Quarkus - Using HashiCorp Vault

HashiCorp Vault is a multi-purpose tool aiming at protecting sensitive data, such
as credentials, certificates, access tokens, encryption keys, ... In the context of
Quarkus, it is being used for 3 primary use cases:

* mounting a map of properties stored into the Vault kv secret engine as an Eclipse MicroProfile
config source

* fetch credentials from Vault when configuring an Agroal datasource

* access the Vault kv secret engine programmatically

Under the hood, the Quarkus Vault extension takes care of authentication when negotiating a client
Vault token plus any transparent token or lease renewals according to ttl and max-ttl.

This technology is considered preview.

In preview, backward compatibility and presence in the ecosystem is not guaranteed.

o Specific improvements might require to change configuration or APIs and plans to
become stable are under way. Feedback is welcome on our mailing list or as issues in
our GitHub issue tracker.

For a full list of possible extension statuses, check our FAQ entry.

Prerequisites

To complete this guide, you need:

* roughly 20 minutes

* anIDE

* JDK 1.8+ installed with JAVA_HOME configured appropriately
* Apache Maven 3.6.3

* Docker installed

Starting Vault

Let’s start Vault in development mode:

docker run --rm --cap-add=IPC_LOCK -e
VAULT_ADDR=http://localhost:8200 -p 8200:8200 -d --name=dev-vault
vault:1.2.2

You can check that vault is running with:

https://www.vaultproject.io/
https://www.vaultproject.io/docs/secrets/kv/index.html
https://groups.google.com/d/forum/quarkus-dev
https://github.com/quarkusio/quarkus/issues
https://quarkus.io/faq/#extension-status

docker logs dev-vault

You should see:

==> Vault server configuration:

Api Address: http://0.0.0.0:8200
Cgo: disabled
Cluster Address: https://0.0.0.0:8201
Listener 1: tcp (addr: "0.0.0.0:8200", cluster
address: "0.0.0.0:8201", max_request_duration: "1m30s",
max_request_size: "33554432", tls: "disabled")
Log Level: info
Mlock: supported: true, enabled: false
Storage: inmem
Version: Vault v1.2.2

WARNING! dev mode is enabled! In this mode, Vault runs entirely in-
memory

and starts unsealed with a single unseal key. The root token is
already

authenticated to the CLI, so you can immediately begin using Vault.

You may need to set the following environment variable:
S export VAULT_ADDR='http://0.0.0.0:8200'

The unseal key and root token are displayed below in case you want
to
seal/unseal the Vault or re-authenticate.

Unseal Key: 01Z2/vzpa92pH8gersSn2h9b5tmzd4m5sqIdMC/4PDs=
Root Token: s.5VUS8ptel3RgekCB2fmMT3u?2

Development mode should NOT be used in production installations!

==> Vault server started! Log data will stream in below:

In development mode, Vault gets configured with several options that makes it convenient:

* Vault is already initialized with one key share (whereas in normal mode this has to be done
explicitly and the number of key shares is 5 by default)

* the unseal key and the root token are displayed in the logs (please write down the root token, we
will need it in the following step)

* Vault is unsealed

* in-memory storage

* TLS is disabled

* a kv secret engine v2is mounted at secret/

By default quarkus assumes that a kv secret engine in version 2 mounted at path

o secret/ will be used. If that is not the case, please use properties
quarkus.vault.kv-secret-engine-version and quarkus.vault.kv-
secret-engine-mount-path accordingly.

In the following step, we are going to add a userpass authentication that we will use from the
Quarkus application, to access a secret stored in the kv secret engine.

First open a shell inside the vault container:
docker exec -it dev-vault sh

Set the VAULT_TOKEN with the value that was printed in the logs:
export VAULT_TOKEN=s.5VUS8ptel3RqekCB2fmMT3u2

You can check Vault’s status using the CLI command vault status:

Key Value

Seal Type shamir

Initialized true

Sealed false

Total Shares 1

Threshold 1

Version 1.2.2

Cluster Name vault-cluster-b07e80d8

Cluster ID 55bd74b6-eaaf-3862-f7ce-3473ab86c57f
HA Enabled false

Now let’s add a secret configuration for our application:

vault kv put secret/myapps/vault-quickstart/config a-private-
key=123456

We have defined a path secret/myapps/vault-quickstart in Vault that we need to give access
to from the Quarkus application.

Create a policy that gives read access to secret/myapps/vault-quickstart and subpaths:

cat <<EOF | vault policy write vault-quickstart-policy -

path "secret/data/myapps/vault-quickstart/*" {
capabilities = ["read"]

}

EOF

When using a kv secret engine version 2, secrets are written and fetched at path
<mount>/data/<secret-path> as opposed to <mount>/<secret-path>ina
kv secret engine version 1. It does not change any of the CLI commands (i.e. you do

o not specify data in your path). However it does change the policies, since
capabilities are applied to the real path. In the example above, the path is
secret/data/myapps/vault-quickstart/* since we are working with a kv
secret engine version 2. It would be secret/myapps/vault-quickstart/* with
a kv secret engine version 1.

And finally, let’s enable the userpass auth secret engine, and create user bob with access to the
vault-quickstart-policy:

vault auth enable userpass
vault write auth/userpass/users/bob password=sinclair
policies=vault-quickstart-policy

The Vault extension also supports alternate authentication methods such as:

* approle

* kubernetes when deploying the Quarkus application and Vault into Kubernetes

o It is also possible to directly pass a
quarkus.vault.authentication.client-token, which will bypass the

authentication process. This could be handy in development where revocation and
ttl are not a concern.

Check the extension configuration documentation for more information.

To check that the configuration is correct, try logging in:
vault login -method=userpass username=bob password=sinclair

You should see:

https://www.vaultproject.io/docs/auth/approle.html
https://www.vaultproject.io/docs/auth/kubernetes.html

Success! You are now authenticated. The token information displayed
below

is already stored in the token helper. You do NOT need to run
"vault login"

again. Future Vault requests will automatically use this token.

Key Value

token s.s93BVzJPzBiIGuYJHBTKkG8Uw
token_accessor OKNipTAgxWbxsrjixASNiwdY
token_duration 768h

token_renewable true

token_policies ["default" "vault-quickstart-policy"]
identity_policies []

policies ["default" "vault-quickstart-policy"]
token_meta_username bob

Now set VAULT_TOKEN to the token above (instead of the root token), and try reading the vault-
quickstart secret config:

export VAULT_TOKEN=s.s93BVzJPzBiIGuYJHBTkG8Uw
vault kv get secret/myapps/vault-quickstart/config

You should see:

a-private-key 123456

Create a quarkus application with a secret
configuration

mvn io.quarkus:quarkus-maven-plugin:1.4.0.CR1l:create \
-DprojectGroupId=org.acme \
-DprojectArtifactId=vault-quickstart \
-DclassName="org.acme.quickstart.GreetingResource" \
-Dpath="/hello" \
-Dextensions="vault,hibernate-orm, jdbc-postgresql"
cd vault-quickstart

Configure access to vault from the application.properties:

vault url
quarkus.vault.url=http://localhost:8200

vault authentication
quarkus.vault.authentication.userpass.username=bob
quarkus.vault.authentication.userpass.password=sinclair

path within the kv secret engine where is located the vault-
quickstart secret configuration
quarkus.vault.secret-config-kv-path=myapps/vault-quickstart/configqg

This should mount whatever keys are stored in secret/myapps/vault-quickstart as
MicroProfile config properties.

Let’s verify that by adding a new endpoint in GreetingResource:

("/hello")
public class GreetingResource {

(name = "a-private-key")
String privateKey;

("/private-key")
(MediaType.TEXT_PLAIN)
public String privateKey() {
return privateKey,

Now compile the application and run it:

./mvnw clean install
java —-jar target/vault-quickstart-1.0-SNAPSHOT-runner.jar

Finally test the new endpoint:

curl http://localhost:8080/hello/private-key

You should see:

123456

Fetching credentials from Vault for a
datasource

Start a PostgreSQL database:

docker run —--ulimit memlock=-1:-1 -it --rm=true —--memory
-swappiness=0 --name postgres-quarkus-hibernate -e
POSTGRES_USER=sarah -e POSTGRES_PASSWORD=connor -e
POSTGRES_DB=mydatabase —-p 5432:5432 postgres:10.5

Create a simple service:

public class SantaClausService ({
EntityManager em;

public List<Gift> getGifts() {
return (List<Gift>) em.createQuery("select g from Gift g")
.getResultList();
}
}

With its Gift entity:

public class Gift ({

private Long id;
private String name;

(strategy = GenerationType.SEQUENCE, generator=

"giftSeq")
public Long getId() {
return id;
}

public void setId(Long id) {
this.id = id;
}

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

Finally, add a new endpoint in GreetingResource:

SantaClausService santaClausService;

("/gift-count")
(MediaType.TEXT_PLAIN)
public int geGiftCount() {
return santaClausService.getGifts().size();

Create a new path in Vault where the database password will be added:

set the root token again
export VAULT_TOKEN=s.5VUS8ptel3RqekCB2fimMT3u2
vault kv put secret/myapps/vault-quickstart/db password=connor

Since we allowed read access on secret/myapps/vault—-quickstart/ subpaths in the policy,
there is nothing else we have to do to allow the application to read it.

When fetching credentials from Vault that are intended to be used by the Agroal connection pool, we
need first to create a named Vault credentials provider in the application.properties:

quarkus.vault.credentials-provider.mydatabase.kv-path=myapps/vault-
quickstart/db

This defines a credentials provider mydatabase that will fetch the password from key password at
pathmyapps/vault-quickstart/db.

The credentials provider can now be used in the datasource configuration, in place of the password
property:

confiqure your datasource
quarkus.datasource.db-kind = postgresql
quarkus.datasource.username = sarah
quarkus.datasource.credentials-provider = mydatabase
quarkus.datasource. jdbc.url =
jdbc:postgresql://localhost:5432/mydatabase

drop and create the database at startup (use “update” to only
update the schema)
quarkus.hibernate-orm.database.generation=drop-and-create

Another way to specify the datasource password is with property indirection.
Assuming that vault path myapps/vault-quickstart/config contains key
my-db-password, all is required on the datasource configuration is:

guarkus.datasource.username = sarah
o guarkus.datasource.password S{my-db-password}

The only drawback is that the password will never be fetched again from Vault after
the initial property loading. This means that if the db password was changed while
running, the application would have to be restarted after vault has been updated
with the new password. This contrasts with the credentials provider approach, which
fetches the password from Vault every time a connection creation is attempted.

Restart the application after rebuilding it, and test it with the new endpoint:

curl http://localhost:8080/hello/gift-count

You should see:

The Vault extension also supports using dynamic database credentials through the
o database-credentials-role property on the credentials—provider. The
Vault setup is more involved and goes beyond the scope of that quickstart quide.

Programmatic access to the KV secret engine

Sometimes secrets are retrieved from an arbitrary path that is known only at runtime through an
application specific property, or a method argument for instance. In that case it is possible to inject a
Quarkus VaultkKVSecretEngine, and retrieve secrets programmatically.

For instance, in GreetingResource, add:

VaultKVSecretEngine kvSecretEngine;

("/secrets/{vault-path}")
(MediaType.TEXT_PLAIN)
public String getSecrets(("vault-path") String vaultPath)

{

return kvSecretEngine.readSecret("myapps/vault-quickstart/" +
vaultPath).toString();
}

Restart the application after rebuilding it, and test it with the new endpoint:
curl http://localhost:8080/hello/secrets/db
You should see:

{password=connor}

TOTP Secrets Engine

The Vault TOTP secrets engine generates time-based credentials according to the TOTP standard.

Vault TOTP supports both the generator scenario (like Google Authenticator) and the provider
scenario (like the Google.com sign in).

The Vault extension integrates with the Vault TOTP secret engine by providing an
io.quarkus.vault.VaultTOTPSecretEngine class.

https://www.vaultproject.io/docs/secrets/databases/index.html
https://www.vaultproject.io/docs/secrets/totp/

import io.quarkus.vault.VaultTOTPSecretEngine;

import io.quarkus.vault.secrets.totp.CreateKeyParameters;
import io.quarkus.vault.secrets.totp.KeyConfiguration;
import io.quarkus.vault.secrets.totp.KeyDefinition;

VaultTOTPSecretEngine vaultTOTPSecretEngine;

CreateKeyParameters createKeyParameters = new CreateKeyParameters/(
"Google", "test@gmail.com");
createKeyParameters.setPeriod("30m");

/%% Google Authentication logic */

final Optional<KeyDefinition> myKey = vaultTOTPSecretEngine
.createKey("my_key_2",
createKeyParameters); ® @

final String keyCode = vaultTOTPSecretEngine.generateCode("
my_key_2"); ®

/%% Google Login logic */

boolean valid = vaultTOTPSecretEngine.validateCode("my_key_2",
keyCode); @

@ Create a key to generate codes.

@ KeyDefinition class contains an embeddable base64 QR code that can be used by third-party
code generators.

® Generates a code (not using third-party generator).

@ Validates that the code is valid.

Vault Health Check

If you are using the quarkus—-smallrye-health extension, quarkus-vault can add a readiness
health check to validate the connection to the Vault server. This is disabled by default.

If enabled, when you access the /health/ready endpoint of your application you will have
information about the connection validation status.

This behavior can be enabled by setting the quarkus.vault.health.enabled property to true
inyour application.properties.

Only if Vault is initialized, unsealed and active, the health endpoint returns that Vault is ready to serve
requests.

You can change a bit this behaviour by using quarkus.vault.health.stand-by-ok and

1

quarkus.vault.health.performance-stand-by-ok to true in your
application.properties.

stand-by-ok

Specifies if being a standby should still return the active status code instead of the standby status
code.

performance-stand-by-ok

Specifies if being a performance standby should still return the active status code instead of the
performance standby status code.

You can inject io.quarkus.vault.VaultSystemBackendEngine to run system operations
programmatically.

When the readiness probe is failing in Kubernetes, then the application is not

A reachable. This means that if Vault is failing, all services depending on Vault will
become unreachable and maybe this is not the desired state, so use this flag
according to your requirements.

TLS

In production mode, TLS should be activated between the Quarkus application and Vault to prevent
man-in-the-middle attacks.

There are several ways to configure the Quarkus application:

* through the standard javax.net.ssl.trustStore system property, which should refer to a
JKS truststore containing the trusted certificates

* using property quarkus.vault.tls.ca-cert, which should refer to a pem encoded file.

If quarkus.vault.tls.ca-cert is not set and the Quarkus application is using the Kubernetes
authentication, TLS will be active and wuse the CA certificate bundle located in
/var/run/secrets/kubernetes.io/serviceaccount/ca.crt. If you want to disable this
behavior (for instance when wusing a trust store), you need to set it explicitly using:
quarkus.vault.tls.use-kubernetes-ca-cert=false.

The last relevant property is quarkus.vault.tls.skip-verify, which allows to communicate
with Vault using TLS, but without checking the certificate authenticity. This may be convenient in
development, but is strongly discouraged in production as it is not more secure than talking to Vault in
plain HTTP.

Conclusion

As a general matter, you should consider reading the extensive Vault documentation and apply best
practices.

The features exposed today through the Vault extension covers only a small fraction of what the
product is capable of. Still, it addresses already some of the most common microservices scenarii (e.q.

https://www.vaultproject.io/docs/

sensitive configuration and database credentials), which goes a long way towards creating secured
applications.

Configuration Reference

@& Configuration property fixed at build time - All other configuration properties are overridable at
runtime

Configuration property Type Default

quarkus.vault.url

Vault server url. <p> Example: https://localhost:8200 <p> See also the
documentation for the kv-secret-engine-mount-path property for some URL

insights on how the full Vault url gets built.

quarkus.vault.renew—-grace-period

Renew grace period duration. <p> This value if used to extend a lease before it
expires its ttl, or recreate a new lease before the current lease reaches its
max_ttl. By default Vault leaseDuration is equal to 7 days (ie: 168h or 604800s).

If a connection pool maxLifetime is set, it is reasonable to set the
renewGracePeriod to be greater than the maxLifetime, so that we are sure we .
get a chance to renew leases before we reach the ttl. In any case you need to Duration 1H
make sure there will be attempts to fetch secrets within the renewGracePeriod, e
because that is when the renewals will happen. This is particularly important for

db dynamic secrets because if the lease reaches its ttl or max_ttl, the password

of the db user will become invalid and it will be not longer possible to log in. This

value should also be smaller than the ttl, otherwise that would mean that we

would try to recreate leases all the time.

quarkus.vault.secret-config-cache-period

Vault config source cache period. <p> Properties fetched from vault as MP .
config will be kept in a cache, and will not be fetched from vault again until the Duration 10M
expiration of that period. This property is ignored if secret-config-kv-path o

is not set.

13

#quarkus-vault_configuration
#quarkus-vault_quarkus.vault.url
https://localhost:8200
https://docs.oracle.com/javase/8/docs/api/java/net/URL.html
#quarkus-vault_quarkus.vault.renew-grace-period
https://docs.oracle.com/javase/8/docs/api/java/time/Duration.html
#duration-note-anchor
#quarkus-vault_quarkus.vault.secret-config-cache-period
https://docs.oracle.com/javase/8/docs/api/java/time/Duration.html
#duration-note-anchor

quarkus.vault.secret-config-kv-path

List of comma separated vault paths in kv store, where all properties will be
available as MP config properties as-is, with no prefix. <p> For instance, if vault
contains property foo, it will be made available to the quarkus application as
@ConfigProperty(name = "foo") String foo; <p> If 2 paths contain
the same property, the last path will win. <p> For instance if <p> *
secret/base-config contains foo=bar and * secret/myapp/config
contains foo=myappbar, then <p> @ConfigProperty(name = "foo")
String foo will have value myappbar with application properties
quarkus.vault.secret-config-kv-path=base-
config,myapp/config <p> See also the documentation for the kv-
secret-engine-mount-path property for some insights on how the full
Vault url gets built.

quarkus.vault.log-confidentiality-level

Used to hide confidential infos, for logging in particular. Possible values are: <p>
* low: display all secrets. * medium: display only usernames and lease ids (ie:
passwords and tokens are masked). * high: hide lease ids and dynamic
credentials username.

quarkus.vault.kv-secret-engine-version

Kv secret engine version. <p> see https://www.vaultproject.io/docs/secrets/
kv/index.html

quarkus.vault.kv-secret-engine-mount-path

KV secret engine path. <p> This value is used when building the url path in the
KV secret engine programmatic access (i.e. VaultKVSecretEngine) and the
vault config source (i.e. fetching configuration properties from Vault). <p> For a

v2 KV secret engine (default - see kv-secret-engine-version
property) the full url is built from the expression <url>/vl/</kv-secret-
engine-mount-path>/data/.. <p> With property

quarkus.vault.url=https://localhost:8200, the following call
vaultKVSecretEngine.readSecret("foo/bar") would lead eventually
to a GET on Vault with the following url: https://localhost:8200/v1l/
secret/data/foo/bar. <p> With a KV secret engine v1, the url changes to:
<url>/vl/</kv-secret-engine-mount-path>/... <p> The same logic is
applied to the Vault config source. With quarkus.vault.secret-config-
kv-path=config/myapp The secret properties would be fetched from Vault
using a GET on https://localhost:8200/vl/secret/data/config/
myapp for a KV secret engine v2 (or https://localhost:8200/v1l/
secret/config/myapp for a KV secret engine v1). <p> see
https://www.vaultproject.io/docs/secrets/kv/index.html

list of
string

low,

medium, medium

high

int

string

secret

#quarkus-vault_quarkus.vault.secret-config-kv-path
#quarkus-vault_quarkus.vault.log-confidentiality-level
#quarkus-vault_quarkus.vault.kv-secret-engine-version
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
#quarkus-vault_quarkus.vault.kv-secret-engine-mount-path
https://localhost:8200/v1/secret/data/foo/bar
https://localhost:8200/v1/secret/data/foo/bar
https://localhost:8200/v1/secret/data/foo/bar
https://localhost:8200/v1/secret/data/foo/bar
https://localhost:8200/v1/secret/data/foo/bar
https://localhost:8200/v1/secret/data/foo/bar
https://localhost:8200/v1/secret/data/foo/bar
https://localhost:8200/v1/secret/data/foo/bar
https://localhost:8200/v1/secret/data/foo/bar
https://localhost:8200/v1/secret/data/foo/bar
https://localhost:8200/v1/secret/data/foo/bar
https://localhost:8200/v1/secret/data/config/myapp
https://localhost:8200/v1/secret/data/config/myapp
https://localhost:8200/v1/secret/data/config/myapp
https://localhost:8200/v1/secret/data/config/myapp
https://localhost:8200/v1/secret/data/config/myapp
https://localhost:8200/v1/secret/data/config/myapp
https://localhost:8200/v1/secret/data/config/myapp
https://localhost:8200/v1/secret/data/config/myapp
https://localhost:8200/v1/secret/data/config/myapp
https://localhost:8200/v1/secret/data/config/myapp
https://localhost:8200/v1/secret/data/config/myapp
https://localhost:8200/v1/secret/config/myapp
https://localhost:8200/v1/secret/config/myapp
https://localhost:8200/v1/secret/config/myapp
https://localhost:8200/v1/secret/config/myapp
https://localhost:8200/v1/secret/config/myapp
https://localhost:8200/v1/secret/config/myapp
https://localhost:8200/v1/secret/config/myapp
https://localhost:8200/v1/secret/config/myapp
https://localhost:8200/v1/secret/config/myapp
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html

quarkus.vault.connect-timeout

Timeout to establish a connection with Vault.

quarkus.vault.read-timeout

Request timeout on Vault.

quarkus.vault.secret-config-kv-path."prefix"

List of comma separated vault paths in kv store, where all properties will be
available as prefixed MP config properties. <p> For instance if the application
properties contains quarkus.vault.secret-config-kv-
path.myprefix=config, and vault path secret/config contains
foo=bar, then myprefix. foo will be available in the MP config. <p> If the
same property is available in 2 different paths for the same prefix, the last one
will win. <p> See also the documentation for the kv—-secret-engine-mount-
path property for some insights on how the full Vault url gets built.

quarkus.vault.credentials—-provider."credentials-
provider".database-credentials-role

Database credentials role, as defined by https://www.vaultproject.io/docs/
secrets/databases/index.html

One of database-credentials—-role or kv—path needs to be defined. not
both.

guarkus.vault.credentials-provider."credentials-
provider".kv-path

A path in vault kv store, where we will find the kv-key.

One of database-credentials-role or kv-path needs to be defined. not
both.

see https://www.vaultproject.io/docs/secrets/kv/index.html

quarkus.vault.credentials-provider."credentials-
provider".kv-key

Key name to search in vault path kv-path. The value for that key is the
credential.

kv-key should not be defined if kv—path is not.

see https://www.vaultproject.io/docs/secrets/kv/index.htmi

Health check configuration

Duration
5S
(2
Duration
1S
(2
Map<St
ring,L required
ist<st @
ring>>
string
string
) passwo
t
string rd
Type Default

15

#quarkus-vault_quarkus.vault.connect-timeout
https://docs.oracle.com/javase/8/docs/api/java/time/Duration.html
#duration-note-anchor
#quarkus-vault_quarkus.vault.read-timeout
https://docs.oracle.com/javase/8/docs/api/java/time/Duration.html
#duration-note-anchor
#quarkus-vault_quarkus.vault.secret-config-kv-path.-prefix-secret-config-kv-prefix-path
#quarkus-vault_quarkus.vault.credentials-provider.-credentials-provider-.database-credentials-role
#quarkus-vault_quarkus.vault.credentials-provider.-credentials-provider-.database-credentials-role
https://www.vaultproject.io/docs/secrets/databases/index.html
https://www.vaultproject.io/docs/secrets/databases/index.html
https://www.vaultproject.io/docs/secrets/databases/index.html
https://www.vaultproject.io/docs/secrets/databases/index.html
https://www.vaultproject.io/docs/secrets/databases/index.html
https://www.vaultproject.io/docs/secrets/databases/index.html
https://www.vaultproject.io/docs/secrets/databases/index.html
https://www.vaultproject.io/docs/secrets/databases/index.html
https://www.vaultproject.io/docs/secrets/databases/index.html
#quarkus-vault_quarkus.vault.credentials-provider.-credentials-provider-.kv-path
#quarkus-vault_quarkus.vault.credentials-provider.-credentials-provider-.kv-path
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
#quarkus-vault_quarkus.vault.credentials-provider.-credentials-provider-.kv-key
#quarkus-vault_quarkus.vault.credentials-provider.-credentials-provider-.kv-key
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
https://www.vaultproject.io/docs/secrets/kv/index.html
#quarkus-vault_quarkus.vault.health

& quarkus.vault.health.enabled

Whether or not an health check is published in case the smallrye-health
extension is present.

& quarkus.vault.health.stand-by-ok

Specifies if being a standby should still return the active status code instead of
the standby status code.

& quarkus.vault.health.performance-stand-by-ok

Specifies if being a performance standby should still return the active status
code instead of the performance standby status code.

Authentication

quarkus.vault.authentication.client-token

Vault token, bypassing Vault authentication (kubernetes, userpass or approle).
This is useful in development where an authentication mode might not have
been set up. In production we will usually prefer some authentication such as
userpass, or preferably kubernetes, where Vault tokens get generated with a
TTL and some ability to revoke them. Lease renewal does not apply.

quarkus.vault.authentication.client-token-wrapping-token

Client token wrapped in a wrapping token, such as what is returned by: vault
token create -wrap-ttl=60s -policy=myapp client-token and client-token-
wrapping-token are exclusive. Lease renewal does not apply.

quarkus.vault.authentication.app-role.role-id

Role Id for AppRole auth method. This property is required when selecting the
app-role authentication type.

quarkus.vault.authentication.app-role.secret-id

Secret Id for AppRole auth method. This property is required when selecting the
app-role authentication type.

guarkus.vault.authentication.app-role.secret-id-wrapping-
token

Wrapping token containing a Secret Id, obtained from: vault write -wrap-tt|=60s
-f auth/approle/role/myapp/secret-id secret-id and secret-id-wrapping-token
are exclusive

boolean

boolean

boolean

Type

string

string

string

string

string

false

false

false

Default

#quarkus-vault_quarkus.vault.health.enabled
#quarkus-vault_quarkus.vault.health.stand-by-ok
#quarkus-vault_quarkus.vault.health.performance-stand-by-ok
#quarkus-vault_quarkus.vault.authentication
#quarkus-vault_quarkus.vault.authentication.client-token
#quarkus-vault_quarkus.vault.authentication.client-token-wrapping-token
#quarkus-vault_quarkus.vault.authentication.app-role.role-id
#quarkus-vault_quarkus.vault.authentication.app-role.secret-id
#quarkus-vault_quarkus.vault.authentication.app-role.secret-id-wrapping-token
#quarkus-vault_quarkus.vault.authentication.app-role.secret-id-wrapping-token

quarkus.vault.authentication.userpass.username

User for userpass auth method. This property is required when selecting the
userpass authentication type.

quarkus.vault.authentication.userpass.password

Password for userpass auth method. This property is required when selecting
the userpass authentication type.

quarkus.vault.authentication.userpass.password-wrapping-
token

Wrapping token containing a Password, obtained from: vault kv get -wrap
-ttI=60s secret/ The key has to be 'password', meaning the password has
initially been provisioned with: vault kv put secret/ password= password and
password-wrapping-token are exclusive

quarkus.vault.authentication.kubernetes.role

Kubernetes authentication role that has been created in Vault to associate Vault
policies, with Kubernetes service accounts and/or Kubernetes namespaces. This
property is required when selecting the Kubernetes authentication type.

quarkus.vault.authentication.kubernetes.jwt-token-path

Location of the file containing the Kubernetes JWT token to authenticate
against in Kubernetes authentication mode.

TLS

quarkus.vault.tls.skip-verify

Allows to bypass certificate validation on TLS communications. If true this will
allow TLS communications with Vault, without checking the validity of the
certificate presented by Vault. This is discouraged in production because it
allows man in the middle type of attacks.

quarkus.vault.tls.ca-cert

Certificate bundle used to validate TLS communications with Vault. The path to
a pem bundle file, if TLS is required, and trusted certificates are not set through
javax.net.ssl.trustStore system property.

string

string

string

string

string

Type

boolean

string

/var/r
un/sec
rets/k
uberne
tes.io
/servi
ceacco
unt/to
ken

Default

false

17

#quarkus-vault_quarkus.vault.authentication.userpass.username
#quarkus-vault_quarkus.vault.authentication.userpass.password
#quarkus-vault_quarkus.vault.authentication.userpass.password-wrapping-token
#quarkus-vault_quarkus.vault.authentication.userpass.password-wrapping-token
#quarkus-vault_quarkus.vault.authentication.kubernetes.role
#quarkus-vault_quarkus.vault.authentication.kubernetes.jwt-token-path
#quarkus-vault_quarkus.vault.tls
#quarkus-vault_quarkus.vault.tls.skip-verify
#quarkus-vault_quarkus.vault.tls.ca-cert

quarkus.vault.tls.use-kubernetes-ca-cert

If true and Vault authentication type is kubernetes, TLS will be active and the

cacert path will be set to /var/run/secrets/kubernetes.io/serviceaccount/ca.crt.

If set, this setting will take precedence over property quarkus.vault.tls.ca-cert. poolean
This means that if Vault authentication type is kubernetes and we want to use
quarkus.vault.tls.ca-cert or system property javax.net.ssl.trustStore, then this
property should be set to false.

Transit Engine Type

quarkus.vault.transit.key."key".name

Specifies the name of the key to use. By default this will be the property key
alias. Used when the same transit key is used with different configurations. Such
asin:

quarkus.vault.transit.key.my-foo-key.name=foo

quarkus.vault.transit.key.my-foo-key-with-
prehashed.name=foo0
quarkus.vault.transit.key.my-foo-key-with-
prehashed.prehashed=true

string

transitSecretEngine.sign("my-foo-key",
content");

or
transitSecretEngine.sign("my—-foo-key-with-
prehashed", "my already hashed content");

my raw

quarkus.vault.transit.key."key".prehashed

Set to true when the input is already hashed. Applies to sign operations. boolean

quarkus.vault.transit.key."key".signature-algorithm

When using a RSA key, specifies the RSA signature algorithm. Applies to sign string
operations.

quarkus.vault.transit.key."key".hash-algorithm

Specifies the hash algorithm to use for supporting key types. Applies to sign string
operations.

true

Default

#quarkus-vault_quarkus.vault.tls.use-kubernetes-ca-cert
#quarkus-vault_quarkus.vault.transit
#quarkus-vault_quarkus.vault.transit.key.-key-.name
#quarkus-vault_quarkus.vault.transit.key.-key-.prehashed
#quarkus-vault_quarkus.vault.transit.key.-key-.signature-algorithm
#quarkus-vault_quarkus.vault.transit.key.-key-.hash-algorithm

quarkus.vault.transit.key."key".type

Specifies the type of key to create for the encrypt operation. Applies to encrypt string
operations.

quarkus.vault.transit.key."key".convergent-encryption

If enabled, the key will support convergent encryption, where the same plaintext string
creates the same ciphertext. Applies to encrypt operations.

About the Duration format

The format for durations uses the standard java.time.Duration format. You
can learn more about it in the Duration#parse() javadoc.

o You can also provide duration values starting with a number. In this case, if the value
consists only of a number, the converter treats the value as seconds. Otherwise, PT
is implicitly prepended to the value to obtain a standard java.time.Duration
format.

19

#quarkus-vault_quarkus.vault.transit.key.-key-.type
#quarkus-vault_quarkus.vault.transit.key.-key-.convergent-encryption
https://docs.oracle.com/javase/8/docs/api/java/time/Duration.html#parse-java.lang.CharSequence-

	Quarkus - Using HashiCorp Vault
	Prerequisites
	Starting Vault
	Create a quarkus application with a secret configuration
	Fetching credentials from Vault for a datasource
	Programmatic access to the KV secret engine
	TOTP Secrets Engine
	Vault Health Check
	TLS
	Conclusion
	Configuration Reference

