Quarkus - Simplified MongoDB with
Panache

MongoDB is a well known NoSQL Database that is widely used, but using its raw
API can be cumbersome as you need to express your entities and your queries as a
MongoDB Document.

MongoDB with Panache provides active record style entities (and repositories) like you have in
Hibernate ORM with Panache and focuses on making your entities trivial and fun to write in Quarkus.

It is built on top of the MongoDB Client extension.

This technology is considered preview.

In preview, backward compatibility and presence in the ecosystem is not guaranteed.

o Specific improvements might require to change configuration or APIs and plans to
become stable are under way. Feedback is welcome on our mailing list or as issues in
our GitHub issue tracker.

For a full list of possible extension statuses, check our FAQ entry.

First: an example

Panache allows you to write your MongoDB entities like this:

public class Person extends PanacheMongoEntity {
public String name;
public LocalDate birth;
public Status status;

public static Person findByName(String name){
return find("name", name).firstResult();

}

public static List<Person> findAlive(){
return list("status", Status.Alive);

}

public static void deletelLoics(){
delete("name", "Loic");

You have noticed how much more compact and readable the code is compared to using the MongoDB
API? Does this look interesting? Read on!


https://mongodb.github.io/mongo-java-driver/3.11/bson/documents/#document
hibernate-orm-panache
mongodb
https://groups.google.com/d/forum/quarkus-dev
https://github.com/quarkusio/quarkus/issues
https://quarkus.io/faq/#extension-status

the 1ist () method might be surprising at first. It takes fragments of PanacheQL
o gueries (subset of JPQL) and contextualizes the rest. That makes for very concise
but yet readable code. MongoDB native queries are also supported.

what was described above is essentially the active record pattern, sometimes just
o called the entity pattern. MongoDB with Panache also allows for the use of the more
classical repository pattern via PanacheMongoRepository.

Solution

We recommend that you follow the instructions in the next sections and create the application step by
step. However, you can go right to the completed example.

Clone the Git repository: git clone  https://github.com/quarkusio/quarkus-
quickstarts.git, or download an archive.

The solution is located in the mongodb-panache-quickstart directory.

Creating the Maven project

First, we need a new project. Create a new project with the following command:

mvn io.quarkus:quarkus-maven-plugin:1.3.2.Final:create \
-DprojectGroupId=org.acme \
-DprojectArtifactId=mongodb-panache-quickstart \
-DclassName="org.acme.mongodb.panache.PersonResource" \
-Dpath="/persons" \
-Dextensions="resteasy-jsonb,mongodb-panache"

cd mongodb-panache-quickstart

This command generates a Maven structure importing the RESTEasy/JAX-RS, JSON-B and MongoDB
with Panache extensions. After this, the quarkus-mongodb-panache extension has been added to
your pom. xml.

If you don’t want to generate a new project you can add the dependency in your pom. xm1:

<dependencies>
<dependency>
<groupId>io.quarkus</groupId>
<artifactId>quarkus-mongodb-panache</artifactId>
</dependency>
</dependencies>


https://www.martinfowler.com/eaaCatalog/activeRecord.html
https://martinfowler.com/eaaCatalog/repository.html
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts/archive/master.zip
https://github.com/quarkusio/quarkus-quickstarts/tree/master/mongodb-panache-quickstart

Setting up and configuring MongoDB with
Panache

To get started:

* add your settingsinapplication.properties

* Make your entities extend PanacheMongoEntity (optional if you are using the repository
pattern)

* Use the @MongoEntity annotation to specify the name of the database and the name of the
collection (it will default to the name of your entity).

Then add the relevant configuration properties in application.properties.

# configure the MongoDB client for a replica set of two nodes
quarkus.mongodb.connection-string =
mongodb://mongol:27017,mongo2:27017

# mandatory if you don't specify the name of the database using
@MongoEntity

quarkus.mongodb.database = person

The quarkus.mongodb.database property will be used by MongoDB with Panache to determine
the name of the database where your entities will be persisted.

For advanced configuration of the MongoDB client, you can follow the Configuring the MongoDB
database quide.

Solution 1: using the active record pattern

Defining your entity

To define a Panache entity, simply extend PanacheMongoEntity and add your columns as public
fields. You can add the @MongoEntity annotation to your entity if you need to customize the name
of the collection and/or the database.


mongodb#configuring-the-mongodb-database
mongodb#configuring-the-mongodb-database

@MongoEntity(collection="ThePerson")
public class Person extends PanacheMongoEntity {
public String name;

// will be persisted as a 'birth' field in MongoDB
@BsonProperty("birth")
public LocalDate birthDate;

public Status status;

annotating with @MongoEntity is optional, it allows you to configure the name of
o the collection and the name of the database. Here the entity will be stored in the
ThePerson collection instead of the default Person collection.

MongoDB with Panache uses the PojoCodecProvider to map your entities to a MongoDB Document.

You will be allowed to use the following annotations to customize this mapping:

* @BsonId:allows you to customize the ID field, see Custom IDs.
* @BsonProperty: customize the serialized name of the field.

* @BsonIgnore:ignore a field during the serialization.

If you need to write accessors, you can:

public class Person extends PanacheMongoEntity {
public String name;
public LocalDate birth;
public Status status;

// return name as uppercase in the model
public String getName()
return name.toUpperCase();

}

// store all names in lowercase in the DB
public void setName(String name) {
this.name = name.tolLowerCase();

And thanks to our field access rewrite, when your users read person.name they will actually call your
getName () accessor, and similarly for field writes and the setter. This allows for proper encapsulation
at runtime as all fields calls will be replaced by the corresponding getter/setter calls.


https://mongodb.github.io/mongo-java-driver/3.11/bson/pojos/

Most useful operations

Once you have written your entity, here are the most common operations you will be able to perform:

// creating a person

Person person = new Person();

person.name = "Loic";

person.birth = LocalDate.of (1910, Month.FEBRUARY, 1);
person.status = Status.Alive;

// persist it
person.persist();

person.status = Status.Dead;

// Your must call update() in order to send your entity
modifications to MongoDB
person.update();

// delete it
person.delete();

// getting a list of all Person entities
List<Person> allPersons = Person.listAll();

// finding a specific person by ID
person = Person.findById(personId);

// finding a specific person by ID via an Optional
Optional<Person> optional = Person.findByIdOptional(personld);
person = optional.orElseThrow(() —-> new NotFoundException());

// finding all living persons
List<Person> livingPersons = Person.list("status", Status.Alive);

// counting all persons
long countAll = Person.count();

// counting all living persons
long countAlive = Person.count("status", Status.Alive);

// delete all living persons
Person.delete("status", Status.Alive);

// delete all persons
Person.deleteAll();

All 1ist methods have equivalent stream versions.



Stream<Person> persons = Person.streamAll();

List<String> namesButEmmanuels = persons
.map(p -> p.name.tolLowerCase() )
.filter( n -> ! "emmanuel".equals(n) )
.collect(Collectors.toList());

o A persistOrUpdate() method exist that persist or update an entity in the
database, it uses the upsert capability of MongoDB to do it in a single query.

Adding entity methods

Add custom queries on your entities inside the entities themselves. That way, you and your co-workers
can find them easily, and queries are co-located with the object they operate on. Adding them as static
methods in your entity class is the Panache Active Record way.

public class Person extends PanacheMongoEntity {
public String name;
public LocalDate birth;
public Status status;

public static Person findByName(String name){
return find("name", name).firstResult();

}

public static List<Person> findAlive(){
return list("status", Status.Alive);

}

public static void deleteLoics(){
delete("name", "Loic");

Solution 2: using the repository pattern

Defining your entity

You can define your entity as reqular POJO. You can add the @MongoEntity annotation to your
entity if you need to customize the name of the collection and/or the database.



(collection="ThePerson")
public class Person {
public ObjectId id; // used by MongoDB for the _id field
public String name;
public LocalDate birth;
public Status status;

annotating with @MongoEntity is optional, it allows you to configure the name of
o the collection and the name of the database. Here the entity will be stored in the
ThePerson collection instead of the default Person collection.

MongoDB with Panache uses the PojoCodecProvider to map your entities to a MongoDB Document.

You will be allowed to use the following annotations to customize this mapping:

* @BsonId:allows you to customize the ID field, see Custom IDs.
* @BsonProperty: customize the serialized name of the field.
* @BsonIgnore:ignore a field during the serialization.
You can use public fields or private fields with getters/setters. If you don’t want to

@ manage the ID by vyourself, you can make vyour entity extends
w .
PanacheMongoEntity.

Defining your repository

When using Repositories, you can get the exact same convenient methods as wit the active record
pattern, injected in your Repository, by making them implements PanacheMongoRepository:


https://mongodb.github.io/mongo-java-driver/3.11/bson/pojos/

public class PersonRepository implements PanacheMongoRepository
<Person> {

// put your custom logic here as instance methods

public Person findByName(String name) {
return find("name", name).firstResult();

}

public List<Person> findAlive() {
return list("status", Status.Alive);

}

public void deletelLoics(){
delete("name", "Loic");

All the operations that are defined on PanacheMongoEntityBase are available on your repository,
so using it is exactly the same as using the active record pattern, except you need to inject it:

PersonRepository personRepository;

public long count(){
return personRepository.count();

Most useful operations

Once you have written your repository, here are the most common operations you will be able to
perform:



// creating a person

Person person = new Person();

person.name = "Loic";

person.birth = LocalDate.of (1910, Month.FEBRUARY, 1);
person.status = Status.Alive;

// persist it
personRepository.persist(person);

person.status = Status.Dead;

// Your must call update() in order to send your entity
modifications to MongoDB
personRepository.update(person);

// delete it
personRepository.delete(person);

// getting a list of all Person entities
List<Person> allPersons = personRepository.listAll();

// finding a specific person by ID
person = personRepository.findById(personId);

// finding a specific person by ID via an Optional
Optional<Person> optional = personRepository.findByIdOptional
(personld);

person = optional.orElseThrow(() —-> new NotFoundException());

// finding all living persons
List<Person> livingPersons = personRepository.list("status",
Status.Alive);

// counting all persons
long countAll = personRepository.count();

// counting all living persons
long countAlive = personRepository.count("status", Status.Alive);

// delete all living persons
personRepository.delete("status", Status.Alive);

// delete all persons
personRepository.deleteAll();

All 1ist methods have equivalent stream versions.



Stream<Person> persons = personRepository.streamAll();
List<String> namesButEmmanuels = persons
.map(p -> p.name.tolLowerCase() )
.filter( n -> ! "emmanuel".equals(n) )
.collect(Collectors.toList());

o A persistOrUpdate() method exist that persist or update an entity in the
database, it uses the upsert capability of MongoDB to do it in a single query.

The rest of the documentation show usages based on the active record pattern only,
o but keep in mind that they can be performed with the repository pattern as well. The
repository pattern examples have been omitted for brevity.

Advanced Query

Paging

You should only use 1ist and stream methods if your collection contains small enough data sets.
For larger data sets you can use the find method equivalents, which return a PanacheQuery on
which you can do paging:



// create a query for all living persons
PanacheQuery<Person> livingPersons = Person.find("status", Status
.Alive);

// make it use pages of 25 entries at a time
livingPersons.page(Page.ofSize(25));

// get the first page
List<Person> firstPage = livingPersons.list();

// get the second page
List<Person> secondPage = livingPersons.nextPage().list();

// get page 7
List<Person> page7 = livingPersons.page(Page.of(7, 25)).list();

// get the number of pages
int numberOfPages = livingPersons.pageCount();

// get the total number of entities returned by this query without
paging

int count = livingPersons.count();

// and you can chain methods of course
return Person.find("status", Status.Alive)
.page(Page.ofSize(25))
.nextPage()
.stream()

The PanacheQuery type has many other methods to deal with paging and returning streams.

Sorting

All methods accepting a query string also accept an optional Sort parameter, which allows you to
abstract your sorting:

List<Person> persons = Person.list(Sort.by("name").and("birth"));

// and with more restrictions
List<Person> persons = Person.list("status", Sort.by("name").and(
"birth"), Status.Alive);

The Sort class has plenty of methods for adding columns and specifying sort direction.

1



Simplified queries

Normally, MongoDB queries are of this form: {'firstname': 'John', 'lastname':'Doe'},
this is what we call MongoDB native queries.

You can use them if you want, but we also support what we call PanacheQL that can be seen as a
subset of JPQL (or HQL) and allows you to easily express a query. MongoDB with Panache will then
map it to a MongoDB native query.

If your query does not start with {, we will consider it a PanacheQL query:
* <singlePropertyName> (and single parameter) which will expand to
{'singleColumnName': '?'}

* <query> will expand to {<query>} where we will map the PanacheQL query to MongoDB native
query form. We support the following operators that will be mapped to the corresponding
MongoDB operators: 'and’, 'or' ( mixing 'and' and 'or' is not currently supported), '=', '>', '>="'<'/!
<''1=""is null', 'is not null', and 'like' that is mapped to the MongoDB Sregex operator.

Here are some query examples:

e firstname = ?1 and status = 7?2 willbe mappedto {'firstname': ?1, 'status':
?2}

* amount > ?1 and firstname != 7?2 will be mapped to {'amount': {'Sgt': ?1},
"firstname': {'Sne': ?2}}

* lastname like 7?1 will be mapped to {'lastname': {'Sregex': ?1}}. Be careful that
this will be MongoDB regex support and not SQL like pattern.

* lastname is not null will be mappedto {'lastname':{'Sexists': true}}

We also handle some basic date type transformations: all fields of type Date, LocalDate,
LocalDateTime or Instant will be mapped to the BSON Date using the ISODate type (UTC
datetime). The MongoDB POJO codec doesn’t support ZonedDateTime and OffsetDateTime so
you should convert them prior usage.

MongoDB with Panache also supports extended MongoDB queries by providing a Document query,
this is supported by the find/list/stream/count/delete methods.

Query parameters

You can pass query parameters, for both native and PanacheQL queries, by index (1-based) as shown
below:

Person.find("name = ?1 and status = ?2", "Loic", Status.Alive);
Person.find("{'name': ?1, 'status': ?2}", "Loic", Status.Alive);

Or by name using a Map:


https://docs.oracle.com/javaee/7/tutorial/persistence-querylanguage.htm#BNBTG
https://docs.jboss.org/hibernate/orm/5.4/userguide/html_single/Hibernate_User_Guide.html#hql
https://docs.mongodb.com/manual/reference/operator/query/regex/#op._S_regex
https://docs.mongodb.com/manual/reference/bson-types/#document-bson-type-date

Map<String, Object> params = new HashMap<>();

params.put("name", "Loic");

params.put("status", Status.Alive);

Person.find("name = :name and status = :status", params);
Person.find("{'name': :name, 'status', :status}", params);

Or using the convenience class Parameters either as is or to build a Map:

// generate a Map

Person.find("name = :name and status = :status",
Parameters.with("name", "Loic").and("status", Status.

Alive).map());

// use it as-1is

Person.find("{'name': :name, 'status': :status}",
Parameters.with("name", "Loic").and("status", Status.

Alive));

Every query operation accepts passing parameters by index (Object..), or by name
(Map<String,0Object>or Parameters).

When you use query parameters, be careful that PanacheQL queries will refer to the Object
parameters name but native queries will refer to MongoDB field names.

Imagine the following entity:

public class Person extends PanacheMongoEntity {
("lastname")
public String name;
public LocalDate birth;
public Status status;

public static Person findByNameWithPanacheQLQuery(String name){
return find("name", name).firstResult();

}

public static Person findByNameWithNativeQuery(String name){
return find("{'lastname': ?1}", name).firstResult();

Both findByNameWithPanacheQLQuery () and findByNameWithNativeQuery () methods wil
return the same result but query written in PanacheQL will use the entity field name: name, and native
guery will use the MongoDB field name: Llastname.

13



Query projection

Query projection can be done with the project(Class) method on the PanacheQuery object that
is returned by the £ind () methods.

You can use it to restrict which fields will be returned by the database, the ID field will always be
returned, but it’s not mandatory to include it inside the projection class.

For this, you need to create a class (a POJO) that will only contain the projected fields. This POJO
needs to be annotated with @ProjectionFor(Entity.class) where Entity is the name of your
entity class. The field names, or getters, of the projection class will be used to restrict which properties
will be loaded from the database.

Projection can be done for both PanacheQL and native queries.

import io.quarkus.mongodb.panache.ProjectionFor;
import org.bson.codecs.pojo.annotations.BsonProperty;

// using public fields
(Person.class)
public class PersonName {
public String name;

}

// using getters
(Person.class)
public class PersonNameWithGetter {
private String name;

public String getName () {
return name;

}

public void setName(String name) {
this.name = name;

}

// only 'name' will be loaded from the database
PanacheQuery<PersonName> shortQuery = Person.find("status ",
Status.Alive) .project(PersonName.class);
PanacheQuery<PersonName> query = Person.find("'status': 71",
Status.Alive) .project(PersonNameWithGetter.class);
PanacheQuery<PersonName> nativeQuery = Person.find("{'status':
"ALIVE'}", Status.Alive).project(PersonName.class);

r Using @BsonProperty is not needed to define custom column mappings, as the
- mappings from the entity class will be used.



r You can have your projection class extends from another class. In this case, the
- parent class also needs to have use @ProjectionFor annotation.

Transactions

ﬁ MongoDB offers ACID transactions since version 4.0. MongoDB with Panache
doesn’t provide support for them.

Custom IDs

IDs are often a touchy subject. In MongoDB, they are usually auto-generated by the database with an
ObjectId type. In MongoDB with Panache the ID are defined by a field named id of the
org.bson.types.0ObjectId type, but if you want ot customize them, once again we have you
covered.

You can specify your own ID strategy by extending PanacheMongoEntityBase instead of
PanacheMongoEntity. Then you just declare whatever ID you want as a public field by annotating it
by @BsonId:

public class Person extends PanacheMongoEntityBase {

public Integer myId;

// ...

If you’re using repositories, then you will want to extend PanacheMongoRepositoryBase instead
of PanacheMongoRepository and specify your ID type as an extra type parameter:

public class PersonRepository implements
PanacheMongoRepositoryBase<Person,Integer> {
// ...

o When using ObjectId, MongoDB will automatically provide a value for you, but if
you use a custom field type, you need to provide the value by yourself.

ObjectId can be difficult to use if you want to expose its value in your REST service. So we created
JSON-B and Jackson providers to serialize/deserialize them as a String which are automatically
registered if your project depends on either the RESTEasy JSON-B extension or the RESTEasy
Jackson extension.

15



Working with Kotlin Data classes

Kotlin data classes are a very convenient way of defining data carrier classes, making them a great
match to define an entity class.

But this type of class comes with some limitations: all fields needs to be initialized at construction time
or be marked as nullable, and the generated constructor needs to have as parameters all the fields of
the data class.

MongoDB with Panache uses the PojoCodec, a MongoDB codec which mandates the presence of a
parameterless constructor.

Therefore, if you want to use a data class as an entity class, you need a way to make Kotlin generate
an empty constructor. To do so, you need to provide default values for all the fields of your classes.
The following sentence from the Kotlin documentation explains it:

On the JVM, if the generated class needs to have a parameterless constructor, default values for all
properties have to be specified (see Constructors).

If for whatever reason, the aforementioned solution is deemed unacceptable, there are alternatives.

First, you can create a BSON Codec which will be automatically registered by Quarkus and will be used
instead of the PojoCodec. See this part of the documentation: Using BSON codec.

Another option is to use the @BsonCreator annotation to tell the PojoCodec to use the Kotlin data
class default constructor, in this case all constructor parameters have to be annotated with
@BsonProperty: see Supporting pojos without no args constructor.

This will only work when the entity extends PanacheMongoEntityBase and not
PanacheMongoEntity, as the ID field also needs to be included in the constructor.

An example of a Person class defined as a Kotlin data class would look like:

data class Person @BsonCreator constructor (
@BsonId var id: ObjectId,
@BsonProperty("name") var name: String,
@BsonProperty("birth") var birth: LocalDate,
@BsonProperty("status") var status: Status
): PanacheMongoEntityBase()

Here we use var but note that val can also be used.
-
Q The @BsonId annotation is used instead of @BsonProperty (" _id") for brevity’s
sake, but use of either is valid.

The last option is to the use the no-arg compiler plugin. This plugin is configured with a list of
annotations, and the end result is the generation of no-args constructor for each class annotated with
them.


mongodb#simplifying-mongodb-client-usage-using-bson-codec
https://mongodb.github.io/mongo-java-driver/3.11/bson/pojos/#supporting-pojos-without-no-args-constructors
https://kotlinlang.org/docs/reference/compiler-plugins.html#no-arg-compiler-plugin

For MongoDB with Panache, you could use the @MongoEntity annotation on your data class for this:

@MongoEntity

data class Person (
var name: String,
var birth: LocalDate,
var status: Status

): PanacheMongoEntity()

11 == Reactive Entities and Repositories

MongoDB with Panache allows using reactive style implementation for both entities and repositories.
For this, you need to wuse the Reactive variants when defining your entities
ReactivePanacheMongoEntity or ReactivePanacheMongoEntityBase, and when defining
your repositories: ReactivePanacheMongoRepository or
ReactivePanacheMongoRepositoryBase.

Mutiny

a
Q The reactive API of the MongoDB with Panache uses Mutiny reactive types, if you’re
not familiar with them, read the Getting Started with Reactive guide first.

The reactive variant of the Person class will be:

public class ReactivePerson extends ReactivePanacheMongoEntity {
public String name;
public LocalDate birth;
public Status status;

// return name as uppercase in the model
public String getName() {
return name.toUpperCase();

}

// store all names in lowercase in the DB
public void setName(String name) {
this.name = name.tolLowerCase();

You will have access to the same functionalities of the imperative variant inside the reactive one: bson
annotations, custom ID, PanacheQL, ... But the methods on your entities or repositories will all return
reactive types.

See the equivalent methods from the imperative example with the reactive variant:

17


getting-started-reactive#mutiny

// creating a person

ReactivePerson person = new ReactivePerson();
person.name = "Loic";

person.birth = LocalDate.of (1910, Month.FEBRUARY, 1);
person.status Status.Alive;

// persist it
Uni<Void> csl

person.persist();

person.status Status.Dead;

// Your must call update() in order to send your entity
modifications to MongoDB
Uni<Void> cs2 = person.update();

// delete it
Uni<Void> cs3 = person.delete();

// getting a list of all persons
Uni<List<ReactivePerson>> allPersons = ReactivePerson.listAll();

// finding a specific person by ID
Uni<ReactivePerson> personById = ReactivePerson.findById(personld);

// finding a specific person by ID via an Optional
Uni<Optional<ReactivePerson>> optional = ReactivePerson
.findByIdOptional (personId);

personById = optional.map(o -> o.orElseThrow(() -> new
NotFoundException()));

// finding all living persons
Uni<List<ReactivePerson>> livingPersons = ReactivePerson.list(
"status", Status.Alive);

// counting all persons
Uni<Long> countAll = ReactivePerson.count();

// counting all living persons
Uni<Long> countAlive = ReactivePerson.count("status", Status.Alive
)i

// delete all living persons
Uni<Long> deleteCount = ReactivePerson.delete("status", Status
.Alive);

// delete all persons
deleteCount = ReactivePerson.deleteAll();



If you use MongoDB with Panache in conjunction with RESTEasy, you can directly
r . L . .
O return a reactive type inside your JAX-RS resource endpoint as long as you include
- the quarkus-resteasy-mutiny extension.

The same query facility exists for the reactive types, but the stream() methods act differently: they
returnaMulti (which implement a reactive stream Publisher) instead of a Stream.

It allows more advanced reactive use cases, for example, you can use it to send server-sent events
(SSE) via RESTEasy:

import org.jboss.resteasy.annotations.SseElementType;
import org.reactivestreams.Publisher;

import javax.ws.rs.GET,;

import javax.ws.rs.Path;

import javax.ws.rs.Produces;

("/stream")
(MediaType.SERVER_SENT_EVENTS)
(MediaType.APPLICATION_JSON)
public Multi<ReactivePerson> streamPersons() {
return ReactivePerson.streamAll();

(r) @SseElementType(MediaType.APPLICATION_JSON) tells RESTEasy to
- serialize the object in JSON.

How and why we simplify MongoDB API

When it comes to writing MongoDB entities, there are a number of annoying things that users have
grown used to reluctantly deal with, such as:

* Duplicating ID logic: most entities need an ID, most people don’t care how it’s set, because it’s not
really relevant to your model.

* Dumb getters and setters: since Java lacks support for properties in the language, we have to
create fields, then generate getters and setters for those fields, even if they don’t actually do
anything more than read/write the fields.

* Traditional EE patterns advise to split entity definition (the model) from the operations you can do
on them (DAOs, Repositories), but really that requires an unnatural split between the state and its
operations even though we would never do something like that for reqular objects in the Object
Oriented architecture, where state and methods are in the same class. Moreover, this requires two
classes per entity, and requires injection of the DAO or Repository where you need to do entity
operations, which breaks your edit flow and requires you to get out of the code you’re writing to
set up aninjection point before coming back to use it.

* MongoDB queries are super powerful, but overly verbose for common operations, requiring you to

19



write queries even when you don’t need all the parts.

* MongoDB queries are JSON based, so you will need some String manipulation or using the

Document type and it will need a lot of boilerplate code.

With Panache, we took an opinionated approach to tackle all these problems:

* Make your entities extend PanacheMongoEntity: it has an ID field that is auto-generated. If you

require a custom ID strategy, you can extend PanacheMongoEntityBase instead and handle
the ID yourself.

Use public fields. Get rid of dumb getter and setters. Under the hood, we will generate all getters
and setters that are missing, and rewrite every access to these fields to use the accessor methods.
This way you can still write useful accessors when you need them, which will be used even though
your entity users still use field accesses.

With the active record pattern: put all your entity logic in static methods in your entity class and
don’t create DAOs. Your entity superclass comes with lots of super useful static methods, and you
can add your own in your entity class. Users can just start using your entity Person by typing
Person. and getting completion for all the operations in a single place.

Don’t write parts of the query that you don’t need: write Person.find("order by name") or
Person.find("name = ?1 and status = ?2", "Loic", Status.Alive) or even
better Person.find("name", "Loic").

That’s all there is to it: with Panache, MongoDB has never looked so trim and neat.

Defining entities in external projects or jars

MongoDB with Panache relies on compile-time bytecode enhancements to your entities. If you define
your entities in the same project where you build your Quarkus application, everything will work fine. If
the entities come from external projects or jars, you can make sure that your jar is treated like a
Quarkus application library by indexing it via Jandex, see How to Generate a Jandex Index in the CDI
guide. This will allow Quarkus to index and enhance your entities as if they were inside the current
project.

20


cdi-reference#how-to-generate-a-jandex-index

	Quarkus - Simplified MongoDB with Panache
	First: an example
	Solution
	Creating the Maven project
	Setting up and configuring MongoDB with Panache
	Solution 1: using the active record pattern
	Defining your entity
	Most useful operations

	Adding entity methods
	Solution 2: using the repository pattern
	Defining your entity
	Defining your repository
	Most useful operations

	Advanced Query
	Paging
	Sorting
	Simplified queries
	Query parameters
	Query projection

	Transactions
	Custom IDs
	Working with Kotlin Data classes
	How and why we simplify MongoDB API
	Defining entities in external projects or jars

