
Quarkus - Using HashiCorp Vault with
Databases

The most common use case when working with Vault is to keep confidential the
database connection credentials. There are several approaches that are supported
in Quarkus, with different levels of sophistication and security:

• Property fetched from the KV Secret Engine using the Vault MicroProfile Config Source

• Quarkus Credentials Provider

• Vault Dynamic DB Credentials

This guide aims at providing examples for each of those approaches. We will reuse the application
implemented in the Vault guide and enhance it with a simple persistence use case.



This technology is considered preview.

In preview, backward compatibility and presence in the ecosystem is not guaranteed.
Specific improvements might require to change configuration or APIs and plans to
become stable are under way. Feedback is welcome on our mailing list or as issues in
our GitHub issue tracker.

For a full list of possible extension statuses, check our FAQ entry.

Prerequisites
To complete this guide, you need:

• to complete the Vault guide

• roughly 20 minutes

• an IDE

• JDK 1.8+ installed with JAVA_HOME configured appropriately

• Apache Maven 3.6.3

• Docker installed

Application
We assume the Vault guide application has been developed, a Vault container is running, and the root
token is known. In this section we are going to start a PostgreSQL database, and add a persistence
service in the application.

Add the Hibernate and PostgreSQL extensions to the application:

1

vault
https://groups.google.com/d/forum/quarkus-dev
https://github.com/quarkusio/quarkus/issues
https://quarkus.io/faq/#extension-status
vault
vault

mvn quarkus:add-extension -Dextensions="io.quarkus:quarkus
-hibernate-orm,io.quarkus:quarkus-jdbc-postgresql"

Create a simple service:

@ApplicationScoped
public class SantaClausService {

 @Inject
 EntityManager em;

 @Transactional
 public List<Gift> getGifts() {
 return (List<Gift>) em.createQuery("select g from Gift g")
.getResultList();
 }
}

With its Gift entity:

@Entity
public class Gift {

 private Long id;
 private String name;

 @Id
 @GeneratedValue(strategy = GenerationType.SEQUENCE, generator=
"giftSeq")
 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }
}

2

Finally, add a new endpoint in GreetingResource:

@Inject
SantaClausService santaClausService;

@GET
@Path("/gift-count")
@Produces(MediaType.TEXT_PLAIN)
public int geGiftCount() {
 return santaClausService.getGifts().size();
}

Start a PostgreSQL database:

docker run --ulimit memlock=-1:-1 -it --rm=true --memory
-swappiness=0 --name postgres-quarkus-hibernate -e
POSTGRES_USER=sarah -e POSTGRES_PASSWORD=connor -e
POSTGRES_DB=mydatabase -p 5432:5432 postgres:10.5

Now we are ready to configure Vault and Quarkus to be able to connect to this database from the
application.

Vault MicroProfile Config Source
The simplest approach is to write the database password in the KV secret engine under the path that
is fetched from the Vault MicroProfile Config Source.

Open a new shell, docker exec in the Vault container and set the root token:

docker exec -it dev-vault sh
export VAULT_TOKEN=s.5VUS8pte13RqekCB2fmMT3u2

Add a dbpassword property in the config path of the KV secret engine, beside the original a-
private-key property:

vault kv put secret/myapps/vault-quickstart/config a-private-
key=123456 dbpassword=connor

Add the following configuration in Quarkus to use the value of property dbpassword as our database
password:

3

configure your datasource
quarkus.datasource.db-kind = postgresql
quarkus.datasource.username = sarah
quarkus.datasource.password = ${dbpassword}
quarkus.datasource.jdbc.url =
jdbc:postgresql://localhost:5432/mydatabase

drop and create the database at startup (use `update` to only
update the schema)
quarkus.hibernate-orm.database.generation=drop-and-create

Compile and start the application:

./mvnw package
java -jar target/vault-quickstart-1.0-SNAPSHOT-runner.jar

Test it with the gift-count endpoint:

curl http://localhost:8080/hello/gift-count

You should see:

0

This approach is certainly the simplest of all. It has also the big advantage of working with any
subsystem that requires a secret information in the configuration (i.e. not just Agroal). The only
drawback is that the password will never be fetched again from Vault after the initial property loading.
This means that if the db password was changed while running, the application would have to be
restarted after Vault has been updated with the new password. This contrasts with the credentials
provider approach, which fetches the password from Vault every time a connection creation is
attempted.

Credentials Provider
In this approach we introduce a new abstraction called the Credentials Provider that acts as an
intermediary component between the Agroal datasource and Vault. The additional configuration
required is small, and it has the major advantage of handling gracefully database password change
while the application is running, without any restart. Since all new connections go through the
Credentials Provider to fetch their password, we make sure we have a fresh value every time.

Create a new path (different than the config path) in Vault where the database password will be
added:

4

vault kv put secret/myapps/vault-quickstart/db password=connor

Since we allowed read access on secret/myapps/vault-quickstart/* subpaths in the policy,
there is nothing else we have to do to allow the application to read it.

When fetching credentials from Vault that are intended to be used by the Agroal connection pool, we
need first to create a named Vault credentials provider in the application.properties:

quarkus.vault.credentials-provider.mydatabase.kv-path=myapps/vault-
quickstart/db

This defines a credentials provider mydatabase that will fetch the password from key password at
path myapps/vault-quickstart/db.

The credentials provider can now be used in the datasource configuration, in place of the password
property:

configure your datasource
quarkus.datasource.db-kind = postgresql
quarkus.datasource.username = sarah
quarkus.datasource.credentials-provider = mydatabase
quarkus.datasource.jdbc.url =
jdbc:postgresql://localhost:5432/mydatabase

Recompile, start and test the gift-count endpoint. You should see 0 again.

Dynamic Database Credentials
The two previous approaches work well and are very popular. However they rely on a well known user
configured in the application (i.e. the database user), and the security comes from the confidentiality
of the password. If the password was stolen, we would have to change it in the database and in Vault.
Regulary rotating passwords is actually a very good practice to limit (in time) the impact of getting the
password stolen.

A more sophisticated approach consists in letting Vault create and retire database accounts on a
regular basis. This is supported in Vault with the Database secret engine. A number of databases are
supported, such as PostgreSQL.

First we need to enable the database secret engine, configure the postgresql-database-
plugin and create the database role mydbrole (replace 10.0.0.3 by the actual host that is
running the PostgreSQL container; for simplicity we disabled TLS between Vault and the PostgreSQL
database):

5

https://www.vaultproject.io/docs/secrets/databases
https://www.vaultproject.io/docs/secrets/databases/postgresql

vault secrets enable database

vault write database/config/mydb \
 plugin_name=postgresql-database-plugin \
 allowed_roles=mydbrole \

connection_url=postgresql://{{username}}:{{password}}@10.0.0.3:5432
/mydatabase?sslmode=disable \
 username=sarah \
 password=connor

cat <<EOF > vault-postgres-creation.sql
CREATE ROLE "{{name}}" WITH LOGIN PASSWORD '{{password}}' VALID
UNTIL '{{expiration}}';
GRANT SELECT, INSERT, UPDATE, DELETE ON ALL TABLES IN SCHEMA public
TO "{{name}}";
GRANT USAGE, SELECT ON ALL SEQUENCES IN SCHEMA public to
"{{name}}";
EOF

vault write database/roles/mydbrole \
 db_name=mydb creation_statements=@vault-postgres-creation.sql \
 default_ttl=1h \
 max_ttl=24h \
 revocation_statements="ALTER ROLE \"{{name}}\" NOLOGIN;" \
 renew_statements="ALTER ROLE \"{{name}}\" VALID UNTIL
'{{expiration}}';"


For this use case, user sarah configured above needs to be a PostgreSQL super
user with the capability to create users.

Then we need to give a read capability to the Quarkus application on path
database/creds/mydbrole.

cat <<EOF | vault policy write vault-quickstart-policy -
path "secret/data/myapps/vault-quickstart/*" {
 capabilities = ["read"]
}
path "database/creds/mydbrole" {
 capabilities = ["read"]
}
EOF

Now that Vault knows how to create users in PostgreSQL, we juste need to change the mydatabase
credentials provider to use a database-credentials-role.

6

quarkus.vault.credentials-provider.mydatabase.database-credentials-
role=mydbrole



When using quarkus.hibernate-orm.database.generation=drop-
create, objects get created with the applicative user. Since a user will be created
every time the applications starts, database objects will be created with the first
created user, then we will attempt to drop them on the second run with a different
user that is not the owner. As expected this will fail. As a result, it is recommended to
use quarkus.hibernate-orm.database.generation=update in this
section.

Recompile with ./mvnw package, start and test the gift-count endpoint. You should see 0 again.

Notice in the logs:

2020-04-22 14:29:48,522 DEBUG [io.qua.vau.run.VaultDbManager]
(Agroal_682171661) generated mydbrole credentials: {leaseId:
database/creds/mydbrole/L6PxoI68gZDeVPXP0RAA4c0a, renewable: true,
leaseDuration: 60s, valid_until: Wed Apr 22 14:30:48 CEST 2020,
username: v-userpass-mydbrole-HeOMJCmy9coEnO2my2AR-1587558588,
password:***}

If you connect to the PostgreSQL database, and list all users configured on mydatabase, you will see
the sarah super user, but also the technical users dynamically created by Vault:

docker exec -it postgres-quarkus-hibernate bash
psql mydatabase sarah

mydatabase=# \du
 List of
roles
 Role name |
Attributes | Member of
---+
--+

 sarah | Superuser,
Create role, Create DB, Replication, Bypass RLS | {}
 v-userpass-mydbrole-HeOMJCmy9coEnO2my2AR-1587558588 | Password
valid until 2020-04-22 12:30:53+00 | {}
 v-userpass-mydbrole-N2ITbBXxoqMQ3A3cZL88-1587558572 | Cannot login
+| {}
 | Password
valid until 2020-04-22 12:30:37+00 |

7

As you can see 2 users have been created:

• v-userpass-mydbrole-N2ITbBXxoqMQ3A3cZL88-1587558572 that has expired, which was
created while we were executing the tests.

• v-userpass-mydbrole-HeOMJCmy9coEnO2my2AR-1587558588 that is valid until
12:30:53.

As expected, users have been created dynamically by Vault, with expiration dates, allowing a rotation
to occur, without breaking existing connections, allowing a greater level of security than the
traditional password based approaches.

8

	Quarkus - Using HashiCorp Vault with Databases
	Prerequisites
	Application

	Vault MicroProfile Config Source
	Credentials Provider
	Dynamic Database Credentials

