
Quarkus - Building applications with
Maven

Creating a new project
With Maven, you can scaffold a new project with:

mvn io.quarkus:quarkus-maven-plugin:1.4.2.Final:create \
 -DprojectGroupId=my-groupId \
 -DprojectArtifactId=my-artifactId \
 -DprojectVersion=my-version \
 -DclassName="org.my.group.MyResource"



If you just launch mvn io.quarkus:quarkus-maven-
plugin:1.4.2.Final:create the Maven plugin asks for user inputs. You can
disable (and use default values) this interactive mode by passing -B to the Maven
command.

The following table lists the attributes you can pass to the create command:

Attribute Default Value Description

projectGroupId org.acme.sample The group id of the created
project

projectArtifactId mandatory The artifact id of the created
project. Not passing it triggers
the interactive mode.

projectVersion 1.0-SNAPSHOT The version of the created
project

platformGroupId io.quarkus The group id of the target
platform. Given that all the
existing platforms are coming
from io.quarkus this one
won’t practically be used
explicitly. But it’s still an option.

platformArtifactId quarkus-universe-bom The artifact id of the target
platform BOM. It should be
quarkus-bom in order to use
the locally built Quarkus.

1

Attribute Default Value Description

platformVersion If it’s not specified, the latest one
will be resolved.

The version of the platform you
want the project to use. It can
also accept a version range, in
which case the latest from the
specified range will be used.

className Not created if omitted The fully qualified name of the
generated resource

path /hello The resource path, only relevant
if className is set.

extensions [] The list of extensions to add to
the project (comma-separated)

By default, the command will target the latest version of quarkus-universe-bom (unless specific
coordinates have been specified). If you run offline however, it will look for the latest locally available
and if quarkus-universe-bom (satisfying the default version range which is currently up to 2.0) is
not available locally, it will fallback to the bundled platform based on quarkus-bom (the version will
match the version of the plugin).

If you decide to generate a REST resource (using the className attribute), the endpoint is exposed
at: http://localhost:8080/$path. If you use the default path, the URL is:
http://localhost:8080/hello.

The project is generated in a directory named after the passed artifactId. If the directory already
exists, the generation fails.

A pair of Dockerfiles for native and jvm mode are also generated in src/main/docker. Instructions
to build the image and run the container are written in those Dockerfiles.

Dealing with extensions
From inside a Quarkus project, you can obtain a list of the available extensions with:

./mvnw quarkus:list-extensions

You can enable an extension using:

./mvnw quarkus:add-extension -Dextensions="hibernate-validator"

Extensions are passed using a comma-separated list.

The extension name is the GAV name of the extension: e.g. io.quarkus:quarkus-agroal. But you
can pass a partial name and Quarkus will do its best to find the right extension. For example, agroal,
Agroal or agro will expand to io.quarkus:quarkus-agroal. If no extension is found or if more

2

http://localhost:8080/$path
http://localhost:8080/$path
http://localhost:8080/$path
http://localhost:8080/hello
http://localhost:8080/hello
http://localhost:8080/hello

than one extensions match, you will see a red check mark ❌ in the command result.

$./mvnw quarkus:add-extensions -Dextensions=jdbc,agroal,non-exist
-ent
[...]
❌ Multiple extensions matching 'jdbc'
 * io.quarkus:quarkus-jdbc-h2
 * io.quarkus:quarkus-jdbc-mariadb
 * io.quarkus:quarkus-jdbc-postgresql
 Be more specific e.g using the exact name or the full gav.
✅ Adding extension io.quarkus:quarkus-agroal
❌ Cannot find a dependency matching 'non-exist-ent', maybe a typo?
[...]

You can install all extensions which match a globbing pattern :

./mvnw quarkus:add-extension -Dextensions="hibernate-*"

Development mode
Quarkus comes with a built-in development mode. Run your application with:

./mvnw compile quarkus:dev

You can then update the application sources, resources and configurations. The changes are
automatically reflected in your running application. This is great to do development spanning UI and
database as you see changes reflected immediately.

quarkus:dev enables hot deployment with background compilation, which means that when you
modify your Java files or your resource files and refresh your browser these changes will
automatically take effect. This works too for resource files like the configuration property file. The act
of refreshing the browser triggers a scan of the workspace, and if any changes are detected the Java
files are compiled, and the application is redeployed, then your request is serviced by the redeployed
application. If there are any issues with compilation or deployment an error page will let you know.

Hit CTRL+C to stop the application.

Remote Development Mode
It is possible to use development mode remotely, so that you can run Quarkus in a container
environment (such as Openshift) and have changes made to your local files become immediately
visible.

This allows you to develop in the same environment you will actually run your app in, and with access
to the same services.

3


Do not use this in production. This should only be used in a development
environment. You should not run production application in dev mode.

To do this you must have the quarkus-undertow-websockets extension installed:

./mvnw quarkus:add-extension -Dextensions="undertow-websockets"

You must also have the following config properties set:

• quarkus.live-reload.password

• quarkus.live-reload.url

These can be set via application.properties, or any other way (e.g. system properties,
environment vars etc). The password must be set on both the local and remote processes, while the url
only needs to be set on the local host.

Start Quarkus in dev mode on the remote host. Now you need to connect your local agent to the
remote host:

./mvnw quarkus:remote-dev -Dquarkus.live-reload.url=http://my
-remote-host:8080

Now every time you refresh the browser you should see any changes you have made locally
immediately visible in the remote app.

Configuring Development Mode
By default, the Maven plugin picks up compiler flags to pass to javac from maven-compiler-
plugin.

If you need to customize the compiler flags used in development mode, add a configuration
section to the plugin block and set the compilerArgs property just as you would when configuring
maven-compiler-plugin. You can also set source, target, and jvmArgs. For example, to pass
--enable-preview to both the JVM and javac:

4

<plugin>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-maven-plugin</artifactId>
 <version>${quarkus.version}</version>

 <configuration>
 <source>${maven.compiler.source}</source>
 <target>${maven.compiler.target}</target>
 <compilerArgs>
 <arg>--enable-preview</arg>
 </compilerArgs>
 <jvmArgs>--enable-preview</jvmArgs>
 </configuration>

 ...
</plugin>

Debugging
In development mode, Quarkus starts by default with debug mode enabled, listening to port 5005
without suspending the JVM.

This behavior can be changed by giving the debug system property one of the following values:

• false - the JVM will start with debug mode disabled

• true - The JVM is started in debug mode and will be listening on port 5005

• client - the JVM will start in client mode and attempt to connect to localhost:5005

• {port} - The JVM is started in debug mode and will be listening on {port}

An additional system property suspend can be used to suspend the JVM, when launched in debug
mode. suspend supports the following values:

• y or true - The debug mode JVM launch is suspended

• n or false - The debug mode JVM is started without suspending



You can also run a Quarkus application in debug mode with a suspended JVM using
./mvnw compile quarkus:dev -Ddebug which is a shorthand for ./mvnw
compile quarkus:dev -Ddebug=true.

Then, attach your debugger to localhost:5005.

Import in your IDE
Once you have a project generated, you can import it in your favorite IDE. The only requirement is the
ability to import a Maven project.

5

Eclipse

In Eclipse, click on: File → Import. In the wizard, select: Maven → Existing Maven Project.
On the next screen, select the root location of the project. The next screen list the found modules;
select the generated project and click on Finish. Done!

In a separated terminal, run ./mvnw compile quarkus:dev, and enjoy a highly productive
environment.

IntelliJ

In IntelliJ:

1. From inside IntelliJ select File → New → Project From Existing Sources… or, if you are
on the welcome dialog, select Import project.

2. Select the project root

3. Select Import project from external model and Maven

4. Next a few times (review the different options if needed)

5. On the last screen click on Finish

In a separated terminal or in the embedded terminal, run ./mvnw compile quarkus:dev. Enjoy!

Apache NetBeans

In NetBeans:

1. Select File → Open Project

2. Select the project root

3. Click on Open Project

In a separated terminal or the embedded terminal, go to the project root and run ./mvnw compile
quarkus:dev. Enjoy!

Visual Studio Code

Open the project directory in VS Code. If you have installed the Java Extension Pack (grouping a set of
Java extensions), the project is loaded as a Maven project.

Logging Quarkus application build classpath
tree
Usually, dependencies of an application (which is a Maven project) could be displayed using mvn
dependency:tree command. In case of a Quarkus application, however, this command will list only
the runtime dependencies of the application. Given that the Quarkus build process adds deployment
dependencies of the extensions used in the application to the original application classpath, it could be
useful to know which dependencies and which versions end up on the build classpath. Luckily, the
quarkus-bootstrap Maven plugin includes the build-tree goal which displays the build

6

dependency tree for the application.

To be able to use it, the following plugin configuration has to be added to the pom.xml:

 <plugin>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-bootstrap-maven-
plugin</artifactId>
 <version>${quarkus.version}</version>
 </plugin>

Now you should be able to execute ./mvnw quarkus-bootstrap:build-tree on your project
and see something like:

[INFO] --- quarkus-bootstrap-maven-plugin:1.4.2.Final:build-tree
(default-cli) @ getting-started ---
[INFO] org.acme:getting-started:jar:1.0-SNAPSHOT
[INFO] └─ io.quarkus:quarkus-resteasy-deployment:jar:1.4.2.Final
(compile)
[INFO] ├─ io.quarkus:quarkus-resteasy-server-common-
deployment:jar:1.4.2.Final (compile)
[INFO] │ ├─ io.quarkus:quarkus-core-deployment:jar:1.4.2.Final
(compile)
[INFO] │ │ ├─ commons-beanutils:commons-beanutils:jar:1.9.3
(compile)
[INFO] │ │ │ ├─ commons-logging:commons-logging:jar:1.2
(compile)
[INFO] │ │ │ └─ commons-collections:commons-
collections:jar:3.2.2 (compile)
...

Building a native executable
Native executables make Quarkus applications ideal for containers and serverless workloads.

Make sure to have GRAALVM_HOME configured and pointing to GraalVM version 19.3.1. Verify that your
pom.xml has the proper native profile (see Maven configuration).

Create a native executable using: ./mvnw package -Pnative. A native executable will be present
in target/.

To run Integration Tests on the native executable, make sure to have the proper Maven plugin
configured (see Maven configuration) and launch the verify goal.

7

./mvnw verify -Pnative

...
[quarkus-quickstart-runner:50955] universe: 391.96 ms
[quarkus-quickstart-runner:50955] (parse): 904.37 ms
[quarkus-quickstart-runner:50955] (inline): 1,143.32 ms
[quarkus-quickstart-runner:50955] (compile): 6,228.44 ms
[quarkus-quickstart-runner:50955] compile: 9,130.58 ms
[quarkus-quickstart-runner:50955] image: 2,101.42 ms
[quarkus-quickstart-runner:50955] write: 803.18 ms
[quarkus-quickstart-runner:50955] [total]: 33,520.15 ms
[INFO]
[INFO] --- maven-failsafe-plugin:2.22.0:integration-test (default)
@ quarkus-quickstart-native ---
[INFO]
[INFO] ---
[INFO] T E S T S
[INFO] ---
[INFO] Running org.acme.quickstart.GreetingResourceIT
Executing [/Users/starksm/Dev/JBoss/Quarkus/starksm64-quarkus-
quickstarts/getting-started-native/target/quarkus-quickstart-
runner, -Dquarkus.http.port=8081, -Dtest.url=http://localhost:8081,
-Dquarkus.log.file.path=target/quarkus.log]
2019-02-28 16:52:42,020 INFO [io.quarkus] (main) Quarkus started
in 0.007s. Listening on: http://localhost:8080
2019-02-28 16:52:42,021 INFO [io.quarkus] (main) Installed
features: [cdi, resteasy]
[INFO] Tests run: 2, Failures: 0, Errors: 0, Skipped: 0, Time
elapsed: 1.081 s - in org.acme.quickstart.GreetingResourceIT
[INFO]
[INFO] Results:
[INFO]
[INFO] Tests run: 2, Failures: 0, Errors: 0, Skipped: 0

...

Build a container friendly executable
The native executable will be specific to your operating system. To create an executable that will run
in a container, use the following:

./mvnw package -Dnative -Dquarkus.native.container-build=true

The produced executable will be a 64 bit Linux executable, so depending on your operating system it
may no longer be runnable. However, it’s not an issue as we are going to copy it to a Docker container.
Note that in this case the build itself runs in a Docker container too, so you don’t need to have GraalVM
installed locally.

8



By default, the native executable will be generated using the
quay.io/quarkus/ubi-quarkus-native-image:19.3.1-java11 Docker
image.

If you want to build a native executable with a different Docker image (for instance
to use a different GraalVM version), use the -Dquarkus.native.builder
-image=<image name> build argument.

The list of the available Docker images can be found on quay.io. Be aware that a
given Quarkus version might not be compatible with all the images available.

You can follow the Build a native executable guide as well as Deploying Application to Kubernetes and
OpenShift for more information.

Maven configuration
If you have not used project scaffolding, add the following elements in your pom.xml

<dependencyManagement>
 <dependencies>
 <dependency> ①
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-bom</artifactId>
 <version>${quarkus.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

<build>
 <plugins>
 <plugin> ②
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-maven-plugin</artifactId>
 <version>${quarkus.version}</version>
 <executions>
 <execution>
 <goals>
 <goal>build</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>

<profiles>

9

https://quay.io/repository/quarkus/ubi-quarkus-native-image?tab=tags
building-native-image
deploying-to-kubernetes
deploying-to-kubernetes

 <profile> ③
 <id>native</id>
 <properties> ④
 <quarkus.package.type>native</quarkus.package.type>
 </properties>
 <build>
 <plugins>
 <plugin> ⑤
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-failsafe-plugin</artifactId>
 <version>${surefire-plugin.version}</version>
 <executions>
 <execution>
 <goals>
 <goal>integration-test</goal>
 <goal>verify</goal>
 </goals>
 <configuration>
 <systemProperties>

<native.image.path>${project.build.directory}/${project.build.final
Name}-runner</native.image.path>
 </systemProperties>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
 </profile>
</profiles>

① Optionally use a BOM file to omit the version of the different Quarkus dependencies.

② Use the Quarkus Maven plugin that will hook into the build process.

③ Use a specific native profile for native executable building.

④ Enable the native package type. The build will therefore produce a native executable.

⑤ If you want to test your native executable with Integration Tests, add the following plugin
configuration. Test names *IT and annotated @NativeImageTest will be run against the native
executable. See the Native executable guide for more info.

Uber-Jar Creation
Quarkus Maven plugin supports the generation of Uber-Jars by specifying a
quarkus.package.uber-jar=true configuration option in your application.properties.

The original jar will still be present in the target directory but it will be renamed to contain the

10

building-native-image

.original suffix.

When building an Uber-Jar you can specify entries that you want to exclude from the generated jar by
using the quarkus.package.ignored-entries configuration option, this takes a comma
seperated list of entries to ignore.

Uber-Jar creation by default excludes signature files that might be present in the dependencies of the
application.

Uber-Jar’s final name is configurable via a Maven’s build settings finalName option.

Configuring the Project Output
There are a several configuration options that will define what the output of your project build will be.
These are provided in application.properties the same as any other config property.

The properties are shown below:

 Configuration property fixed at build time - All other configuration properties are overridable at
runtime

Configuration property Type Default

 quarkus.package.type

The requested output type. The default built in types are jar and native string jar

 quarkus.package.uber-jar

If the java runner should be packed as an uberjar boolean false

 quarkus.package.manifest.add-implementation-entries

If the Implementation information should be included in the runner jar’s
MANIFEST.MF.

boolean true

 quarkus.package.main-class

The entry point of the application. This can either be a a fully qualified name of a
standard Java class with a main method, or
io.quarkus.runtime.QuarkusApplication. If your application has main
classes annotated with
io.quarkus.runtime.annotations.QuarkusMain then this can also
reference the name given in the annotation, to avoid the need to specify fully
qualified names in the config.

string

11

https://docs.oracle.com/javase/tutorial/deployment/jar/intro.html
#quarkus-package-pkg-package-config_configuration
#quarkus-package-pkg-package-config_quarkus.package.type
#quarkus-package-pkg-package-config_quarkus.package.uber-jar
#quarkus-package-pkg-package-config_quarkus.package.manifest.add-implementation-entries
#quarkus-package-pkg-package-config_quarkus.package.main-class

 quarkus.package.user-configured-ignored-entries

Files that should not be copied to the output artifact
list of
string

 quarkus.package.runner-suffix

The suffix that is applied to the runner jar and native images string
-runne
r

 quarkus.package.output-directory

The output folder in which to place the output, this is resolved relative to the
build systems target directory.

string

 quarkus.package.output-name

The name of the final artifact string

 quarkus.package.manifest.manifest-sections

Custom manifest sections to be added to the MANIFEST.MF file. An example of
the user defined property: quarkus.package.manifest.manifest-
sections.{Section-Name}.{Entry-Key1}={Value1}
quarkus.package.manifest.manifest-sections.{Section-Name}.{Entry-
Key2}={Value2}

Map<St
ring,M
ap<Str
ing,St
ring>>

required


Custom test configuration profile in JVM mode
By default, Quarkus tests in JVM mode are run using the test configuration profile. If you are not
familiar with Quarkus configuration profiles, everything you need to know is explained in the
Configuration Profiles Documentation.

It is however possible to use a custom configuration profile for your tests with the Maven Surefire and
Maven Failsafe configurations shown below. This can be useful if you need for example to run some
tests using a specific database which is not your default testing database.

12

#quarkus-package-pkg-package-config_quarkus.package.user-configured-ignored-entries
#quarkus-package-pkg-package-config_quarkus.package.runner-suffix
#quarkus-package-pkg-package-config_quarkus.package.output-directory
#quarkus-package-pkg-package-config_quarkus.package.output-name
#quarkus-package-pkg-package-config_quarkus.package.manifest.manifest-sections-manifest-sections
config#configuration-profiles

<project>
 [...]
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>${surefire-plugin.version}</version>
 <configuration>
 <systemPropertyVariables>
 <quarkus.test.profile>foo</quarkus.test.profile> ①
 <buildDirectory>
${project.build.directory}</buildDirectory>
 [...]
 </systemPropertyVariables>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-failsafe-plugin</artifactId>
 <version>${failsafe-plugin.version}</version>
 <configuration>
 <systemPropertyVariables>
 <quarkus.test.profile>foo</quarkus.test.profile> ①
 <buildDirectory>
${project.build.directory}</buildDirectory>
 [...]
 </systemPropertyVariables>
 </configuration>
 </plugin>
 </plugins>
 </build>
 [...]
</project>

① The foo configuration profile will be used to run the tests.


It is not possible to use a custom test configuration profile in native mode for now.
Native tests are always run using the prod profile.

13

	Quarkus - Building applications with Maven
	Creating a new project
	Dealing with extensions
	Development mode
	Remote Development Mode
	Configuring Development Mode

	Debugging
	Import in your IDE
	Logging Quarkus application build classpath tree
	Building a native executable
	Build a container friendly executable

	Maven configuration
	Uber-Jar Creation

	Configuring the Project Output
	Custom test configuration profile in JVM mode

