
Using Reactive Routes
Reactive routes propose an alternative approach to implement HTTP endpoints
where you declare and chain routes. This approach became very popular in the
JavaScript world, with frameworks like Express.Js or Hapi. Quarkus also offers the
possibility to use reactive routes. You can implement REST API with routes only or
combine them with JAX-RS resources and servlets.

The code presented in this guide is available in this Github repository under the reactive-routes-
quickstart directory

Quarkus HTTP
Before going further, let’s have a look at the HTTP layer of Quarkus. Quarkus HTTP support is based
on a non-blocking and reactive engine (Eclipse Vert.x and Netty). All the HTTP requests your
application receive are handled by event loops (IO Thread) and then are routed towards the code that
manages the request. Depending on the destination, it can invoke the code managing the request on a
worker thread (Servlet, Jax-RS) or use the IO Thread (reactive route). Note that because of this, a
reactive route must be non-blocking or explicitly declare its blocking nature (which would result by
being called on a worker thread).

Declaring reactive routes
The first way to use reactive routes is to use the @Route annotation. To have access to this
annotation, you need to add the quarkus-vertx-web extension:

In your pom.xml file, add:

1

https://github.com/quarkusio/quarkus-quickstarts
https://github.com/quarkusio/quarkus-quickstarts/tree/master/reactive-routes-quickstart
https://github.com/quarkusio/quarkus-quickstarts/tree/master/reactive-routes-quickstart
https://github.com/quarkusio/quarkus-quickstarts/tree/master/reactive-routes-quickstart

<dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-vertx-web</artifactId>
</dependency>

Then in a bean, you can use the @Route annotation as follows:

package org.acme.reactive.routes;

import io.quarkus.vertx.web.Route;
import io.quarkus.vertx.web.RoutingExchange;
import io.vertx.core.http.HttpMethod;
import io.vertx.ext.web.RoutingContext;

import javax.enterprise.context.ApplicationScoped;

@ApplicationScoped ①
public class MyDeclarativeRoutes {

 // neither path nor regex is set - match a path derived from
the method name
 @Route(methods = HttpMethod.GET) ②
 void hello(RoutingContext rc) { ③
 rc.response().end("hello");
 }

 @Route(path = "/greetings", methods = HttpMethod.GET)
 void greetings(RoutingExchange ex) { ④
 ex.ok("hello " + ex.getParam("name").orElse("world"));
 }
}

① If there is a reactive route found on a class with no scope annotation then
@javax.inject.Singleton is added automatically.

② The @Route annotation indicates that the method is a reactive route. Again, by default, the code
contained in the method must not block.

③ The method gets a RoutingContext as a parameter. From the RoutingContext you can
retrieve the HTTP request (using request()) and write the response using response().end(…
).

④ RoutingExchange is a convenient wrapper of RoutingContext which provides some useful
methods.

More details about using the RoutingContext is available in the Vert.x Web documentation.

The @Route annotation allows to configure:

2

https://vertx.io/docs/apidocs/io/vertx/ext/web/RoutingContext.html
https://vertx.io/docs/vertx-web/java/

• The path - for routing by path, using the Vert.x Web format

• The regex - for routing with regular expressions, see for more details

• The methods - the HTTP verb triggering the route such as GET, POST…

• The type - it can be normal (non-blocking), blocking (method dispatched on a worker thread), or
failure to indicate that this route is called on failures

• The order - the order of the route when several routes are involved in handling the incoming
request. Must be positive for regular user routes.

• The produced and consumed mime types using produces, and consumes

For instance, you can declare a blocking route as follows:

@Route(methods = HttpMethod.POST, path = "/post", type = Route
.HandlerType.BLOCKING)
public void blocking(RoutingContext rc) {
 // ...
}

You can also declare several routes for a single method using @Routes:

@Route(path = "/first")
@Route(path = "/second")
public void route(RoutingContext rc) {
 // ...
}

Each route can use different paths, methods…

Handling conflicting routes
You may end up with multiple routes matching a given path. In the following example, both route
matches /accounts/me:

@Route(path = "/accounts/:id", methods = HttpMethod.GET)
void getAccount(RoutingContext ctx) {
 ...
}

@Route(path = "/accounts/me", methods = HttpMethod.GET)
void getCurrentUserAccount(RoutingContext ctx) {
 ...
}

As a consequence, the result is not the expected one as the first route is called with the path

3

https://vertx.io/docs/vertx-web/java/#_capturing_path_parameters
https://vertx.io/docs/vertx-web/java/#_routing_with_regular_expressions

parameter id set to me. To avoid the conflict, use the order attribute:

@Route(path = "/accounts/:id", methods = HttpMethod.GET, order = 2)
void getAccount(RoutingContext ctx) {
 ...
}

@Route(path = "/accounts/me", methods = HttpMethod.GET, order = 1)
void getCurrentUserAccount(RoutingContext ctx) {
 ...
}

By giving a lower order to the second route, it gets evaluated first. If the request path matches, it is
invoked, otherwise the other routes are evaluated.

@RouteBase
This annotation can be used to configure some defaults for reactive routes declared on a class.

@RouteBase(path = "simple", produces = "text/plain") ①
public class SimpleRoutes {

 @Route(path = "ping") // the final path is /simple/ping
 void ping(RoutingContext rc) {
 rc.response().end("pong");
 }
}

① The path value is used as a prefix for any route method declared on the class where
Route#path() is used. The produces value is used for content-based routing for all routes
where Route#produces() is empty.

Using the Vert.x Web Router
You can also register your route directly on the HTTP routing layer by registering routes directly on the
Router object. To retrieve the Router instance at startup:

public void init(@Observes Router router) {
 router.get("/my-route").handler(rc -> rc.response().end("Hello
from my route"));
}

Check the Vert.x Web documentation to know more about the route registration, options, and
available handlers.

4

https://vertx.io/docs/vertx-web/java/#_basic_vert_x_web_concepts


Router access is provided by the quarkus-vertx-http extension. If you use
quarkus-resteasy or quarkus-vertx-web, the extension will be added
automatically.

Intercepting HTTP requests
You can also register filters that would intercept incoming HTTP requests. Note that these filters are
also applied for servlets, JAX-RS resources, and reactive routes.

For example, the following code snippet registers a filter adding an HTTP header:

package org.acme.reactive.routes;

import io.vertx.ext.web.RoutingContext;

public class MyFilters {

 @RouteFilter(100) ①
 void myFilter(RoutingContext rc) {
 rc.response().putHeader("X-Header", "intercepting the
request");
 rc.next(); ②
 }
}

① The RouteFilter#value() defines the priority used to sort the filters - filters with higher
priority are called first.

② The filter is likely required to call the next() method to continue the chain.

Conclusion
This guide has introduced how you can use reactive routes to define an HTTP endpoint. It also
describes the structure of the Quarkus HTTP layer and how to write filters.

5

	Using Reactive Routes
	Quarkus HTTP
	Declaring reactive routes
	Handling conflicting routes
	@RouteBase

	Using the Vert.x Web Router
	Intercepting HTTP requests
	Conclusion

