
Quarkus - Building a Native
Executable

This guide covers:

• Compiling the application to a native executable

• Packaging the native executable in a container

This guide takes as input the application developed in the Getting Started Guide.

Prerequisites
To complete this guide, you need:

• less than 15 minutes

• an IDE

• JDK 8 installed with JAVA_HOME configured appropriately

• A working C development environment

• GraalVM version 19.3.1 installed and configured appropriately

• A working container runtime (Docker, podman)

• The code of the application developed in the Getting Started Guide.

1

getting-started
getting-started



Supporting native compilation in C

What does having a working C developer environment mean?

• On Linux, you will need GCC, and the glibc and zlib headers. Examples for
common distributions:

dnf (rpm-based)
sudo dnf install gcc glibc-devel zlib-devel
libstdc++-static
Debian-based distributions:
sudo apt-get install build-essential libz-dev
zlib1g-dev

• XCode provides the required dependencies on macOS:

xcode-select --install

• On Windows, you will need to install the Visual Studio 2017 Visual C++ Build
Tools

Configuring GraalVM


If you cannot install GraalVM, you can use a multi-stage Docker build to run Maven
inside a Docker container that embeds GraalVM. There is an explanation of how to
do this at the end of this guide.

Version 19.3.1 is required. Using the community edition is enough.

1. Install GraalVM if you haven’t already. You have a few options for this:

◦ Use platform-specific install tools like homebrew, sdkman, or scoop.

◦ Download the appropriate Community Edition archive from https://github.com/graalvm/
graalvm-ce-builds/releases, and unpack it like you would any other JDK.

2. Configure the runtime environment. Set GRAALVM_HOME environment variable to the GraalVM
installation directory, for example:

export GRAALVM_HOME=$HOME/Development/graalvm/

On macOS, point the variable to the Home sub-directory:

export GRAALVM_HOME=$HOME/Development/graalvm/Contents/Home/

On Windows, you will have to go through the Control Panel to set your environment variables.

2

https://aka.ms/vs/15/release/vs_buildtools.exe
https://aka.ms/vs/15/release/vs_buildtools.exe
https://github.com/graalvm/homebrew-tap
https://sdkman.io/jdks#Oracle
https://github.com/ScoopInstaller/Java
https://github.com/graalvm/graalvm-ce-builds/releases
https://github.com/graalvm/graalvm-ce-builds/releases
https://github.com/graalvm/graalvm-ce-builds/releases
https://github.com/graalvm/graalvm-ce-builds/releases
https://github.com/graalvm/graalvm-ce-builds/releases
https://github.com/graalvm/graalvm-ce-builds/releases
https://github.com/graalvm/graalvm-ce-builds/releases

 Installing via scoop will do this for you.

3. Install the native-image tool using gu install:

${GRAALVM_HOME}/bin/gu install native-image

Some previous releases of GraalVM included the native-image tool by default. This is no longer
the case; it must be installed as a second step after GraalVM itself is installed. Note: there is an
outstanding issue using GraalVM with macOS Catalina.

4. (Optional) Set the JAVA_HOME environment variable to the GraalVM installation directory.

export JAVA_HOME=${GRAALVM_HOME}

5. (Optional) Add the GraalVM bin directory to the path

export PATH=${GRAALVM_HOME}/bin:$PATH



Issues using GraalVM with macOS Catalina

GraalVM binaries are not (yet) notarized for macOS Catalina as reported in this
GraalVM issue. This means that you may see the following error when using gu:

“gu” cannot be opened because the developer cannot be
verified

Use the following command to recursively delete the com.apple.quarantine
extended attribute on the GraalVM install directory as a workaround:

xattr -r -d com.apple.quarantine
$HOME/Development/graalvm/

Solution
We recommend that you follow the instructions in the next sections and package the application step
by step. However, you can go right to the completed example.

Clone the Git repository: git clone https://github.com/quarkusio/quarkus-
quickstarts.git, or download an archive.

The solution is located in the getting-started directory.

3

https://github.com/oracle/graal/issues/1724
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts/archive/master.zip

Producing a native executable
The native executable for our application will contain the application code, required libraries, Java
APIs, and a reduced version of a VM. The smaller VM base improves the startup time of the application
and produces a minimal disk footprint.

If you have generated the application from the previous tutorial, you can find in the pom.xml the
following profile:

<profiles>
 <profile>
 <id>native</id>
 <properties>
 <quarkus.package.type>native</quarkus.package.type>
 </properties>
 </profile>
</profiles>



You can provide custom options for the native-image command using the
<quarkus.native.additional-build-args> property. Multiple options may
be separated by a comma.

Another possibility is to include the quarkus.native.additional-build-
args configuration property in your application.properties.

You can find more information about how to configure the native image building
process in the Configuring the Native Image section below.

We use a profile because, you will see very soon, packaging the native executable takes a few minutes.

4

You could just pass -Dquarkus.package.type=native as a property on the command line, however it is
better to use a profile as this allows native image tests to also be run.

Create a native executable using: ./mvnw package -Pnative.



Issues with packaging on Windows

The Microsoft Native Tools for Visual Studio must first be initialized before
packaging. You can do this by starting the x64 Native Tools Command
Prompt that was installed with the Visual Studio Build Tools. At x64 Native
Tools Command Prompt you can navigate to your project folder and run mvnw
package -Pnative.

Another solution is to write a script to do this for you:

cmd /c 'call "C:\Program Files (x86)\Microsoft Visual
Studio\2017\BuildTools\VC\Auxiliary\Build\vcvars64.bat"
&& mvn package -Pnative'

In addition to the regular files, the build also produces target/getting-started-1.0-
SNAPSHOT-runner. You can run it using: ./target/getting-started-1.0-SNAPSHOT-
runner.

Testing the native executable
Producing a native executable can lead to a few issues, and so it’s also a good idea to run some tests
against the application running in the native file.

In the pom.xml file, the native profile contains:

5

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-failsafe-plugin</artifactId>
 <version>${surefire-plugin.version}</version>
 <executions>
 <execution>
 <goals>
 <goal>integration-test</goal>
 <goal>verify</goal>
 </goals>
 <configuration>
 <systemProperties>

<native.image.path>${project.build.directory}/${project.build.final
Name}-runner</native.image.path>
 </systemProperties>
 </configuration>
 </execution>
 </executions>
</plugin>

This instructs the failsafe-maven-plugin to run integration-test and indicates the location of the
produced native executable.

Then, open the
src/test/java/org/acme/quickstart/NativeGreetingResourceIT.java. It contains:

package org.acme.quickstart;

import io.quarkus.test.junit.NativeImageTest;

@NativeImageTest ①
public class NativeGreetingResourceIT extends GreetingResourceTest
{ ②

 // Run the same tests

}

① Use another test runner that starts the application from the native file before the tests. The
executable is retrieved using the native.image.path system property configured in the
Failsafe Maven Plugin.

② We extend our previous tests, but you can also implement your tests

To see the NativeGreetingResourceIT run against the native executable, use ./mvnw verify
-Pnative:

6

./mvnw verify -Pnative

...
[getting-started-1.0-SNAPSHOT-runner:18820] universe:
587.26 ms
[getting-started-1.0-SNAPSHOT-runner:18820] (parse):
2,247.59 ms
[getting-started-1.0-SNAPSHOT-runner:18820] (inline):
1,985.70 ms
[getting-started-1.0-SNAPSHOT-runner:18820] (compile):
14,922.77 ms
[getting-started-1.0-SNAPSHOT-runner:18820] compile:
20,361.28 ms
[getting-started-1.0-SNAPSHOT-runner:18820] image:
2,228.30 ms
[getting-started-1.0-SNAPSHOT-runner:18820] write:
364.35 ms
[getting-started-1.0-SNAPSHOT-runner:18820] [total]:
52,777.76 ms
[INFO]
[INFO] --- maven-failsafe-plugin:2.22.1:integration-test (default)
@ getting-started ---
[INFO]
[INFO] ---
[INFO] T E S T S
[INFO] ---
[INFO] Running org.acme.quickstart.NativeGreetingResourceIT
Executing [/data/home/gsmet/git/quarkus-quickstarts/getting-
started/target/getting-started-1.0-SNAPSHOT-runner,
-Dquarkus.http.port=8081, -Dtest.url=http://localhost:8081,
-Dquarkus.log.file.path=build/quarkus.log]
2019-04-15 11:33:20,348 INFO [io.quarkus] (main) Quarkus 999-
SNAPSHOT started in 0.002s. Listening on: http://[::]:8081
2019-04-15 11:33:20,348 INFO [io.quarkus] (main) Installed
features: [cdi, resteasy]
[INFO] Tests run: 2, Failures: 0, Errors: 0, Skipped: 0, Time
elapsed: 1.387 s - in org.acme.quickstart.NativeGreetingResourceIT
...



By default, Quarkus waits for 60 seconds for the native image to start before
automatically failing the native tests. This duration can be changed using the
quarkus.test.native-image-wait-time system property. For example, to
increase the duration to 300 seconds, use: ./mvnw verify -Pnative
-Dquarkus.test.native-image-wait-time=300.

By default, native tests runs using the prod profile. This can be overridden using the
quarkus.test.native-image-profile property. For example, in your
application.properties file, add: quarkus.test.native-image-profile=test.

7

Alternatively, you can run your tests with: ./mvnw verify -Pnative
-Dquarkus.test.native-image-profile=test. However, don’t forget that when the native
executable is built the prod profile is enabled. So, the profile you enable this way must be compatible
with the produced executable.

Excluding tests when running as a native executable
When running tests this way, the only things that actually run natively are you application endpoints,
which you can only test via HTTP calls. Your test code does not actually run natively, so if you are
testing code that does not call your HTTP endpoints, it’s probably not a good idea to run them as part
of native tests.

If you share your test class between JVM and native executions like we advise above, you can mark
certain tests with the @DisabledOnNativeImage annotation in order to only run them on the JVM.

Testing an existing native executable
It is also possible to re-run the tests against a native executable that has already been built. To do this
run ./mvnw test-compile failsafe:integration-test. This will discover the existing
native image and run the tests against it using failsafe.

If the process cannot find the native image for some reason, or you want to test a native image that is
no longer in the target directory you can specify the executable with the -Dnative.image.path=
system property.

Creating a container


Before going further, be sure to have a working container runtime (Docker, podman)
environment. If you use Docker on Windows you should share your project’s drive at
Docker Desktop file share settings.

You can run the application in a container using the JAR produced by the Quarkus Maven Plugin.
However, in this guide we focus on creating a container image using the produced native executable.

By default, the native executable is tailored for your operating system (Linux, macOS, Windows etc).
Because the container may not use the same executable format as the one produced by your operating
system, we will instruct the Maven build to produce an executable from inside a container:

8

./mvnw package -Pnative -Dquarkus.native.container-build=true



You can also select the container runtime to use with:

Docker
./mvnw package -Pnative -Dquarkus.native.container
-runtime=docker
Podman
./mvnw package -Pnative -Dquarkus.native.container
-runtime=podman

These are normal Quarkus config properties, so if you always want to build in a
container it is recommended you add these to your application.properties
so you do not need to specify them every time.

The produced executable will be a 64 bit Linux executable, so depending on your operating system it
may no longer be runnable. However, it’s not an issue as we are going to copy it to a container. The
project generation has provided a Dockerfile.native in the src/main/docker directory with
the following content:

FROM registry.access.redhat.com/ubi8/ubi-minimal
WORKDIR /work/
COPY target/*-runner /work/application
RUN chmod 775 /work
EXPOSE 8080
CMD ["./application", "-Dquarkus.http.host=0.0.0.0"]



Ubi?

The provided Dockerfiles use UBI (Universal Base Image) as parent image. This
base image has been tailored to work perfectly in containers. The Dockerfiles
use the minimal version of the base image to reduce the size of the produced image.

You can read more about UBI on:

• the UBI image page

• the UBI-minimal image page

• the list of UBI-minimal tags

Then, if you didn’t delete the generated native executable, you can build the docker image with:

docker build -f src/main/docker/Dockerfile.native -t quarkus-
quickstart/getting-started .

9

https://access.redhat.com/containers/?tab=overview#/registry.access.redhat.com/ubi8/ubi
https://access.redhat.com/containers/#/registry.access.redhat.com/ubi8/ubi-minimal
https://access.redhat.com/containers/#/registry.access.redhat.com/ubi8/ubi-minimal
https://access.redhat.com/containers/?tab=overview#/registry.access.redhat.com/ubi8/ubi
https://access.redhat.com/containers/#/registry.access.redhat.com/ubi8/ubi-minimal
https://access.redhat.com/containers/#/registry.access.redhat.com/ubi8/ubi-minimal
https://access.redhat.com/containers/#/registry.access.redhat.com/ubi8/ubi-minimal
https://access.redhat.com/containers/?tab=tags#/registry.access.redhat.com/ubi8/ubi-minimal
https://access.redhat.com/containers/?tab=tags#/registry.access.redhat.com/ubi8/ubi-minimal
https://access.redhat.com/containers/?tab=tags#/registry.access.redhat.com/ubi8/ubi-minimal

And finally, run it with:

docker run -i --rm -p 8080:8080 quarkus-quickstart/getting-started

 Interested by tiny Docker images, check the distroless version.

Creating a container with a multi-stage Docker
build
The previous section showed you how to build a native executable using Maven, but implicitly required
that the proper GraalVM version be installed on the building machine (be it your local machine or your
CI/CD infrastructure).

In cases where the GraalVM requirement cannot be met, you can use Docker to perform the Maven
build by using a multi-stage Docker build. A multi-stage Docker build is like two Dockerfile files
combined in one, the first is used to build the artifact used by the second.

In this guide we will use the first stage to generate the native executable using Maven and the second
stage to create our runtime image.

Stage 1 : build with maven builder image with native
capabilities
FROM quay.io/quarkus/centos-quarkus-maven:19.3.1-java11 AS build
COPY src /usr/src/app/src
COPY pom.xml /usr/src/app
USER root
RUN chown -R quarkus /usr/src/app
USER quarkus
RUN mvn -f /usr/src/app/pom.xml -Pnative clean package

Stage 2 : create the docker final image
FROM registry.access.redhat.com/ubi8/ubi-minimal
WORKDIR /work/
COPY --from=build /usr/src/app/target/*-runner /work/application

set up permissions for user `1001`
RUN chmod 775 /work /work/application \
 && chown -R 1001 /work \
 && chmod -R "g+rwX" /work \
 && chown -R 1001:root /work

EXPOSE 8080
USER 1001

CMD ["./application", "-Dquarkus.http.host=0.0.0.0"]

10

https://github.com/quarkusio/quarkus-images/tree/master/distroless

Save this file in src/main/docker/Dockerfile.multistage as it is not included in the getting
started quickstart.



Before launching our Docker build, we need to update the default .dockerignore
file as it filters everything except the target directory and as we plan to build
inside a container we need to be able to copy the src directory. So edit your
.dockerignore and remove or comment its content.

docker build -f src/main/docker/Dockerfile.multistage -t quarkus-
quickstart/getting-started .

And finally, run it with:

docker run -i --rm -p 8080:8080 quarkus-quickstart/getting-started



If you need SSL support in your native executable, you can easily include the
necessary libraries in your Docker image.

Please see our Using SSL With Native Executables guide for more information.

Configuring the Native Image
There are a lot of different configuration options that can affect how the native image is generated.
These are provided in application.properties the same as any other config property.

The properties are shown below:

 Configuration property fixed at build time - All other configuration properties are overridable at
runtime

Configuration property Type Default

 quarkus.native.additional-build-args

Additional arguments to pass to the build process
list of
string

 quarkus.native.enable-http-url-handler

If the HTTP url handler should be enabled, allowing you to do
URL.openConnection() for HTTP URLs

boolean true

 quarkus.native.enable-https-url-handler

If the HTTPS url handler should be enabled, allowing you to do
URL.openConnection() for HTTPS URLs

boolean false

11

native-and-ssl#working-with-containers
#quarkus-native-pkg-native-config_configuration
#quarkus-native-pkg-native-config_quarkus.native.additional-build-args
#quarkus-native-pkg-native-config_quarkus.native.enable-http-url-handler
#quarkus-native-pkg-native-config_quarkus.native.enable-https-url-handler

 quarkus.native.enable-all-security-services

If all security services should be added to the native image boolean false

 quarkus.native.add-all-charsets

If all character sets should be added to the native image. This increases image
size

boolean false

 quarkus.native.include-all-time-zones

If all time zones should be added to the native image. This increases image size boolean false

 quarkus.native.graalvm-home

The location of the Graal distribution string
${GRAA
LVM_HO
ME:}

 quarkus.native.java-home

The location of the JDK File
${java
.home}

 quarkus.native.native-image-xmx

The maximum Java heap to be used during the native image generation string

 quarkus.native.debug-symbols

If debug symbols should be included boolean false

 quarkus.native.debug-build-process

If the native image build should wait for a debugger to be attached before
running. This is an advanced option and is generally only intended for those
familiar with GraalVM internals

boolean false

 quarkus.native.publish-debug-build-process-port

If the debug port should be published when building with docker and debug-
build-process is true

boolean true

 quarkus.native.cleanup-server

If the native image server should be restarted boolean false

 quarkus.native.enable-isolates

If isolates should be enabled boolean true

12

#quarkus-native-pkg-native-config_quarkus.native.enable-all-security-services
#quarkus-native-pkg-native-config_quarkus.native.add-all-charsets
#quarkus-native-pkg-native-config_quarkus.native.include-all-time-zones
#quarkus-native-pkg-native-config_quarkus.native.graalvm-home
#quarkus-native-pkg-native-config_quarkus.native.java-home
https://docs.oracle.com/javase/8/docs/api/java/io/File.html
#quarkus-native-pkg-native-config_quarkus.native.native-image-xmx
#quarkus-native-pkg-native-config_quarkus.native.debug-symbols
#quarkus-native-pkg-native-config_quarkus.native.debug-build-process
#quarkus-native-pkg-native-config_quarkus.native.publish-debug-build-process-port
#quarkus-native-pkg-native-config_quarkus.native.cleanup-server
#quarkus-native-pkg-native-config_quarkus.native.enable-isolates

 quarkus.native.enable-fallback-images

If a JVM based 'fallback image' should be created if native image fails. This is not
recommended, as this is functionally the same as just running the application in
a JVM

boolean false

 quarkus.native.enable-server

If the native image server should be used. This can speed up compilation but can
result in changes not always being picked up due to cache invalidation not
working 100%

boolean false

 quarkus.native.auto-service-loader-registration

If all META-INF/services entries should be automatically registered boolean false

 quarkus.native.dump-proxies

If the bytecode of all proxies should be dumped for inspection boolean false

 quarkus.native.container-build

If this build should be done using a container runtime. If this is set docker will be
used by default, unless container-runtime is also set.

boolean false

 quarkus.native.builder-image

The docker image to use to do the image build

string

quay.i
o/quar
kus/ub
i-
quarku
s-
native
-image
:19.3.
1-
java11

 quarkus.native.container-runtime

The container runtime (e.g. docker) that is used to do an image based build. If
this is set then a container build is always done.

string

 quarkus.native.container-runtime-options

Options to pass to the container runtime
list of
string

13

#quarkus-native-pkg-native-config_quarkus.native.enable-fallback-images
#quarkus-native-pkg-native-config_quarkus.native.enable-server
#quarkus-native-pkg-native-config_quarkus.native.auto-service-loader-registration
#quarkus-native-pkg-native-config_quarkus.native.dump-proxies
#quarkus-native-pkg-native-config_quarkus.native.container-build
#quarkus-native-pkg-native-config_quarkus.native.builder-image
#quarkus-native-pkg-native-config_quarkus.native.container-runtime
#quarkus-native-pkg-native-config_quarkus.native.container-runtime-options

 quarkus.native.enable-vm-inspection

If the resulting image should allow VM introspection boolean false

 quarkus.native.full-stack-traces

If full stack traces are enabled in the resulting image boolean true

 quarkus.native.enable-reports

If the reports on call paths and included packages/classes/methods should be
generated

boolean false

 quarkus.native.report-exception-stack-traces

If exceptions should be reported with a full stack trace boolean true

 quarkus.native.report-errors-at-runtime

If errors should be reported at runtime. This is a more relaxed setting, however it
is not recommended as it means your application may fail at runtime if an
unsupported feature is used by accident.

boolean false

What’s next?
This guide covered the creation of a native (binary) executable for your application. It provides an
application exhibiting a swift startup time and consuming less memory. However, there is much more.

We recommend continuing the journey with the deployment to Kubernetes and OpenShift.

14

#quarkus-native-pkg-native-config_quarkus.native.enable-vm-inspection
#quarkus-native-pkg-native-config_quarkus.native.full-stack-traces
#quarkus-native-pkg-native-config_quarkus.native.enable-reports
#quarkus-native-pkg-native-config_quarkus.native.report-exception-stack-traces
#quarkus-native-pkg-native-config_quarkus.native.report-errors-at-runtime
deploying-to-kubernetes

	Quarkus - Building a Native Executable
	Prerequisites
	Configuring GraalVM

	Solution
	Producing a native executable
	Testing the native executable
	Excluding tests when running as a native executable
	Testing an existing native executable

	Creating a container
	Creating a container with a multi-stage Docker build
	Configuring the Native Image
	What’s next?

