
Quarkus - Using AMQP with Reactive
Messaging

This guide demonstrates how your Quarkus application can utilize MicroProfile
Reactive Messaging to interact with AMQP.



This technology is considered preview.

In preview, backward compatibility and presence in the ecosystem is not guaranteed.
Specific improvements might require to change configuration or APIs and plans to
become stable are under way. Feedback is welcome on our mailing list or as issues in
our GitHub issue tracker.

For a full list of possible extension statuses, check our FAQ entry.

Prerequisites
To complete this guide, you need:

• less than 15 minutes

• an IDE

• JDK 1.8+ installed with JAVA_HOME configured appropriately

• Apache Maven 3.6.3

• A running AMQP 1.0 broker, or Docker Compose to start a development cluster

• GraalVM installed if you want to run in native mode.

Architecture
In this guide, we are going to generate (random) prices in one component. These prices are written in
an AMQP queue (prices). A second component reads from the prices queue and apply some magic
conversion to the price. The result is sent to an in-memory stream consumed by a JAX-RS resource.
The data is sent to a browser using server-sent events.

1

https://groups.google.com/d/forum/quarkus-dev
https://github.com/quarkusio/quarkus/issues
https://quarkus.io/faq/#extension-status

Solution
We recommend that you follow the instructions in the next sections and create the application step by
step. However, you can go right to the completed example.

Clone the Git repository: git clone https://github.com/quarkusio/quarkus-
quickstarts.git, or download an archive.

The solution is located in the amqp-quickstart directory.

Creating the Maven Project
First, we need a new project. Create a new project with the following command:

mvn io.quarkus:quarkus-maven-plugin:1.3.2.Final:create \
 -DprojectGroupId=org.acme \
 -DprojectArtifactId=amqp-quickstart \
 -Dextensions="amqp"
cd amqp-quickstart

This command generates a Maven project, importing the Reactive Messaging and AMQP connector
extensions.

Starting an AMQP broker
Then, we need an AMQP broker. You can follow the instructions from the Apache Artemis web site or
create a docker-compose.yaml file with the following content:

A docker compose file to start an Artemis AMQP broker
more details on https://github.com/vromero/activemq-artemis-
docker.
version: '2'

services:

 artemis:
 image: vromero/activemq-artemis:2.8.0-alpine
 ports:
 - "8161:8161"
 - "61616:61616"
 - "5672:5672"
 environment:
 ARTEMIS_USERNAME: quarkus
 ARTEMIS_PASSWORD: quarkus

2

https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts/archive/master.zip
https://github.com/quarkusio/quarkus-quickstarts/tree/master/amqp-quickstart
https://activemq.apache.org/components/artemis/

Once created, run docker-compose up.

 This is a development cluster, do not use in production.

The price generator
Create the src/main/java/org/acme/amqp/PriceGenerator.java file, with the following
content:

package org.acme.amqp;

import io.reactivex.Flowable;
import org.eclipse.microprofile.reactive.messaging.Outgoing;

import javax.enterprise.context.ApplicationScoped;
import java.util.Random;
import java.util.concurrent.TimeUnit;

/**
 * A bean producing random prices every 5 seconds.
 * The prices are written to an AMQP queue (prices). The AMQP
configuration is specified in the
 * application configuration.
 */
@ApplicationScoped
public class PriceGenerator {

 private Random random = new Random();

 @Outgoing("generated-price") ①
 public Flowable<Integer> generate() { ②
 return Flowable.interval(5, TimeUnit.SECONDS)
 .map(tick -> random.nextInt(100));
 }

}

① Instruct Reactive Messaging to dispatch the items from returned stream to generated-price.

② The method returns a RX Java 2 stream (Flowable) emitting a random price every 5 seconds.

The method returns a Reactive Stream. The generated items are sent to the stream named
generated-price. This stream is mapped to an AMQP queue using the
application.properties file that we will create soon.

3

The price converter
The price converter reads the prices from AMQP, and transforms them. Create the
src/main/java/org/acme/amqp/PriceConverter.java file with the following content:

package org.acme.amqp;

import io.smallrye.reactive.messaging.annotations.Broadcast;
import org.eclipse.microprofile.reactive.messaging.Incoming;
import org.eclipse.microprofile.reactive.messaging.Outgoing;

import javax.enterprise.context.ApplicationScoped;

/**
 * A bean consuming data from the "prices" AMQP queue and applying
some conversion.
 * The result is pushed to the "my-data-stream" stream which is an
in-memory stream.
 */
@ApplicationScoped
public class PriceConverter {

 private static final double CONVERSION_RATE = 0.88;

 @Incoming("prices") ①
 @Outgoing("my-data-stream") ②
 @Broadcast ③
 public double process(int priceInUsd) {
 return priceInUsd * CONVERSION_RATE;
 }

}

① Indicates that the method consumes the items from the prices channel

② Indicates that the objects returned by the method are sent to the my-data-stream channel

③ Indicates that the item are dispatched to all subscribers

The process method is called for every AMQP messages from the prices queue (configured in the
application configuration). Every result is sent to the my-data-stream in-memory stream.

The price resource
Finally, let’s bind our stream to a JAX-RS resource. Creates the
src/main/java/org/acme/amqp/PriceResource.java file with the following content:

4

package org.acme.amqp;

import io.smallrye.reactive.messaging.annotations.Channel;
import org.reactivestreams.Publisher;

import javax.inject.Inject;
import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.Produces;
import javax.ws.rs.core.MediaType;

/**
 * A simple resource retrieving the "in-memory" "my-data-stream"
and sending the items as server-sent events.
 */
@Path("/prices")
public class PriceResource {

 @Inject
 @Channel("my-data-stream") Publisher<Double> prices; ①

 @GET
 @Produces(MediaType.TEXT_PLAIN)
 public String hello() {
 return "hello";
 }

 @GET
 @Path("/stream")
 @Produces(MediaType.SERVER_SENT_EVENTS) ②
 public Publisher<Double> stream() { ③
 return prices;
 }
}

① Injects the my-data-stream channel using the @Channel qualifier

② Indicates that the content is sent using Server Sent Events

③ Returns the stream (Reactive Stream)

Configuring the AMQP connector
We need to configure the AMQP connector. This is done in the application.properties file. The
keys are structured as follows:

mp.messaging.[outgoing|incoming].{channel-name}.property=value

5

The channel-name segment must match the value set in the @Incoming and @Outgoing
annotation: * generated-price → sink in which we write the prices * prices → source in which we
read the prices

Configures the AMQP broker credentials.
amqp-username=quarkus
amqp-password=quarkus

Configure the AMQP connector to write to the `prices` address
mp.messaging.outgoing.generated-price.connector=smallrye-amqp
mp.messaging.outgoing.generated-price.address=prices
mp.messaging.outgoing.generated-price.durable=true

Configure the AMQP connector to read from the `prices` queue
mp.messaging.incoming.prices.connector=smallrye-amqp
mp.messaging.incoming.prices.durable=true

More details about this configuration is available in the SmallRye Reactive Messaging AMQP
connector documentation.


What about my-data-stream? This is an in-memory stream, not connected to a
message broker.

The HTML page
Final touch, the HTML page reading the converted prices using SSE.

Create the src/main/resources/META-INF/resources/prices.html file, with the following
content:

6

https://smallrye.io/smallrye-reactive-messaging/#_interacting_using_amqp
https://smallrye.io/smallrye-reactive-messaging/#_interacting_using_amqp

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Prices</title>

 <link rel="stylesheet" type="text/css"
 href=
"https://cdnjs.cloudflare.com/ajax/libs/patternfly/3.24.0/css/patte
rnfly.min.css">
 <link rel="stylesheet" type="text/css"
 href=
"https://cdnjs.cloudflare.com/ajax/libs/patternfly/3.24.0/css/patte
rnfly-additions.min.css">
</head>
<body>
<div class="container">

 <h2>Last price</h2>
 <div class="row">
 <p class="col-md-12">The last price is <span id=
"content">N/A €.</p>
 </div>
</div>
</body>
<script src="https://code.jquery.com/jquery-3.3.1.min.js"></script>
<script>
 var source = new EventSource("/prices/stream");
 source.onmessage = function (event) {
 document.getElementById("content").innerHTML = event.data;
 };
</script>
</html>

Nothing spectacular here. On each received price, it updates the page.

Get it running
If you followed the instructions, you should have the AMQP broker running. Then, you just need to run
the application using:

./mvnw quarkus:dev

Open http://localhost:8080/prices.html in your browser.

7

http://localhost:8080/prices.html
http://localhost:8080/prices.html
http://localhost:8080/prices.html


If you started the AMQP broker with docker compose, stop it using CTRL+C followed
by docker-compose down.

Running Native
You can build the native executable with:

./mvnw package -Pnative

Imperative usage
Sometimes you need to have an imperative way of sending messages.

For example, if you need to send a message to a stream from inside a REST endpoint when receiving a
POST request. In this case, you cannot use @Outgoing because your method has parameters.

For this, you can use an Emitter.

import org.eclipse.microprofile.reactive.messaging.Channel;
import org.eclipse.microprofile.reactive.messaging.Emitter;

import javax.inject.Inject;
import javax.ws.rs.POST;
import javax.ws.rs.Path;
import javax.ws.rs.Consumes;
import javax.ws.rs.core.MediaType;

@Path("/prices")
public class PriceResource {

 @Inject @Channel("price-create") Emitter<Double> priceEmitter;

 @POST
 @Consumes(MediaType.TEXT_PLAIN)
 public void addPrice(Double price) {
 priceEmitter.send(price);
 }
}


The Emitter configuration is done the same way as the other stream configuration
used by @Incoming and @Outgoing. In addition, you can use @OnOverflow to
configure a back-pressure strategy.

8



Deprecation

The io.smallrye.reactive.messaging.annotations.Emitter,
io.smallrye.reactive.messaging.annotations.Channel and
io.smallrye.reactive.messaging.annotations.OnOverflow classes
are now deprecated and replaced by:

• org.eclipse.microprofile.reactive.messaging.Emitter

• org.eclipse.microprofile.reactive.messaging.Channel

• org.eclipse.microprofile.reactive.messaging.OnOverflow

The new Emitter.send method returns a CompletionStage completed when
the produced message is acknowledged.

Going further
This guide has shown how you can interact with AMQP using Quarkus. It utilizes MicroProfile Reactive
Messaging to build data streaming applications.

If you did the Kafka quickstart, you have realized that it’s the same code. The only difference is the
connector configuration.

If you want to go further check the documentation of SmallRye Reactive Messaging, the
implementation used in Quarkus.

9

https://smallrye.io/smallrye-reactive-messaging

	Quarkus - Using AMQP with Reactive Messaging
	Prerequisites
	Architecture
	Solution
	Creating the Maven Project
	Starting an AMQP broker
	The price generator
	The price converter
	The price resource
	Configuring the AMQP connector
	The HTML page
	Get it running
	Running Native
	Imperative usage
	Going further

