Quarkus - Using HashiCorp Vault

HashiCorp Vault is a multi-purpose tool aiming at protecting sensitive data, such
as credentials, certificates, access tokens, encryption keys, ... In the context of
Quarkus, it is being used for 3 primary use cases:

* mounting a map of properties stored into the Vault kv secret engine as an Eclipse MicroProfile
config source

* fetch credentials from Vault when configuring an Agroal datasource

* access the Vault kv secret engine programmatically

Under the hood, the Quarkus Vault extension takes care of authentication when negotiating a client
Vault token plus any transparent token or lease renewals according to ttl and max-ttl.

This technology is considered preview.

In preview, backward compatibility and presence in the ecosystem is not guaranteed.

o Specific improvements might require to change configuration or APIs and plans to
become stable are under way. Feedback is welcome on our mailing list or as issues in
our GitHub issue tracker.

For a full list of possible extension statuses, check our FAQ entry.

Prerequisites

To complete this guide, you need:

* roughly 20 minutes

* anIDE

* JDK 1.8+ installed with JAVA_HOME configured appropriately
* Apache Maven 3.6.3

* Docker installed

Starting Vault

Let’s start Vault in development mode:

docker run --rm --cap-add=IPC_LOCK -e
VAULT_ADDR=http://localhost:8200 -p 8200:8200 -d --name=dev-vault
vault:1.2.2

You can check that vault is running with:

https://www.vaultproject.io/
https://www.vaultproject.io/docs/secrets/kv/index.html
https://groups.google.com/d/forum/quarkus-dev
https://github.com/quarkusio/quarkus/issues
https://quarkus.io/faq/#extension-status

docker logs dev-vault

You should see:

==> Vault server configuration:

Api Address: http://0.0.0.0:8200
Cgo: disabled
Cluster Address: https://0.0.0.0:8201
Listener 1: tcp (addr: "0.0.0.0:8200", cluster
address: "0.0.0.0:8201", max_request_duration: "1m30s",
max_request_size: "33554432", tls: "disabled")
Log Level: info
Mlock: supported: true, enabled: false
Storage: inmem
Version: Vault v1.2.2

WARNING! dev mode is enabled! In this mode, Vault runs entirely in-
memory

and starts unsealed with a single unseal key. The root token is
already

authenticated to the CLI, so you can immediately begin using Vault.

You may need to set the following environment variable:
S export VAULT_ADDR='http://0.0.0.0:8200'

The unseal key and root token are displayed below in case you want
to
seal/unseal the Vault or re-authenticate.

Unseal Key: 01Z2/vzpa92pH8gersSn2h9b5tmzd4m5sqIdMC/4PDs=
Root Token: s.5VUS8ptel3RgekCB2fmMT3u?2

Development mode should NOT be used in production installations!

==> Vault server started! Log data will stream in below:

In development mode, Vault gets configured with several options that makes it convenient:

* Vault is already initialized with one key share (whereas in normal mode this has to be done
explicitly and the number of key shares is 5 by default)

* the unseal key and the root token are displayed in the logs (please write down the root token, we
will need it in the following step)

* Vault is unsealed

* in-memory storage

* TLS is disabled

* a kv secret engine v2is mounted at secret/

In the following step, we are going to add a userpass authentication that we will use from the
Quarkus application, to access a secret stored in the kv secret engine.

First open a shell inside the vault container:

docker exec -it dev-vault sh

Set the VAULT_TOKEN with the value that was printed in the logs:

export VAULT_TOKEN=s.5VUS8ptel3RqekCB2imMT3u2

You can check Vault’s status using the CLI command vault status:

Key Value

Seal Type shamir

Initialized true

Sealed false

Total Shares 1

Threshold 1

Version 1.2.2

Cluster Name vault-cluster-b07e80d8

Cluster ID 55bd74b6-eaaf-3862-f7ce-3473ab86c57f
HA Enabled false

For simplicity reasons, we are going to use a kv secret engine version 1 (which is the default) mounted
at path secret instead of the pre-configured kv version 2 available in dev mode. So let’s disable the
current kv engine, and recreate a new one:

this will disable the current kv version 2 secret engine mounted
at path 'secret'
vault secrets disable secret

this will enable a new kv engine version 1 at path 'secret'
vault secrets enable -path=secret kv

Now let’s add a secret configuration for our application:

vault kv put secret/myapps/vault-quickstart/config a-private-
key=123456

We have defined a path secret/myapps/vault-quickstart in Vault that we need to give access
to from the Quarkus application.

Create a policy that gives read access to secret/myapps/vault-quickstart and subpaths:

cat <<EOF | vault policy write vault-quickstart-policy -
path "secret/myapps/vault-quickstart/*" {
capabilities = ["read"]
}
EOF

When using a kv secret engine version 2, secrets are written and fetched at path
<mount>/data/<secret-path> as opposed to <mount>/<secret-path>ina
kv secret engine version 1. It does not change any of the CLI commands (i.e. you do

o not specify data in your path). However it does change the policies, since
capabilities are applied to the real path. In the example above, the path should be
secret/data/myapps/vault-quickstart/* if you were working with a kv
secret engine version 2.

And finally, let’s enable the userpass auth secret engine, and create user bob with access to the
vault-quickstart-policy:

vault auth enable userpass
vault write auth/userpass/users/bob password=sinclair
policies=vault-quickstart-policy

The Vault extension also supports alternate authentication methods such as:

* approle

* kubernetes when deploying the Quarkus application and Vault into Kubernetes

o It is also possible to directly pass a
quarkus.vault.authentication.client-token, which will bypass the

authentication process. This could be handy in development where revocation and
ttl are not a concern.

Check the extension configuration documentation for more information.

To check that the configuration is correct, try logging in:
vault login -method=userpass username=bob password=sinclair

You should see:

https://www.vaultproject.io/docs/auth/approle.html
https://www.vaultproject.io/docs/auth/kubernetes.html

Success! You are now authenticated. The token information displayed
below

is already stored in the token helper. You do NOT need to run
"vault login"

again. Future Vault requests will automatically use this token.

Key Value

token s.s93BVzJPzBiIGuYJHBTKkG8Uw
token_accessor OKNipTAgxWbxsrjixASNiwdY
token_duration 768h

token_renewable true

token_policies ["default" "vault-quickstart-policy"]
identity_policies []

policies ["default" "vault-quickstart-policy"]
token_meta_username bob

Now set VAULT_TOKEN to the token above (instead of the root token), and try reading the vault-
quickstart secret config:

export VAULT_TOKEN=s.s93BVzJPzBiIGuYJHBTkG8Uw
vault kv get secret/myapps/vault-quickstart/config

You should see:

a-private-key 123456

Create a quarkus application with a secret
configuration

mvn io.quarkus:quarkus-maven-plugin:1.3.3.Final:create \
-DprojectGroupId=org.acme \
-DprojectArtifactId=vault-quickstart \
-DclassName="org.acme.quickstart.GreetingResource" \
-Dpath="/hello" \
-Dextensions="vault,hibernate-orm, jdbc-postgresql"
cd vault-quickstart

Configure access to vault from the application.properties:

vault url
quarkus.vault.url=http://localhost:8200

vault authentication
quarkus.vault.authentication.userpass.username=bob
quarkus.vault.authentication.userpass.password=sinclair

path within the kv secret engine where is located the vault-
quickstart secret configuration
quarkus.vault.secret-config-kv-path=myapps/vault-quickstart/configqg

This should mount whatever keys are stored in secret/myapps/vault-quickstart as
MicroProfile config properties.

Let’s verify that by adding a new endpoint in GreetingResource:

("/hello")
public class GreetingResource {

(name = "a-private-key")
String privateKey;

("/private-key")
(MediaType.TEXT_PLAIN)
public String privateKey() {
return privateKey,

Now compile the application and run it:

./mvnw clean install
java —-jar target/vault-quickstart-1.0-SNAPSHOT-runner.jar

Finally test the new endpoint:

curl http://localhost:8080/hello/private-key

You should see:

123456

Fetching credentials from Vault for a
datasource

Start a PostgreSQL database:

docker run —--ulimit memlock=-1:-1 -it --rm=true —--memory
-swappiness=0 --name postgres-quarkus-hibernate -e
POSTGRES_USER=sarah -e POSTGRES_PASSWORD=connor -e
POSTGRES_DB=mydatabase —-p 5432:5432 postgres:10.5

Create a simple service:

public class SantaClausService ({
EntityManager em;

public List<Gift> getGifts() {
return (List<Gift>) em.createQuery("select g from Gift g")
.getResultList();
}
}

With its Gift entity:

public class Gift ({

private Long id;
private String name;

(strategy = GenerationType.SEQUENCE, generator=

"giftSeq")
public Long getId() {
return id;
}

public void setId(Long id) {
this.id = id;
}

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

Finally, add a new endpoint in GreetingResource:

SantaClausService santaClausService;

("/gift-count")
(MediaType.TEXT_PLAIN)
public int geGiftCount() {
return santaClausService.getGifts().size();

Create a new path in Vault where the database password will be added:

set the root token again
export VAULT_TOKEN=s.5VUS8ptel3RqekCB2fimMT3u2
vault kv put secret/myapps/vault-quickstart/db password=connor

Since we allowed read access on secret/myapps/vault—-quickstart/ subpaths in the policy,
there is nothing else we have to do to allow the application to read it.

When fetching credentials from Vault that are intended to be used by the Agroal connection pool, we
need first to create a named Vault credentials provider in the application.properties:

quarkus.vault.credentials-provider.mydatabase.kv-path=myapps/vault-
quickstart/db

This defines a credentials provider mydatabase that will fetch the password from key password at
pathmyapps/vault-quickstart/db.

The credentials provider can now be used in the datasource configuration, in place of the password
property:

confiqure your datasource
quarkus.datasource.db-kind = postgresql
quarkus.datasource.username = sarah
quarkus.datasource.credentials-provider = mydatabase
quarkus.datasource. jdbc.url =
jdbc:postgresql://localhost:5432/mydatabase

drop and create the database at startup (use “update” to only
update the schema)
quarkus.hibernate-orm.database.generation=drop-and-create

Another way to specify the datasource password is with property indirection.
Assuming that vault path myapps/vault-quickstart/config contains key
my-db-password, all is required on the datasource configuration is:

guarkus.datasource.username = sarah
o guarkus.datasource.password S{my-db-password}

The only drawback is that the password will never be fetched again from Vault after
the initial property loading. This means that if the db password was changed while
running, the application would have to be restarted after vault has been updated
with the new password. This contrasts with the credentials provider approach, which
fetches the password from Vault every time a connection creation is attempted.

Restart the application after rebuilding it, and test it with the new endpoint:

curl http://localhost:8080/hello/gift-count

You should see:

The Vault extension also supports using dynamic database credentials through the
o database-credentials-role property on the credentials—provider. The
Vault setup is more involved and goes beyond the scope of that quickstart quide.

Programmatic access to the KV secret engine

Sometimes secrets are retrieved from an arbitrary path that is known only at runtime through an
application specific property, or a method argument for instance. In that case it is possible to inject a
Quarkus VaultkKVSecretEngine, and retrieve secrets programmatically.

For instance, in GreetingResource, add:

VaultKVSecretEngine kvSecretEngine;

("/secrets/{vault-path}")
(MediaType.TEXT_PLAIN)
public String getSecrets(("vault-path") String vaultPath)

{

return kvSecretEngine.readSecret("myapps/vault-quickstart/" +
vaultPath).toString();
}

Restart the application after rebuilding it, and test it with the new endpoint:
curl http://localhost:8080/hello/secrets/db
You should see:

{password=connor}

TLS

In production mode, TLS should be activated between the Quarkus application and Vault to prevent
man-in-the-middle attacks.

There are several ways to configure the Quarkus application:

* through the standard javax.net.ssl.trustStore system property, which should refer to a
JKS truststore containing the trusted certificates

https://www.vaultproject.io/docs/secrets/databases/index.html

* using property quarkus.vault.tls.ca-cert, which should refer to a pem encoded file.

If quarkus.vault.tls.ca-cert is not set and the Quarkus application is using the Kubernetes
authentication, TLS will be active and wuse the CA certificate bundle located in
/var/run/secrets/kubernetes.io/serviceaccount/ca.crt. If you want to disable this
behavior (for instance when using a trust store), you need to set it explicitly using:
quarkus.vault.tls.use-kubernetes-ca-cert=false.

The last relevant property is quarkus.vault.tls.skip-verify, which allows to communicate
with Vault using TLS, but without checking the certificate authenticity. This may be convenient in
development, but is strongly discouraged in production as it is not more secure than talking to Vault in
plain HTTP.

Conclusion

As a general matter, you should consider reading the extensive Vault documentation and apply best
practices.

The features exposed today through the Vault extension covers only a small fraction of what the
product is capable of. Still, it addresses already some of the most common microservices scenarii (e.q.
sensitive configuration and database credentials), which goes a long way towards creating secured
applications.

Configuration Reference

& Configuration property fixed at build time - All other configuration properties are overridable at
runtime

Configuration property Type Default
quarkus.vault.url
Vault server url.

URL
Example: https://localhost:8200

1

https://www.vaultproject.io/docs/
#quarkus-vault_configuration
#quarkus-vault_quarkus.vault.url
https://localhost:8200
https://docs.oracle.com/javase/8/docs/api/java/net/URL.html

quarkus.vault.renew—-grace-period
Renew grace period duration.

This value if used to extend a lease before it expires its ttl, or recreate a new
lease before the current lease reaches its max_ttl. By default Vault
leaseDuration is equal to 7 days (ie: 168h or 604800s). If a connection pool
maxLifetime is set, it is reasonable to set the renewGracePeriod to be greater
than the maxLifetime, so that we are sure we get a chance to renew leases
before we reach the ttl. In any case you need to make sure there will be attempts
to fetch secrets within the renewGracePeriod, because that is when the renewals
will happen. This is particularly important for db dynamic secrets because if the
lease reaches its ttl or max_ttl, the password of the db user will become invalid
and it will be not longer possible to log in. This value should also be smaller than
the ttl, otherwise that would mean that we would try to recreate leases all the
time.

e

quarkus.vault.secret-config-cache-period

Vault config source cache period.

Duration

Properties fetched from vault as MP config will be kept in a cache, and will not be g
fetched from vault again until the expiration of that period. This property is
ignored if secret-config-kv-pathis not set.

quarkus.vault.secret-config-kv-path

List of comma separated vault paths in kv store, where all properties will be
available as MP config properties as-is, with no prefix.

For instance, if vault contains property foo, it will be made available to the
quarkus application as @ConfigProperty(name = "foo") String foo;

If 2 paths contain the same property, the last path will win.
list of

For instance if string
* secret/base-config contains foo=bar and
* secret/myapp/config contains foo=myappbar, then
@ConfigProperty(name = "foo") String foo will have value

myappbar with application properties quarkus.vault.secret-config-
kv-path=base-config,myapp/config

Duration

10M

#quarkus-vault_quarkus.vault.renew-grace-period
https://docs.oracle.com/javase/8/docs/api/java/time/Duration.html
#duration-note-anchor
#quarkus-vault_quarkus.vault.secret-config-cache-period
https://docs.oracle.com/javase/8/docs/api/java/time/Duration.html
#duration-note-anchor
#quarkus-vault_quarkus.vault.secret-config-kv-path

quarkus.vault.log-confidentiality-level
Used to hide confidential infos, for logging in particular. Possible values are:

* low: display all secrets.

* medium: display only usernames and lease ids (ie: passwords and tokens are
masked).

* high: hide lease ids and dynamic credentials username.
quarkus.vault.kv-secret-engine-version
Kv secret engine version.

see https://www.vaultproject.io/docs/secrets/kv/index.htmi

quarkus.vault.kv-secret-engine-mount-path
Kv secret engine path.

see https://www.vaultproject.io/docs/secrets/kv/index.html

quarkus.vault.connect-timeout

Timeout to establish a connection with Vault.

quarkus.vault.read-timeout

Request timeout on Vault.

quarkus.vault.secret-config-kv-path."prefix"

List of comma separated vault paths in kv store, where all properties will be
available as prefixed MP config properties.

For instance if the application properties contains quarkus.vault.secret-
config-kv-path.myprefix=config, and vault path secret/config
contains foo=bar, thenmyprefix. foo will be available in the MP config.

If the same property is available in 2 different paths for the same prefix, the last
one will win.

low,
medium, medium
high

int 1

string secret

Duration

o 5S

Duration

o 1S

Map<St

ring,L required
ist<st @
ring>>

13

#quarkus-vault_quarkus.vault.log-confidentiality-level
#quarkus-vault_quarkus.vault.kv-secret-engine-version
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
#quarkus-vault_quarkus.vault.kv-secret-engine-mount-path
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
#quarkus-vault_quarkus.vault.connect-timeout
https://docs.oracle.com/javase/8/docs/api/java/time/Duration.html
#duration-note-anchor
#quarkus-vault_quarkus.vault.read-timeout
https://docs.oracle.com/javase/8/docs/api/java/time/Duration.html
#duration-note-anchor
#quarkus-vault_quarkus.vault.secret-config-kv-path.-prefix-secret-config-kv-prefix-path

quarkus.vault.credentials-provider."credentials-
provider".database-credentials-role

Database credentials role, as defined by https://www.vaultproject.io/docs/
secrets/databases/index.html string

One of database-credentials—-role or kv-path needs to be defined. not
both.

quarkus.vault.credentials-provider."credentials-
provider".kv-path

A path in vault kv store, where we will find the kv-key.

One of database-credentials—-role or kv-path needs to be defined. not string
both.

see https://www.vaultproject.io/docs/secrets/kv/index.htmi

quarkus.vault.credentials—-provider."credentials-
provider".kv-key

Key name to search in vault path kv-path. The value for that key is the
credential.

string
kv-key should not be defined if kv—path is not.
see https://www.vaultproject.io/docs/secrets/kv/index.html
Authentication Type
quarkus.vault.authentication.client-token
Vault token, bypassing Vault authentication (kubernetes, userpass or approle).
This is useful in development where an authentication mode might not have i
string

been set up. In production we will usually prefer some authentication such as
userpass, or preferably kubernetes, where Vault tokens get generated with a
TTL and some ability to revoke them.

quarkus.vault.authentication.app-role.role-id

Role Id for AppRole auth method. This property is required when selecting the string
app-role authentication type.

guarkus.vault.authentication.app-role.secret-id

Secret Id for AppRole auth method. This property is required when selecting the string
app-role authentication type.

passwo
rd

Default

#quarkus-vault_quarkus.vault.credentials-provider.-credentials-provider-.database-credentials-role
#quarkus-vault_quarkus.vault.credentials-provider.-credentials-provider-.database-credentials-role
https://www.vaultproject.io/docs/secrets/databases/index.html
https://www.vaultproject.io/docs/secrets/databases/index.html
https://www.vaultproject.io/docs/secrets/databases/index.html
https://www.vaultproject.io/docs/secrets/databases/index.html
https://www.vaultproject.io/docs/secrets/databases/index.html
https://www.vaultproject.io/docs/secrets/databases/index.html
https://www.vaultproject.io/docs/secrets/databases/index.html
https://www.vaultproject.io/docs/secrets/databases/index.html
https://www.vaultproject.io/docs/secrets/databases/index.html
#quarkus-vault_quarkus.vault.credentials-provider.-credentials-provider-.kv-path
#quarkus-vault_quarkus.vault.credentials-provider.-credentials-provider-.kv-path
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
#quarkus-vault_quarkus.vault.credentials-provider.-credentials-provider-.kv-key
#quarkus-vault_quarkus.vault.credentials-provider.-credentials-provider-.kv-key
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
#quarkus-vault_quarkus.vault.authentication
#quarkus-vault_quarkus.vault.authentication.client-token
#quarkus-vault_quarkus.vault.authentication.app-role.role-id
#quarkus-vault_quarkus.vault.authentication.app-role.secret-id

quarkus.vault.authentication.userpass.username

User for userpass auth method. This property is required when selecting the
userpass authentication type.

quarkus.vault.authentication.userpass.password

Password for userpass auth method. This property is required when selecting
the userpass authentication type.

quarkus.vault.authentication.kubernetes.role

Kubernetes authentication role that has been created in Vault to associate Vault
policies, with Kubernetes service accounts and/or Kubernetes namespaces. This
property is required when selecting the Kubernetes authentication type.

quarkus.vault.authentication.kubernetes.jwt-token-path

Location of the file containing the Kubernetes JWT token to authenticate
against in Kubernetes authentication mode.

TLS

quarkus.vault.tls.skip-verify

Allows to bypass certificate validation on TLS communications. If true this will
allow TLS communications with Vault, without checking the validity of the
certificate presented by Vault. This is discouraged in production because it
allows man in the middle type of attacks.

quarkus.vault.tls.ca-cert

Certificate bundle used to validate TLS communications with Vault. The path to
a pem bundle file, if TLS is required, and trusted certificates are not set through
javax.net.ssl.trustStore system property.

quarkus.vault.tls.use-kubernetes-ca-cert

If true and Vault authentication type is kubernetes, TLS will be active and the
cacert path will be set to /var/run/secrets/kubernetes.io/serviceaccount/ca.crt.
If set, this setting will take precedence over property quarkus.vault.tls.ca-cert.
This means that if Vault authentication type is kubernetes and we want to use
quarkus.vault.tls.ca-cert or system property javax.net.ssl.trustStore, then this
property should be set to false.

string

string

string

string

Type

boolean

string

boolean

/var/r
un/sec
rets/k
uberne
tes.io
/servi
ceacco
unt/to
ken

Default

false

true

15

#quarkus-vault_quarkus.vault.authentication.userpass.username
#quarkus-vault_quarkus.vault.authentication.userpass.password
#quarkus-vault_quarkus.vault.authentication.kubernetes.role
#quarkus-vault_quarkus.vault.authentication.kubernetes.jwt-token-path
#quarkus-vault_quarkus.vault.tls
#quarkus-vault_quarkus.vault.tls.skip-verify
#quarkus-vault_quarkus.vault.tls.ca-cert
#quarkus-vault_quarkus.vault.tls.use-kubernetes-ca-cert

Transit Engine

quarkus.vault.transit.key."key".name

Specifies the name of the key to use. By default this will be the property key
alias. Used when the same transit key is used with different configurations. Such

asin:

quarkus.vault.transit.key.my-foo-key.name=foo

quarkus.vault.transit.key.my-foo-key-with-
prehashed.name=foo
quarkus.vault.transit.key.my-foo-key-with-
prehashed.prehashed=true

transitSecretEngine.sign("my-foo-key", "my
content");

or
transitSecretEngine.sign("my-foo-key-with-
prehashed", "my already hashed content");

quarkus.vault.transit.key."key".prehashed

Set to true when the input is already hashed. Applies to sign operations.

quarkus.vault.transit.key."key".signature-algorithm

When using a RSA key, specifies the RSA signature algorithm. Applies to sign

operations.

quarkus.vault.transit.key."key".hash—algorithm

Specifies the hash algorithm to use for supporting key types. Applies to sign

operations.

quarkus.vault.transit.key."key".type

Specifies the type of key to create for the encrypt operation. Applies to encrypt

operations.

guarkus.vault.transit.key."key".convergent-encryption

If enabled, the key will support convergent encryption, where the same plaintext

creates the same ciphertext. Applies to encrypt operations.

raw

Type

string

boolean

string

string

string

string

Default

#quarkus-vault_quarkus.vault.transit
#quarkus-vault_quarkus.vault.transit.key.-key-.name
#quarkus-vault_quarkus.vault.transit.key.-key-.prehashed
#quarkus-vault_quarkus.vault.transit.key.-key-.signature-algorithm
#quarkus-vault_quarkus.vault.transit.key.-key-.hash-algorithm
#quarkus-vault_quarkus.vault.transit.key.-key-.type
#quarkus-vault_quarkus.vault.transit.key.-key-.convergent-encryption

About the Duration format

The format for durations uses the standard java.time.Duration format. You
can learn more about it in the Duration#parse() javadoc.

You can also provide duration values starting with a number. In this case, if the value
consists only of a number, the converter treats the value as seconds. Otherwise, PT
is implicitly prepended to the value to obtain a standard java.time.Duration
format.

17

https://docs.oracle.com/javase/8/docs/api/java/time/Duration.html#parse-java.lang.CharSequence-

	Quarkus - Using HashiCorp Vault
	Prerequisites
	Starting Vault
	Create a quarkus application with a secret configuration
	Fetching credentials from Vault for a datasource
	Programmatic access to the KV secret engine
	TLS
	Conclusion
	Configuration Reference

