
OptaPlanner - Using AI to optimize a
schedule with OptaPlanner

This guide walks you through the process of creating a Quarkus application with
OptaPlanner's constraint solving Artificial Intelligence (AI).

What you will build
You will build a REST application that optimizes a school timetable for students and teachers:

Your service will assign Lesson instances to Timeslot and Room instances automatically by using
AI to adhere to hard and soft scheduling constraints, such as:

• A room can have at most one lesson at the same time.

• A teacher can teach at most one lesson at the same time.

• A student can attend at most one lesson at the same time.

• A teacher prefers to teach in a single room.

• A teacher prefers to teach sequential lessons and dislikes gaps between lessons.

• A student dislikes sequential lessons on the same subject.

Mathematically speaking, school timetabling is an NP-hard problem. That means it is difficult to scale.

1

https://www.optaplanner.org/

Simply brute force iterating through all possible combinations takes millions of years for a non-trivial
dataset, even on a supercomputer. Luckily, AI constraint solvers such as OptaPlanner have advanced
algorithms that deliver a near-optimal solution in a reasonable amount of time.

Solution
We recommend that you follow the instructions in the next sections and create the application step by
step. However, you can go right to the completed example.

Clone the Git repository: git clone https://github.com/quarkusio/quarkus-
quickstarts.git, or download an archive.

The solution is located in the optaplanner-quickstart directory.

Prerequisites
To complete this guide, you need:

• about 30 minutes

• an IDE

• JDK 1.8+ installed with JAVA_HOME configured appropriately

• Apache Maven 3.6.3 or Gradle 4+

The build file and the dependencies
Use code.quarkus.io to generate an application with the following extensions, for Maven or Gradle:

• RESTEasy JAX-RS (quarkus-resteasy)

• RESTEasy Jackson (quarkus-resteasy-jackson)

• OptaPlanner (quarkus-optaplanner)

• OptaPlanner Jackson (quarkus-optaplanner-jackson)

Alternatively, generate it from the command line with Maven:

mvn io.quarkus:quarkus-maven-plugin:1.4.1.Final:create \
 -DprojectGroupId=org.acme \
 -DprojectArtifactId=optaplanner-quickstart \
 -Dextensions="resteasy, resteasy-jackson, optaplanner,
optaplanner-jackson"
cd optaplanner-quickstart

In Maven, your pom.xml file contains these dependencies:

2

https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts/archive/master.zip
https://github.com/quarkusio/quarkus-quickstarts/tree/master/optaplanner-quickstart
https://github.com/quarkusio/quarkus-quickstarts/tree/master/optaplanner-quickstart
https://github.com/quarkusio/quarkus-quickstarts/tree/master/optaplanner-quickstart
https://code.quarkus.io/

 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-universe-bom</artifactId>
 <version>1.4.1.Final</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-resteasy</artifactId>
 </dependency>
 <dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-resteasy-jackson</artifactId>
 </dependency>
 <dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-optaplanner</artifactId>
 </dependency>
 <dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-optaplanner-jackson</artifactId>
 </dependency>

 <dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-junit5</artifactId>
 <scope>test</scope>
 </dependency>
 </dependencies>

Model the domain objects
Your goal is to assign each lesson to a time slot and a room. You will create these classes:

3

Timeslot
The Timeslot class represents a time interval when lessons are taught, for example, Monday 10:30
- 11:30 or Tuesday 13:30 - 14:30. For simplicity’s sake, all time slots have the same duration
and there are no time slots during lunch or other breaks.

A time slot has no date, because a high school schedule just repeats every week. So there is no need
for continuous planning.

Create the src/main/java/org/acme/domain/Timeslot.java class:

4

https://docs.optaplanner.org/latestFinal/optaplanner-docs/html_single/index.html#continuousPlanning

package org.acme.domain;

import java.time.DayOfWeek;
import java.time.LocalTime;

public class Timeslot {

 private DayOfWeek dayOfWeek;
 private LocalTime startTime;
 private LocalTime endTime;

 public Timeslot() {
 }

 public Timeslot(DayOfWeek dayOfWeek, LocalTime startTime,
LocalTime endTime) {
 this.dayOfWeek = dayOfWeek;
 this.startTime = startTime;
 this.endTime = endTime;
 }

 public DayOfWeek getDayOfWeek() {
 return dayOfWeek;
 }

 public LocalTime getStartTime() {
 return startTime;
 }

 public LocalTime getEndTime() {
 return endTime;
 }

 @Override
 public String toString() {
 return dayOfWeek + " " + startTime.toString();
 }

}

Because no Timeslot instances change during solving, a Timeslot is called a problem fact. Such
classes do not require any OptaPlanner specific annotations.

Notice the toString() method keeps the output short, so it is easier to read OptaPlanner’s DEBUG
or TRACE log, as shown later.

5

Room
The Room class represents a location where lessons are taught, for example, Room A or Room B. For
simplicity’s sake, all rooms are without capacity limits and they can accommodate all lessons.

Create the src/main/java/org/acme/domain/Room.java class:

package org.acme.domain;

public class Room {

 private String name;

 public Room() {
 }

 public Room(String name) {
 this.name = name;
 }

 public String getName() {
 return name;
 }

 @Override
 public String toString() {
 return name;
 }

}

Room instances do not change during solving, so Room is also a problem fact.

Lesson
During a lesson, represented by the Lesson class, a teacher teaches a subject to a group of students,
for example, Math by A.Turing for 9th grade or Chemistry by M.Curie for 10th
grade. If a subject is taught multiple times per week by the same teacher to the same student group,
there are multiple Lesson instances that are only distinguishable by id. For example, the 9th grade
has six math lessons a week.

During solving, OptaPlanner changes the timeslot and room fields of the Lesson class, to assign
each lesson to a time slot and a room. Because OptaPlanner changes these fields, Lesson is a
planning entity:

6

Most of the fields in the previous diagram contain input data, except for the orange fields: A lesson’s
timeslot and room fields are unassigned (null) in the input data and assigned (not null) in the
output data. OptaPlanner changes these fields during solving. Such fields are called planning variables.
In order for OptaPlanner to recognize them, both the timeslot and room fields require an
@PlanningVariable annotation. Their containing class, Lesson, requires an @PlanningEntity
annotation.

Create the src/main/java/org/acme/domain/Lesson.java class:

package org.acme.domain;

import org.optaplanner.core.api.domain.entity.PlanningEntity;
import org.optaplanner.core.api.domain.lookup.PlanningId;
import org.optaplanner.core.api.domain.variable.PlanningVariable;

@PlanningEntity
public class Lesson {

 @PlanningId
 private Long id;

 private String subject;
 private String teacher;
 private String studentGroup;

 @PlanningVariable(valueRangeProviderRefs = "timeslotRange")
 private Timeslot timeslot;
 @PlanningVariable(valueRangeProviderRefs = "roomRange")
 private Room room;

7

 public Lesson() {
 }

 public Lesson(Long id, String subject, String teacher, String
studentGroup) {
 this.id = id;
 this.subject = subject;
 this.teacher = teacher;
 this.studentGroup = studentGroup;
 }

 public Long getId() {
 return id;
 }

 public String getSubject() {
 return subject;
 }

 public String getTeacher() {
 return teacher;
 }

 public String getStudentGroup() {
 return studentGroup;
 }

 public Timeslot getTimeslot() {
 return timeslot;
 }

 public void setTimeslot(Timeslot timeslot) {
 this.timeslot = timeslot;
 }

 public Room getRoom() {
 return room;
 }

 public void setRoom(Room room) {
 this.room = room;
 }

 @Override
 public String toString() {
 return subject + "(" + id + ")";
 }

}

8

The Lesson class has an @PlanningEntity annotation, so OptaPlanner knows that this class
changes during solving because it contains one or more planning variables.

The timeslot field has an @PlanningVariable annotation, so OptaPlanner knows that it can
change its value. In order to find potential Timeslot instances to assign to this field, OptaPlanner
uses the valueRangeProviderRefs property to connect to a value range provider (explained later)
that provides a List<Timeslot> to pick from.

The room field also has an @PlanningVariable annotation, for the same reasons.


Determining the @PlanningVariable fields for an arbitrary constraint solving use
case is often challenging the first time. Read the domain modeling guidelines to
avoid common pitfalls.

Define the constraints and calculate the score
A score represents the quality of a given solution. The higher the better. OptaPlanner looks for the
best solution, which is the solution with the highest score found in the available time. It could be the
optimal solution.

Because this use case has hard and soft constraints, use the HardSoftScore class to represent the
score:

• Hard constraints must not be broken. For example: A room can have at most one lesson at the same
time.

• Soft constraints should not be broken. For example: A teacher prefers to teach in a single room.

Hard constraints are weighted against other hard constraints. Soft constraints are weighted too,
against other soft constraints. Hard constraints always outweigh soft constraints, regardless of their
respective weights.

To calculate the score, you could implement an EasyScoreCalculator class:

9

https://docs.optaplanner.org/latestFinal/optaplanner-docs/html_single/index.html#domainModelingGuide

public class TimeTableEasyScoreCalculator implements
EasyScoreCalculator<TimeTable> {

 @Override
 public HardSoftScore calculateScore(TimeTable timeTable) {
 List<Lesson> lessonList = timeTable.getLessonList();
 int hardScore = 0;
 for (Lesson a : lessonList) {
 for (Lesson b : lessonList) {
 if (a.getTimeslot() != null && a.getTimeslot()
.equals(b.getTimeslot())
 && a.getId() < b.getId()) {
 // A room can accommodate at most one lesson at
the same time.
 if (a.getRoom() != null && a.getRoom().equals(
b.getRoom())) {
 hardScore--;
 }
 // A teacher can teach at most one lesson at
the same time.
 if (a.getTeacher().equals(b.getTeacher())) {
 hardScore--;
 }
 // A student can attend at most one lesson at
the same time.
 if (a.getStudentGroup().equals(b
.getStudentGroup())) {
 hardScore--;
 }
 }
 }
 }
 int softScore = 0;
 // Soft constraints are only implemented in optaplanner-
quickstart
 return HardSoftScore.of(hardScore, softScore);
 }

}

Unfortunately that does not scale well, because it is non-incremental: every time a lesson is assigned
to a different time slot or room, all lessons are re-evaluated to calculate the new score.

Instead, create a
src/main/java/org/acme/solver/TimeTableConstraintProvider.java class to perform
incremental score calculation. It uses OptaPlanner’s ConstraintStream API which is inspired by Java 8
Streams and SQL:

10

package org.acme.solver;

import org.acme.domain.Lesson;
import
org.optaplanner.core.api.score.buildin.hardsoft.HardSoftScore;
import org.optaplanner.core.api.score.stream.Constraint;
import org.optaplanner.core.api.score.stream.ConstraintFactory;
import org.optaplanner.core.api.score.stream.ConstraintProvider;
import org.optaplanner.core.api.score.stream.Joiners;

public class TimeTableConstraintProvider implements
ConstraintProvider {

 @Override
 public Constraint[] defineConstraints(ConstraintFactory
constraintFactory) {
 return new Constraint[] {
 // Hard constraints
 roomConflict(constraintFactory),
 teacherConflict(constraintFactory),
 studentGroupConflict(constraintFactory),
 // Soft constraints are only implemented in
optaplanner-quickstart
 };
 }

 private Constraint roomConflict(ConstraintFactory
constraintFactory) {
 // A room can accommodate at most one lesson at the same
time.

 // Select a lesson ...
 return constraintFactory.from(Lesson.class)
 // ... and pair it with another lesson ...
 .join(Lesson.class,
 // ... in the same timeslot ...
 Joiners.equal(Lesson::getTimeslot),
 // ... in the same room ...
 Joiners.equal(Lesson::getRoom),
 // ... and the pair is unique (different
id, no reverse pairs)
 Joiners.lessThan(Lesson::getId))
 // then penalize each pair with a hard weight.
 .penalize("Room conflict", HardSoftScore.ONE_HARD);
 }

 private Constraint teacherConflict(ConstraintFactory
constraintFactory) {
 // A teacher can teach at most one lesson at the same time.

11

 return constraintFactory
 .fromUniquePair(Lesson.class,
 Joiners.equal(Lesson::getTimeslot),
 Joiners.equal(Lesson::getTeacher))
 .penalize("Teacher conflict", HardSoftScore
.ONE_HARD);
 }

 private Constraint studentGroupConflict(ConstraintFactory
constraintFactory) {
 // A student can attend at most one lesson at the same
time.
 return constraintFactory
 .fromUniquePair(Lesson.class,
 Joiners.equal(Lesson::getTimeslot),
 Joiners.equal(Lesson::getStudentGroup))
 .penalize("Student group conflict", HardSoftScore
.ONE_HARD);
 }

}

The ConstraintProvider scales an order of magnitude better than the EasyScoreCalculator:
O(n) instead of O(n²).

Gather the domain objects in a planning
solution
A TimeTable wraps all Timeslot, Room, and Lesson instances of a single dataset. Furthermore,
because it contains all lessons, each with a specific planning variable state, it is a planning solution and
it has a score:

• If lessons are still unassigned, then it is an uninitialized solution, for example, a solution with the
score -4init/0hard/0soft.

• If it breaks hard constraints, then it is an infeasible solution, for example, a solution with the score
-2hard/-3soft.

• If it adheres to all hard constraints, then it is a feasible solution, for example, a solution with the
score 0hard/-7soft.

Create the src/main/java/org/acme/domain/TimeTable.java class:

package org.acme.domain;

import java.util.List;

import

12

org.optaplanner.core.api.domain.solution.PlanningEntityCollectionPr
operty;
import org.optaplanner.core.api.domain.solution.PlanningScore;
import org.optaplanner.core.api.domain.solution.PlanningSolution;
import
org.optaplanner.core.api.domain.solution.drools.ProblemFactCollecti
onProperty;
import
org.optaplanner.core.api.domain.valuerange.ValueRangeProvider;
import
org.optaplanner.core.api.score.buildin.hardsoft.HardSoftScore;

@PlanningSolution
public class TimeTable {

 @ProblemFactCollectionProperty
 @ValueRangeProvider(id = "timeslotRange")
 private List<Timeslot> timeslotList;
 @ProblemFactCollectionProperty
 @ValueRangeProvider(id = "roomRange")
 private List<Room> roomList;
 @PlanningEntityCollectionProperty
 private List<Lesson> lessonList;

 @PlanningScore
 private HardSoftScore score;

 public TimeTable() {
 }

 public TimeTable(List<Timeslot> timeslotList, List<Room>
roomList, List<Lesson> lessonList) {
 this.timeslotList = timeslotList;
 this.roomList = roomList;
 this.lessonList = lessonList;
 }

 public List<Timeslot> getTimeslotList() {
 return timeslotList;
 }

 public List<Room> getRoomList() {
 return roomList;
 }

 public List<Lesson> getLessonList() {
 return lessonList;
 }

 public HardSoftScore getScore() {

13

 return score;
 }

}

The TimeTable class has an @PlanningSolution annotation, so OptaPlanner knows that this
class contains all of the input and output data.

Specifically, this class is the input of the problem:

• A timeslotList field with all time slots

◦ This is a list of problem facts, because they do not change during solving.

• A roomList field with all rooms

◦ This is a list of problem facts, because they do not change during solving.

• A lessonList field with all lessons

◦ This is a list of planning entities, because they change during solving.

◦ Of each Lesson:

▪ The values of the timeslot and room fields are typically still null, so unassigned. They
are planning variables.

▪ The other fields, such as subject, teacher and studentGroup, are filled in. These
fields are problem properties.

However, this class is also the output of the solution:

• A lessonList field for which each Lesson instance has non-null timeslot and room fields
after solving

• A score field that represents the quality of the output solution, for example, 0hard/-5soft

The value range providers
That timeslotList field is a value range provider. It holds the Timeslot instances which
OptaPlanner can pick from to assign to the timeslot field of Lesson instances. The
timeslotList field has an @ValueRangeProvider annotation to connect those two, by matching
the id with the valueRangeProviderRefs of the @PlanningVariable in the Lesson.

Following the same logic, the roomList field also has an @ValueRangeProvider annotation.

The problem fact and planning entity properties
Furthermore, OptaPlanner needs to know which Lesson instances it can change as well as how to
retrieve the Timeslot and Room instances used for score calculation by your
TimeTableConstraintProvider.

The timeslotList and roomList fields have an @ProblemFactCollectionProperty
annotation, so your TimeTableConstraintProvider can select from those instances.

14

The lessonList has an @PlanningEntityCollectionProperty annotation, so OptaPlanner
can change them during solving and your TimeTableConstraintProvider can select from those
too.

Create the solver service
Now you are ready to put everything together and create a REST service. But solving planning
problems on REST threads causes HTTP timeout issues. Therefore, the Quarkus extension injects a
SolverManager, which runs solvers in a separate thread pool and can solve multiple datasets in
parallel.

Create the src/main/java/org/acme/solver/TimeTableResource.java class:

15

package org.acme.rest;

import java.util.UUID;
import java.util.concurrent.ExecutionException;
import javax.inject.Inject;
import javax.ws.rs.Consumes;
import javax.ws.rs.POST;
import javax.ws.rs.Path;
import javax.ws.rs.Produces;
import javax.ws.rs.core.MediaType;

import org.acme.domain.TimeTable;
import org.optaplanner.core.api.solver.SolverJob;
import org.optaplanner.core.api.solver.SolverManager;

@Path("/timeTable")
@Produces(MediaType.APPLICATION_JSON)
@Consumes(MediaType.APPLICATION_JSON)
public class TimeTableResource {

 @Inject
 SolverManager<TimeTable, UUID> solverManager;

 @POST
 @Path("/solve")
 public TimeTable solve(TimeTable problem) {
 UUID problemId = UUID.randomUUID();
 // Submit the problem to start solving
 SolverJob<TimeTable, UUID> solverJob = solverManager.solve
(problemId, problem);
 TimeTable solution;
 try {
 // Wait until the solving ends
 solution = solverJob.getFinalBestSolution();
 } catch (InterruptedException | ExecutionException e) {
 throw new IllegalStateException("Solving failed.", e);
 }
 return solution;
 }

}

For simplicity’s sake, this initial implementation waits for the solver to finish, which can still cause an
HTTP timeout. The complete implementation avoids HTTP timeouts much more elegantly.

16

Set the termination time
Without a termination setting or a termination event, the solver runs forever. To avoid that, limit the
solving time to five seconds. That is short enough to avoid the HTTP timeout.

Create the src/main/resources/application.properties file:

The solver runs only for 5 seconds to avoid a HTTP timeout in
this simple implementation.
It's recommended to run for at least 5 minutes ("5m") otherwise.
quarkus.optaplanner.solver.termination.spent-limit=5s

Make the application executable
First start the application:

$./mvnw compile quarkus:dev

Try the application
Now that the application is running, you can test the REST service. You can use any REST client you
wish. The following example uses the Linux command curl to send a POST request:

$ curl -i -X POST http://localhost:8080/timeTable/solve -H
"Content-Type:application/json" -d
'{"timeslotList":[{"dayOfWeek":"MONDAY","startTime":"08:30:00","end
Time":"09:30:00"},{"dayOfWeek":"MONDAY","startTime":"09:30:00","end
Time":"10:30:00"}],"roomList":[{"name":"Room A"},{"name":"Room
B"}],"lessonList":[{"id":1,"subject":"Math","teacher":"A.
Turing","studentGroup":"9th
grade"},{"id":2,"subject":"Chemistry","teacher":"M.
Curie","studentGroup":"9th
grade"},{"id":3,"subject":"French","teacher":"M.
Curie","studentGroup":"10th
grade"},{"id":4,"subject":"History","teacher":"I.
Jones","studentGroup":"10th grade"}]}'

After about five seconds, according to the termination spent time defined in your
application.properties, the service returns an output similar to the following example:

17

HTTP/1.1 200
Content-Type: application/json
...

{"timeslotList":...,"roomList":...,"lessonList":[{"id":1,"subject":
"Math","teacher":"A. Turing","studentGroup":"9th
grade","timeslot":{"dayOfWeek":"MONDAY","startTime":"08:30:00","end
Time":"09:30:00"},"room":{"name":"Room
A"}},{"id":2,"subject":"Chemistry","teacher":"M.
Curie","studentGroup":"9th
grade","timeslot":{"dayOfWeek":"MONDAY","startTime":"09:30:00","end
Time":"10:30:00"},"room":{"name":"Room
A"}},{"id":3,"subject":"French","teacher":"M.
Curie","studentGroup":"10th
grade","timeslot":{"dayOfWeek":"MONDAY","startTime":"08:30:00","end
Time":"09:30:00"},"room":{"name":"Room
B"}},{"id":4,"subject":"History","teacher":"I.
Jones","studentGroup":"10th
grade","timeslot":{"dayOfWeek":"MONDAY","startTime":"09:30:00","end
Time":"10:30:00"},"room":{"name":"Room B"}}],"score":"0hard/0soft"}

Notice that your application assigned all four lessons to one of the two time slots and one of the two
rooms. Also notice that it conforms to all hard constraints. For example, M. Curie’s two lessons are in
different time slots.

On the server side, the info log show what OptaPlanner did in those five seconds:

... Solving started: time spent (33), best score (-
8init/0hard/0soft), environment mode (REPRODUCIBLE), random (JDK
with seed 0).
... Construction Heuristic phase (0) ended: time spent (73), best
score (0hard/0soft), score calculation speed (459/sec), step total
(4).
... Local Search phase (1) ended: time spent (5000), best score
(0hard/0soft), score calculation speed (28949/sec), step total
(28398).
... Solving ended: time spent (5000), best score (0hard/0soft),
score calculation speed (28524/sec), phase total (2), environment
mode (REPRODUCIBLE).

Test the application
A good application includes test coverage. In a JUnit test, generate a test dataset and send it to the
TimeTableResource to solve.

Create the src/test/java/org/acme/solver/TimeTableResourceTest.java class:

18

package org.acme;

import java.time.DayOfWeek;
import java.time.LocalTime;
import java.util.ArrayList;
import java.util.List;

import javax.inject.Inject;

import io.quarkus.test.junit.QuarkusTest;
import org.acme.domain.Room;
import org.acme.domain.Timeslot;
import org.acme.domain.Lesson;
import org.acme.domain.TimeTable;
import org.acme.rest.TimeTableResource;
import org.junit.jupiter.api.Test;
import org.junit.jupiter.api.Timeout;

import static org.junit.jupiter.api.Assertions.assertFalse;
import static org.junit.jupiter.api.Assertions.assertNotNull;
import static org.junit.jupiter.api.Assertions.assertTrue;

@QuarkusTest
public class TimeTableResourceTest {

 @Inject
 TimeTableResource timeTableResource;

 @Test
 @Timeout(600_000)
 public void solve() {
 TimeTable problem = generateProblem();
 TimeTable solution = timeTableResource.solve(problem);
 assertFalse(solution.getLessonList().isEmpty());
 for (Lesson lesson : solution.getLessonList()) {
 assertNotNull(lesson.getTimeslot());
 assertNotNull(lesson.getRoom());
 }
 assertTrue(solution.getScore().isFeasible());
 }

 private TimeTable generateProblem() {
 List<Timeslot> timeslotList = new ArrayList<>();
 timeslotList.add(new Timeslot(DayOfWeek.MONDAY, LocalTime
.of(8, 30), LocalTime.of(9, 30)));
 timeslotList.add(new Timeslot(DayOfWeek.MONDAY, LocalTime
.of(9, 30), LocalTime.of(10, 30)));
 timeslotList.add(new Timeslot(DayOfWeek.MONDAY, LocalTime
.of(10, 30), LocalTime.of(11, 30)));

19

 timeslotList.add(new Timeslot(DayOfWeek.MONDAY, LocalTime
.of(13, 30), LocalTime.of(14, 30)));
 timeslotList.add(new Timeslot(DayOfWeek.MONDAY, LocalTime
.of(14, 30), LocalTime.of(15, 30)));

 List<Room> roomList = new ArrayList<>();
 roomList.add(new Room("Room A"));
 roomList.add(new Room("Room B"));
 roomList.add(new Room("Room C"));

 List<Lesson> lessonList = new ArrayList<>();
 lessonList.add(new Lesson(101L, "Math", "B. May", "9th
grade"));
 lessonList.add(new Lesson(102L, "Physics", "M. Curie", "9th
grade"));
 lessonList.add(new Lesson(103L, "Geography", "M. Polo",
"9th grade"));
 lessonList.add(new Lesson(104L, "English", "I. Jones", "9th
grade"));
 lessonList.add(new Lesson(105L, "Spanish", "P. Cruz", "9th
grade"));

 lessonList.add(new Lesson(201L, "Math", "B. May", "10th
grade"));
 lessonList.add(new Lesson(202L, "Chemistry", "M. Curie",
"10th grade"));
 lessonList.add(new Lesson(203L, "History", "I. Jones",
"10th grade"));
 lessonList.add(new Lesson(204L, "English", "P. Cruz", "10th
grade"));
 lessonList.add(new Lesson(205L, "French", "M. Curie", "10th
grade"));
 return new TimeTable(timeslotList, roomList, lessonList);
 }

}

This test verifies that after solving, all lessons are assigned to a time slot and a room. It also verifies
that it found a feasible solution (no hard constraints broken).

Add test properties to the src/main/resources/application.properties file:

20

The solver runs only for 5 seconds to avoid a HTTP timeout in
this simple implementation.
It's recommended to run for at least 5 minutes ("5m") otherwise.
quarkus.optaplanner.solver.termination.spent-limit=5s

Effectively disable this termination in favor of the best-score-
limit
%test.quarkus.optaplanner.solver.termination.spent-limit=1h
%test.quarkus.optaplanner.solver.termination.best-score-
limit=0hard/*soft

Normally, the solver finds a feasible solution in less than 200 milliseconds. Notice how the
application.properties overwrites the solver termination during tests to terminate as soon as a
feasible solution (0hard/*soft) is found. This avoids hard coding a solver time, because the unit test
might run on arbitrary hardware. This approach ensures that the test runs long enough to find a
feasible solution, even on slow machines. But it does not run a millisecond longer than it strictly must,
even on fast machines.

Logging
When adding constraints in your ConstraintProvider, keep an eye on the score calculation speed
in the info log, after solving for the same amount of time, to assess the performance impact:

... Solving ended: ..., score calculation speed (29455/sec), ...

To understand how OptaPlanner is solving your problem internally, change the logging in the
application.properties file or with a -D system property:

quarkus.log.category."org.optaplanner".level=debug

Use debug logging to show every step:

... Solving started: time spent (67), best score (-
20init/0hard/0soft), environment mode (REPRODUCIBLE), random (JDK
with seed 0).
... CH step (0), time spent (128), score (-18init/0hard/0soft),
selected move count (15), picked move ([Math(101) {null -> Room A},
Math(101) {null -> MONDAY 08:30}]).
... CH step (1), time spent (145), score (-16init/0hard/0soft),
selected move count (15), picked move ([Physics(102) {null -> Room
A}, Physics(102) {null -> MONDAY 09:30}]).
...

Use trace logging to show every step and every move per step.

21

Summary
Congratulations! You have just developed a Quarkus application with OptaPlanner!

Further improvements: Database and UI
integration
Now try adding database and UI integration:

1. Store Timeslot, Room, and Lesson in the database with Hibernate and Panache.

2. Expose them through REST.

3. Adjust the TimeTableResource to read and write a TimeTable in a single transaction and use
those accordingly:

package org.acme.optaplanner.rest;

import javax.inject.Inject;
import javax.transaction.Transactional;
import javax.ws.rs.Consumes;
import javax.ws.rs.GET;
import javax.ws.rs.POST;
import javax.ws.rs.Path;
import javax.ws.rs.Produces;
import javax.ws.rs.core.MediaType;

import io.quarkus.panache.common.Sort;
import org.acme.optaplanner.domain.Lesson;
import org.acme.optaplanner.domain.Room;
import org.acme.optaplanner.domain.TimeTable;
import org.acme.optaplanner.domain.Timeslot;
import org.optaplanner.core.api.score.ScoreManager;
import org.optaplanner.core.api.solver.SolverManager;
import org.optaplanner.core.api.solver.SolverStatus;

@Path("/timeTable")
@Produces(MediaType.APPLICATION_JSON)
@Consumes(MediaType.APPLICATION_JSON)
public class TimeTableResource {

 public static final Long SINGLETON_TIME_TABLE_ID = 1L;

 @Inject
 SolverManager<TimeTable, Long> solverManager;
 @Inject
 ScoreManager<TimeTable> scoreManager;

22

https://www.optaplanner.org/
https://quarkus.io/guides/hibernate-orm-panache
https://quarkus.io/guides/rest-json

 // To try, open http://localhost:8080/timeTable
 @GET
 public TimeTable getTimeTable() {
 // Get the solver status before loading the solution
 // to avoid the race condition that the solver
terminates between them
 SolverStatus solverStatus = getSolverStatus();
 TimeTable solution = findById(SINGLETON_TIME_TABLE_ID);
 scoreManager.updateScore(solution); // Sets the score
 solution.setSolverStatus(solverStatus);
 return solution;
 }

 @POST
 @Path("/solve")
 public void solve() {
 solverManager.solveAndListen(SINGLETON_TIME_TABLE_ID,
 this::findById,
 this::save);
 }

 public SolverStatus getSolverStatus() {
 return solverManager.getSolverStatus
(SINGLETON_TIME_TABLE_ID);
 }

 @POST
 @Path("/stopSolving")
 public void stopSolving() {
 solverManager.terminateEarly(SINGLETON_TIME_TABLE_ID);
 }

 @Transactional
 protected TimeTable findById(Long id) {
 if (!SINGLETON_TIME_TABLE_ID.equals(id)) {
 throw new IllegalStateException("There is no
timeTable with id (" + id + ").");
 }
 // Occurs in a single transaction, so each initialized
lesson references the same timeslot/room instance
 // that is contained by the timeTable's
timeslotList/roomList.
 return new TimeTable(
 Timeslot.listAll(Sort.by("dayOfWeek").and(
"startTime").and("endTime").and("id")),
 Room.listAll(Sort.by("name").and("id")),
 Lesson.listAll(Sort.by("subject").and("teacher"
).and("studentGroup").and("id")));
 }

23

 @Transactional
 protected void save(TimeTable timeTable) {
 for (Lesson lesson : timeTable.getLessonList()) {
 // TODO this is awfully naive: optimistic locking
causes issues if called by the SolverManager
 Lesson attachedLesson = Lesson.findById(lesson.
getId());
 attachedLesson.setTimeslot(lesson.getTimeslot());
 attachedLesson.setRoom(lesson.getRoom());
 }
 }

}

For simplicity’s sake, this code handles only one TimeTable, but it is straightforward to enable
multi-tenancy and handle multiple TimeTable instances of different high schools in parallel.

The getTimeTable() method returns the latest time table from the database. It uses the
ScoreManager (which is automatically injected) to calculate the score of that time table, so the
UI can show the score.

The solve() method starts a job to solve the current time table and store the time slot and room
assignments in the database. It uses the SolverManager.solveAndListen() method to
listen to intermediate best solutions and update the database accordingly. This enables the UI to
show progress while the backend is still solving.

4. Adjust the TimeTableResourceTest accordingly, now that the solve() method returns
immediately. Poll for the latest solution until the solver finishes solving:

24

package org.acme.optaplanner.rest;

import javax.inject.Inject;

import io.quarkus.test.junit.QuarkusTest;
import org.acme.optaplanner.domain.Lesson;
import org.acme.optaplanner.domain.TimeTable;
import org.junit.jupiter.api.Test;
import org.junit.jupiter.api.Timeout;
import org.optaplanner.core.api.solver.SolverStatus;

import static org.junit.jupiter.api.Assertions.assertFalse;
import static org.junit.jupiter.api.Assertions.assertNotNull;
import static org.junit.jupiter.api.Assertions.assertTrue;

@QuarkusTest
public class TimeTableResourceTest {

 @Inject
 TimeTableResource timeTableResource;

 @Test
 @Timeout(600_000)
 public void solveDemoDataUntilFeasible() throws
InterruptedException {
 timeTableResource.solve();
 TimeTable timeTable = timeTableResource.getTimeTable();
 while (timeTable.getSolverStatus() != SolverStatus
.NOT_SOLVING) {
 // Quick polling (not a Test Thread Sleep anti-
pattern)
 // Test is still fast on fast machines and doesn't
randomly fail on slow machines.
 Thread.sleep(20L);
 timeTable = timeTableResource.getTimeTable();
 }
 assertFalse(timeTable.getLessonList().isEmpty());
 for (Lesson lesson : timeTable.getLessonList()) {
 assertNotNull(lesson.getTimeslot());
 assertNotNull(lesson.getRoom());
 }
 assertTrue(timeTable.getScore().isFeasible());
 }

}

5. Build an attractive web UI on top of these REST methods to visualize the timetable.

25

Take a look at the solution to see how this all turns out.

26

	OptaPlanner - Using AI to optimize a schedule with OptaPlanner
	What you will build
	Solution
	Prerequisites
	The build file and the dependencies
	Model the domain objects
	Timeslot
	Room
	Lesson

	Define the constraints and calculate the score
	Gather the domain objects in a planning solution
	The value range providers
	The problem fact and planning entity properties

	Create the solver service
	Set the termination time
	Make the application executable
	Try the application
	Test the application
	Logging

	Summary
	Further improvements: Database and UI integration

