
Quarkus - Amazon Lambda
The quarkus-amazon-lambda extension allows you to use Quarkus to build
your Amazon Lambdas. Your lambdas can use injection annotations from CDI or
Spring and other Quarkus facilities as you need them.

Quarkus lambdas can be deployed using the Amazon Java Runtime, or you can build a native
executable and use Amazon’s Custom Runtime if you want a smaller memory footprint and faster cold
boot startup time.



This technology is considered preview.

In preview, backward compatibility and presence in the ecosystem is not guaranteed.
Specific improvements might require to change configuration or APIs and plans to
become stable are under way. Feedback is welcome on our mailing list or as issues in
our GitHub issue tracker.

For a full list of possible extension statuses, check our FAQ entry.

Prerequisites
To complete this guide, you need:

• less than 30 minutes

• JDK 1.8 (AWS requires JDK 1.8)

• Apache Maven 3.6.3

• An Amazon AWS account

• AWS CLI

• AWS SAM CLI, for local testing

Getting Started
This guide walks you through generating an example Java project via a maven archetype and
deploying it to AWS.

Installing AWS bits
Installing all the AWS bits is probably the most difficult thing about this guide. Make sure that you
follow all the steps for installing AWS CLI.

1

https://groups.google.com/d/forum/quarkus-dev
https://github.com/quarkusio/quarkus/issues
https://quarkus.io/faq/#extension-status
https://aws.amazon.com
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-cli-install.html

Creating the Maven Deployment Project
Create the Quarkus AWS Lambda maven project using our Maven Archetype.

mvn archetype:generate \
 -DarchetypeGroupId=io.quarkus \
 -DarchetypeArtifactId=quarkus-amazon-lambda-archetype \
 -DarchetypeVersion=1.3.2.Final

Choose Your Lambda
The quarkus-amazon-lambda extension scans your project for a class that implements the
Amazon RequestHandler interface. It must find a class in your project that implements this
interface or it will throw a build time failure. If it finds more than one handler class, a build time
exception will also be thrown.

Sometimes, though, you might have a few related lambdas that share code and creating multiple
maven modules is just an overhead you don’t want to do. The quarkus-amazon-lambda extension
allows you to bundle multiple lambdas in one project and use configuration or an environment variable
to pick the handler you want to deploy.

The generated project has two lambdas within it. One that is used and one that is unused. If you open
up src/main/resources/application.properties you’ll see this:

quarkus.lambda.handler=test

The quarkus.lambda.handler property tells Quarkus which lambda handler to deploy. This can be
overridden with an environment variable too.

If you look at the two generated handler classes in the project, you’ll see that they are @Named
differently.

@Named("test")
public class TestLambda implements RequestHandler<InputObject,
OutputObject> {
}

@Named("unused")
public class UnusedLambda implements RequestHandler<InputObject,
OutputObject> {
}

The CDI name of the handler class must match the value specified within the
quarkus.lambda.handler property.

2

Deploy to AWS Lambda Java Runtime
There are a few steps to get your lambda running on AWS. The generated maven project contains a
helpful script to create, update, delete, and invoke your lambdas for pure Java and native
deployments.

Build and Deploy
Build the project using maven.

./mvnw clean install

This will compile and package your code.

Create an Execution Role
View the Getting Started Guide for deploying a lambda with AWS CLI. Specifically, make sure you have
created an Execution Role. You will need to copy and paste the Role Arn into the scripts
generated by the maven archetype. To use the provided scripts, you will either need to define a
LAMBDA_ROLE_ARN environment variable in your profile or define it prior to executing the scripts like
this:

LAMBDA_ROLE_ARN="arn:aws:iam::1234567890:role/lambda-role"

Create the function
The manage.sh script is for managing your lambda using the AWS Lambda Java runtime. This script
is provided only for your convenience. Examine the output of the manage.sh script if you want to
learn what aws commands are executed to create, delete, and update your lambdas.

manage.sh supports four operation: create, delete, update, and invoke. You can create your
function using the following command:

sh manage.sh create

or if you do not have LAMBDA_ROLE_ARN already defined in this shell:

LAMBDA_ROLE_ARN="arn:aws:iam::1234567890:role/lambda-role" sh
manage.sh create

3

https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-awscli.html



Do not change the handler switch. This must be hardcoded to
io.quarkus.amazon.lambda.runtime.QuarkusStreamHandler::handle
Request. This handler bootstraps Quarkus and wraps your actual handler so that
injection can be performed.

If there are any problems creating the function, you must delete it with the delete function before
re-running the create command.

sh manage.sh delete

Commands may also be stacked:

sh manage.sh delete create

Invoke the Lambda
Use the invoke command to invoke your function.

sh manage.sh invoke

The example lambda takes input passed in via the --payload switch which points to a json file in the
root directory of the project. If you want to see the output of the lambda, open the response.txt
file. The lambda can also be invoked locally like this:

sam local invoke --template sam.jvm.yaml --event payload.json

If you are working with your native image build, simply replace the template name above with the
native version.

Update the Lambda
You can update the Java code as you see fit. Once you’ve rebuilt, you can redeploy your lambda by
executing the update command.

sh manage.sh update

4

Deploy to AWS Lambda Custom (native)
Runtime
If you want a lower memory footprint and faster initialization times for your lambda, you can compile
your Java code to a native executable. Just make sure to rebuild your project with the -Pnative
switch.

mvn clean install -Pnative

If you are building on a non-linux system, you will need to also pass in a property instructing quarkus
to use a docker build as Amazon Lambda requires linux binaries. You can do this by passing this
property to your maven build: -Dnative-image.docker-build=true. This requires you to have
docker installed locally, however.

./mvnw clean install -Pnative -Dnative-image.docker-build=true

Either of these commands will compile and create a native executable image. It also generates a zip
file target/function.zip. This zip file contains your native executable image renamed to
bootstrap. This is a requirement of Amazon Lambda Custom Runtime.

The instructions here are exactly as above with one change: you’ll need to add native as the first
parameter to the manage.sh script:

sh manage.sh native create

As above, commands can be stacked. The only requirement is that native be the first parameter
should you wish to work with native image builds. The script will take care of the rest of the details
necessary to manage your native image function deployments.

Examine the output of the manage.sh script if you want to learn what aws commands are executed to
create, delete, and update your lambdas.

One thing to note about the create command for native is that the aws lambda create-function
call must set a specific environment variable:

--environment 'Variables={DISABLE_SIGNAL_HANDLERS=true}'

Examine the POM
If you want to adapt an existing project to use Quarkus’s Amazon Lambda extension, there are a
couple of things you need to do. Take a look at the generated example project to get an example of
what you need to adapt.

5

1. Include the quarkus-amazon-lambda extension as a pom dependency

2. Configure Quarkus to build an uber-jar (via quarkus.package.uber-jar=true in the
application.properties)

3. If you are doing a native image build, Amazon requires you to rename your executable to
bootstrap and zip it up. Notice that the pom.xml uses the maven-assembly-plugin to
perform this requirement.

NB: With gradle, to build the uber-jar execute: ./gradlew quarkusBuild --uber-jar

Testing with the SAM CLI
The AWS SAM CLI allows you to run your lambdas locally on your laptop in a simulated Lambda
environment. This requires docker to be installed. This is an optional approach should you choose to
take advantage of it. Otherwise, dev mode should be sufficient for most of your needs.

A starter template has been generated for both JVM and native execution modes.

Run the following SAM CLI command to locally test your lambda function:

sam local invoke --template sam.jvm.yaml --event {json test file}

The native image can also be locally tested using the sam.native.yaml template:

sam local invoke --template sam.native.yaml --event {json test
file}

Tracing with AWS XRay and GraalVM
If you are building native images, and want to use AWS X-Ray Tracing with your lambda you will need
to include quarkus-amazon-lambda-xray as a dependency in your pom. The AWS X-Ray library is
not fully compatible with GraalVM so we had to do some integration work to make this work.

6

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-cli-install.html
https://www.docker.com/products/docker-desktop
https://aws.amazon.com/xray

	Quarkus - Amazon Lambda
	Prerequisites
	Getting Started
	Installing AWS bits
	Creating the Maven Deployment Project
	Choose Your Lambda
	Deploy to AWS Lambda Java Runtime
	Build and Deploy
	Create an Execution Role
	Create the function
	Invoke the Lambda
	Update the Lambda
	Deploy to AWS Lambda Custom (native) Runtime
	Examine the POM
	Testing with the SAM CLI
	Tracing with AWS XRay and GraalVM

