DotName, ClassInfo> containing all qualifiers

• INTERCEPTOR_BINDINGS

◦ Map<DotName, ClassInfo> containing all interceptor bindings

• STEREOTYPES

◦ Map<DotName, ClassInfo> containing all stereotypes

To get hold of these, simply query the extension context object for given key. Note that these
metadata are made available as build proceeds which means that extensions can only leverage
metadata that were build before they are invoked. If your extension attempts to retrieve metadata
that wasn’t yet produced, null will be returned. Here is a summary of which extensions can access
which metadata:

• AnnotationsTransformer

◦ Shouldn’t rely on any metadata as this is one of the first CDI extensions invoked

• ContextRegistrar

◦ Has access to ANNOTATION_STORE

18

• InjectionPointsTransformer

◦ Has access to ANNOTATION_STORE, QUALIFIERS, INTERCEPTOR_BINDINGS,
STEREOTYPES

• ObserverTransformer

◦ Has access to ANNOTATION_STORE, QUALIFIERS, INTERCEPTOR_BINDINGS,
STEREOTYPES

• BeanRegistrar

◦ Has access to ANNOTATION_STORE, QUALIFIERS, INTERCEPTOR_BINDINGS,
STEREOTYPES, BEANS

• BeanDeploymentValidator

◦ Has access to all build metadata

7. ArC Configuration Reference
 Configuration property fixed at build time - All other configuration properties are overridable at
runtime

Configuration property Type Default

 quarkus.arc.remove-unused-beans

• If set to all (or true) the container will attempt to remove all unused
beans.

• If set to none (or false) no beans will ever be removed even if they are
unused (according to the criteria set out below)

• If set to fwk, then all unused beans will be removed, except the unused
beans whose classes are declared in the application code

An unused bean:
- is not a built-in bean or interceptor,
- is not eligible for injection to any injection
point,
- is not excluded by any extension,
- does not have a name,
- does not declare an observer,
- does not declare any producer which is eligible
for injection to any injection point,
- is not directly eligible for injection into any
`javax.enterprise.inject.Instance` injection
point

string all

19

#quarkus-arc_configuration
#quarkus-arc_quarkus.arc.remove-unused-beans

 quarkus.arc.auto-inject-fields

If set to true @Inject is automatically added to all non-static fields that are
annotated with one of the annotations defined by
AutoInjectAnnotationBuildItem.

boolean true

 quarkus.arc.remove-final-for-proxyable-methods

If set to true, Arc will transform the bytecode of beans containing methods that
need to be proxyable but have been declared as final. The transformation is
simply a matter of removing final. This ensures that a proxy can be created
properly. If the value is set to false, then an exception is thrown at build time
indicating that a proxy could not be created because a method was final.

boolean true

 quarkus.arc.config-properties-default-naming-strategy

The default naming strategy for ConfigProperties.NamingStrategy. The
allowed values are determined by that enum

from-
config,
verbat
im,
kebab-
case

kebab-
case

20

#quarkus-arc_quarkus.arc.auto-inject-fields
#quarkus-arc_quarkus.arc.remove-final-for-proxyable-methods
#quarkus-arc_quarkus.arc.config-properties-default-naming-strategy

	Quarkus - Contexts and Dependency Injection
	1. Bean Discovery
	1.1. How to Generate a Jandex Index

	2. Native Executables and Private Members
	3. Supported Features
	4. Limitations
	5. Non-standard Features
	5.1. Eager Instantiation of Beans
	5.2. Request Context Lifecycle
	5.3. Qualified Injected Fields
	5.4. Simplified Constructor Injection
	5.5. Removing Unused Beans
	5.6. Default Beans

	6. Build Time Extension Points
	6.1. Portable Extensions
	6.2. Additional Bean Defining Annotations
	6.3. Resource Annotations
	6.4. Additional Beans
	6.5. Synthetic Beans
	6.6. Annotation Transformations
	6.7. Additional Interceptor Bindings
	6.8. Injection Point Transformation
	6.9. Observer Transformation
	6.10. Bean Deployment Validation
	6.11. Custom Contexts
	6.12. Available Build Time Metadata

	7. ArC Configuration Reference

