Quarkus - MicroProfile Health

This guide demonstrates how your Quarkus application can utilize the MicroProfile
Health specification through the SmallRye Health extension.

MicroProfile Health allows applications to provide information about their state to external viewers
which is typically useful in cloud environments where automated processes must be able to determine
whether the application should be discarded or restarted.

Prerequisites

To complete this guide, you need:

* less than 15 minutes
* an IDE
* JDK 1.8+ installed with JAVA_HOME configured appropriately

* Apache Maven 3.6.3

Architecture

In this guide, we build a simple REST application that exposes MicroProfile Health functionalities at
the /health/live and /health/ready endpoints according to the specification.

Solution

We recommend that you follow the instructions in the next sections and create the application step by
step. However, you can go right to the completed example.

Clone the Git repository: git clone https://github.com/quarkusio/quarkus-
quickstarts.git, or download an archive.

The solution is located inthe microprofile-health—-quickstart directory.

Creating the Maven Project

First, we need a new project. Create a new project with the following command:

mvn io.quarkus:quarkus-maven-plugin:1.4.1.Final:create \
-DprojectGroupId=org.acme \
-DprojectArtifactId=microprofile-health-quickstart \
-Dextensions="health"

cd microprofile-health—-quickstart

https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts/archive/master.zip
https://github.com/quarkusio/quarkus-quickstarts/tree/master/microprofile-health-quickstart

This command generates a Maven project, importing the smallrye-health extension which is an
implementation of the MicroProfile Health specification used in Quarkus.

Running the health check

Importing the smallrye—health extension directly exposes three REST endpoints:

* /health/live - The application is up and running.
°* /health/ready - The application is ready to serve requests.

* /health - Accumulating all health check procedures in the application.
To check that the smallrye-health extension is working as expected:

* start your Quarkus application with . /mvnw compile quarkus:dev

* access the http://localhost:8080/health/live endpoint using your browser or curl
http://localhost:8080/health/live

All of the health REST endpoints return a simple JSON object with two fields:

* status —the overall result of all the health check procedures

* checks —an array of individual checks

The general status of the health check is computed as a logical AND of all the declared health check
procedures. The checks array is empty as we have not specified any health check procedure yet so
let’s define some.

Creating your first health check

In this section, we create our first simple health check procedure.

Createthe org.acme.microprofile.health.SimpleHealthCheck class:

http://localhost:8080/health/live
http://localhost:8080/health/live
http://localhost:8080/health/live
http://localhost:8080/health/live
http://localhost:8080/health/live
http://localhost:8080/health/live
http://localhost:8080/health/live
http://localhost:8080/health/live
http://localhost:8080/health/live
http://localhost:8080/health/live

package org.acme.microprofile.health;

import org.eclipse.microprofile.health.HealthCheck;
import org.eclipse.microprofile.health.HealthCheckResponse;
import org.eclipse.microprofile.health.Liveness;

import javax.enterprise.context.ApplicationScoped;

public class SimpleHealthCheck implements HealthCheck {

public HealthCheckResponse call() {
return HealthCheckResponse.up("Simple health check");

As you can see health check procedures are defined as implementations of the HealthCheck
interface which are defined as CDI beans with the one of the following CDI qualifiers:

°* @Liveness - the liveness check accessible at /health/live

°* @Readiness - the readiness check accessible at /health/ready

HealthCheck is a functional interface whose single method call returns a
HealthCheckResponse object which can be easily constructed by the fluent builder APl shown in
the example.

As we have started our Quarkus application in dev mode simply repeat the request to
http://localhost:8080/health/live by refreshing your browser window or by using curl
http://localhost:8080/health/live. Because we defined our health check to be a liveness
procedure (with @Liveness qualifier) the new health check procedure is now present in the checks
array.

Congratulations! You've created your first Quarkus health check procedure. Let’s continue by
exploring what else can be done with the MicroProfile Health specification.

Adding a readiness health check procedure

In the previous section, we created a simple liveness health check procedure which states whether our
application is running or not. In this section, we will create a readiness health check which will be able
to state whether our application is able to process requests.

We will create another health check procedure that simulates a connection to an external service
provider such as a database. For starters, we will always return the response indicating the application
is ready.

Createorg.acme.microprofile.health.DatabaseConnectionHealthCheck class:

http://localhost:8080/health/live
http://localhost:8080/health/live
http://localhost:8080/health/live
http://localhost:8080/health/live
http://localhost:8080/health/live
http://localhost:8080/health/live
http://localhost:8080/health/live
http://localhost:8080/health/live
http://localhost:8080/health/live
http://localhost:8080/health/live

package org.acme.microprofile.health;

import org.eclipse.microprofile.health.HealthCheck;
import org.eclipse.microprofile.health.HealthCheckResponse;
import org.eclipse.microprofile.health.Readiness;

import javax.enterprise.context.ApplicationScoped;

public class DatabaseConnectionHealthCheck implements HealthCheck {

public HealthCheckResponse call() {
return HealthCheckResponse.up("Database connection health
check");
}

If you now rerun the health check at http://localhost:8080/health/live the checks array
will contain only the previously defined SimpleHealthCheck as it is the only check defined with the
@Liveness qualifier. However, if you access http://localhost:8080/health/ready (in the
browser or with curl http://localhost:8080/health/ready) you will see only the
Database connection health check as it is the only health check defined with the
@Readiness qualifier as the readiness health check procedure.

o If you access http://localhost:8080/health you will get back both checks.

More information about which health check procedures should be used in which situation is detailed in
the MicroProfile Health specification. Generally, the liveness procedures determine whether the
application should be restarted while readiness procedures determine whether it makes sense to
contact the application with requests.

Negative health check procedures

In this section, we extend our Database connection health check with the option of stating
that our application is not ready to process requests as the underlying database connection cannot be
established. For simplicity reasons, we only determine whether the database is accessible or not by a
configuration property.

Update the org.acme.microprofile.health.DatabaseConnectionHealthCheck class:

http://localhost:8080/health/live
http://localhost:8080/health/live
http://localhost:8080/health/live
http://localhost:8080/health/live
http://localhost:8080/health/live
http://localhost:8080/health/ready
http://localhost:8080/health/ready
http://localhost:8080/health/ready
http://localhost:8080/health/ready
http://localhost:8080/health/ready
http://localhost:8080/health/ready
http://localhost:8080/health/ready
http://localhost:8080/health/ready
http://localhost:8080/health/ready
http://localhost:8080/health/ready
http://localhost:8080/health
http://localhost:8080/health
http://localhost:8080/health

package org.acme.microprofile.health;

import org.eclipse.microprofile.config.inject.ConfigProperty;
import org.eclipse.microprofile.health.HealthCheck;

import org.eclipse.microprofile.health.HealthCheckResponse;

import org.eclipse.microprofile.health.HealthCheckResponseBuilder;
import org.eclipse.microprofile.health.Readiness;

import javax.enterprise.context.ApplicationScoped;

public class DatabaseConnectionHealthCheck implements HealthCheck {

(name = "database.up", defaultValue = "false")
private boolean databaseUp;

public HealthCheckResponse call() {

HealthCheckResponseBuilder responseBuilder =
HealthCheckResponse.named("Database connection health check");

try {
simulateDatabaseConnectionVerification();
responseBuilder.up();

} catch (IllegalStateException e) {
// cannot access the database
responseBuilder.down();

}

return responseBuilder.build();

}

private void simulateDatabaseConnectionVerification() {
if (!databaseUp) {
throw new IllegalStateException("Cannot contact
database");

}

Until now we used a simplified method of building a HealthCheckResponse
through the HealthCheckResponse#up(String) (there is also
o HealthCheckResponse#down (String)) which will directly build the response
object. From now on, we utilize the full builder capabilities provided by the
HealthCheckResponseBuilder class.

If you now rerun the readiness health check (at http://localhost:8080/health/ready) the
overall status should be DOWN. You can also check the |liveness check at
http://localhost:8080/health/1ive which will return the overall status UP because it isn’t
influenced by the readiness checks.

As we shouldn’t leave this application with a readiness check in a DOWN state and because we are
running Quarkus in dev mode you can add database.up=true in
src/main/resources/application.properties and rerun the readiness health check again—
it should be up again.

Adding user-specific data to the health check
response

In previous sections, we saw how to create simple health checks with only the minimal attributes,
namely, the health check name and its status (UP or DOWN). However, the MicroProfile specification
also provides a way for the applications to supply arbitrary data in the form of key-value pairs sent to
the consuming end. This can be done by using the withData(key, value) method of the health
check response builder API.

Let’s create a new health check procedure
org.acme.microprofile.health.DataHealthCheck:

package org.acme.microprofile.health;

import org.eclipse.microprofile.health.Liveness;
import org.eclipse.microprofile.health.HealthCheck;
import org.eclipse.microprofile.health.HealthCheckResponse;

import javax.enterprise.context.ApplicationScoped;

public class DataHealthCheck implements HealthCheck {

public HealthCheckResponse call() {
return HealthCheckResponse.named("Health check with data")
.up()
.withData("foo", "fooValue")
.withData("bar", "barValue")
.build();

If you rerun the liveness health check procedure by accessing the /health/live endpoint you can
see that the new health check Health check with data is present in the checks array. This
check contains a new attribute called data which is a JSON object consisting of the properties we

http://localhost:8080/health/ready
http://localhost:8080/health/ready
http://localhost:8080/health/ready
http://localhost:8080/health/live
http://localhost:8080/health/live
http://localhost:8080/health/live
http://localhost:8080/health/live
http://localhost:8080/health/live

have defined in our health check procedure.

This functionality is specifically useful in failure scenarios where you can pass the error along with the
health check response.

try {
simulateDatabaseConnectionVerification();
responseBuilder.up();
} catch (IllegalStateException e) {
// cannot access the database
responseBuilder.down()
.withData("error", e.getMessage()); // pass the
exception message

}

Extension health checks

Some extension may provide default health checks, including the extension will automatically reqgister
its health checks.

For example, quarkus—agroal that is used to manage Quarkus datasource(s) automatically register
areadiness health check that will validate each datasources: Datasource Health Check.

You can disable extension health check via the property quarkus.health.extensions.enabled
so none will be automatically registered.

Conclusion

MicroProfile Health provides a way for your application to distribute information about its healthiness
state to state whether or not it is able to function properly. Liveness checks are utilized to tell whether
the application should be restarted and readiness checks are used to tell whether the application is
able to process requests.

All that is needed to enable the MicroProfile Health features in Quarkus is:

* adding the smallrye-health Quarkus extension to your project using the quarkus-maven-
plugin:

./mvnw quarkus:add-extension -Dextensions="health"

* or simply adding the following Maven dependency:

datasource#datasource-health-check

<dependency>
<groupIld>io.quarkus</groupId>
<artifactId>quarkus-smallrye-health</artifactId>
</dependency>

Configuration Reference

& Configuration property fixed at build time - All other configuration properties are overridable at
runtime

Configuration property Type Default

& quarkus.health.extensions.enabled

Whether or not extensions published health check should be enabled. boolean | true

& quarkus.smallrye-health.root-path

tri /healt
Root path for health-checking endpoints. string

& gquarkus.smallrye-health.liveness-path

The relative path of the liveness health-checking endpoint. string /1ive

& quarkus.smallrye-health.readiness-path

The relative path of the readiness health-checking endpoint. string /ready

& quarkus.smallrye-health.group-path

The relative path of the health group endpoint. string /group

#quarkus-smallrye-health_configuration
#quarkus-smallrye-health_quarkus.health.extensions.enabled
#quarkus-smallrye-health_quarkus.smallrye-health.root-path
#quarkus-smallrye-health_quarkus.smallrye-health.liveness-path
#quarkus-smallrye-health_quarkus.smallrye-health.readiness-path
#quarkus-smallrye-health_quarkus.smallrye-health.group-path

	Quarkus - MicroProfile Health
	Prerequisites
	Architecture
	Solution
	Creating the Maven Project
	Running the health check
	Creating your first health check
	Adding a readiness health check procedure
	Negative health check procedures
	Adding user-specific data to the health check response
	Extension health checks
	Conclusion
	Configuration Reference

