Quarkus - Command Mode with Picocli

Picocliis an open source tool for creating rich command line applications.

Quarkus provides support for using Picocli. This guide contains examples of picocli extension
usage.

This technology is considered experimental.

In experimental mode, early feedback is requested to mature the idea. There is no

o guarantee of stability nor long term presence in the platform until the solution
matures. Feedback is welcome on our mailing list or as issues in our GitHub issue
tracker.

For a full list of possible extension statuses, check our FAQ entry.

o If you are not familiar with the Quarkus Command Mode, consider reading the
Command Mode reference quide first.

Configuration

Once you have your Quarkus project configured you can add the picocli extension to your project
by running the following command in your project base directory.

./mvnw quarkus:add-extension -Dextensions="picocli"

This will add the following to your pom. xm1:

<dependency>
<groupIld>io.quarkus</groupId>
<artifactId>quarkus-picocli</artifactId>
</dependency>

Simple command line application

Simple PicocliApplication with only one Command can be created as follows:


https://picocli.info/
https://groups.google.com/d/forum/quarkus-dev
https://github.com/quarkusio/quarkus/issues
https://github.com/quarkusio/quarkus/issues
https://quarkus.io/faq/#extension-status
command-mode-reference

package com.acme.picocli;
import picocli.CommandLine;

import javax.enterprise.context.Dependent;
import javax.inject.Inject,;

.Command @®
public class HelloCommand implements Runnable {

.Option(names = {"-n", "——-name"}, description =
"Who will we greet?", defaultValue = "World")
String name;

private final GreetingService greetingService;

public HelloCommand(GreetingService greetingService) { @
this.greetingService = greetingService;

public void run() {
greetingService.sayHello(name);

class GreetingService ({
void sayHello(String name) {
System.out.println("Hello " + name + "!");

@ If there is only one class annotated with picocli.CommandLine.Command it will be used as
entry point to Picocli CommandLine.

@ All classes annotated with picocli.CommandLine.Command are registered as CDI beans.

Command line application with multiple
Commands

When multiple classes have the picocli.CommandLine.Command annotation, then one of them
needs to be also annotated with io.quarkus.picocli.runtime.annotations.TopCommand.
This can be overwritten with the quarkus.picocli.top-command property.



package com.acme.picocli;

import io.quarkus.picocli.runtime.annotations.TopCommand;
import picocli.CommandLine;

.Command(mixinStandardHelpOptions = true, subcommands =
{HelloCommand.class, GoodByeCommand.class})
public class EntryCommand {

}

.Command(name = "hello", description = "Greet World!")
class HelloCommand implements Runnable {

public void run() {
System.out.println("Hello World!");

.Command(name = "goodbye", description = "Say goodbye
to World!")
class GoodByeCommand implements Runnable {

public void run() {
System.out.println("Goodbye World!");

Customizing Picocli CommandLine instance

You can customize CommandLine classes used by the picocli extension by producing your own
bean instance:



package com.acme.picocli;

import io.quarkus.picocli.runtime.PicocliCommandLineFactory;
import io.quarkus.picocli.runtime.annotations.TopCommand;
import picocli.CommandLine;

import javax.enterprise.context.ApplicationScoped;
import javax.enterprise.inject.Produces;

.Command
public class EntryCommand implements Runnable {
.Spec
CommandLine.Model.CommandSpec spec;

public void run() {
System.out.println("My name is: " + spec.name());

class CustomConfiquration {

CommandLine customCommandLine(PicocliCommandLineFactory
factory) { @
return factory.create().setCommandName("CustomizedName");

® PicocliCommandLineFactory will create an instance of CommandLine with TopCommand and
CommandLine.IFactory injected.

Different entry command for each profile

It is possible to create different entry command for each profile, using @I fBuildProfile:



@ApplicationScoped
public class Config {

@Produces

@TopCommand

@IfBuildProfile("dev")

public Object devCommand() {
return DevCommand.class; @

}

@Produces
@TopCommand
@IfBuildProfile("prod")
public Object prodCommand() {
return new ProdCommand("Confiqgured by me!");

® You can return instance of java.lang.Class here. In such case CommandLine will try to
instantiate this class using CommandLine.IFactory.

Providing own QuarkusMain

You can also provide your own application entry point annotated with QuarkusMain (as described in
Command Mode reference guide).


command-mode-reference

package com.acme.picocli;

import io.quarkus.runtime.QuarkusApplication;
import io.quarkus.runtime.annotations.QuarkusMain;
import picocli.CommandLine;

import javax.inject.Inject;
.Command(name = "demo", mixinStandardHelpOptions =
true)
public class ExampleApp implements Runnable, QuarkusApplication {
CommandLine.IFactory factory; @

public void run() {
// business logic

}
public int run(String... args) throws Exception ({

return new CommandLine(this, factory).execute(args);
}

@ Quarkus-compatible CommandLine.IFactory bean created by picocli extension.

Native mode support

This extension uses the Quarkus standard build steps mechanism to support GraalVM Native images.
In the exceptional case that incompatible changes in a future picocli release cause any issue, the
following configuration can be used to fall back to the annotation processor from the picocli project as

a temporary workaround:

<dependency>
<groupId>info.picocli</groupId>
<artifactId>picocli-codegen</artifactId>
</dependency>

For Gradle, you need to add the following in dependencies section of the build.gradle file:

annotationProcessor enforcedPlatform("S{quarkusPlatformGroupId}:
S{quarkusPlatformArtifactId}:S{quarkusPlatformVersion}")
annotationProcessor 'info.picocli:picocli-codegen'



Configuration Reference

& Configuration property fixed at build time - All other configuration properties are overridable at
runtime

Configuration property Type Default

& quarkus.picocli.native-image.processing.enable

Set this to false to use the picocli-codegen annotation processor instead of
build steps. CAUTION: this will have serious build-time performance impact
since this is run on every restart in devmode, use with care! This property is
intended to be used only in cases where an incompatible change in the picocli
library causes problems in the build steps used to support GraalVM Native
images. In such cases this property allows users to make the trade-off between
fast build cycles with the older version of picocli, and temporarily accept slower
build cycles with the latest version of picocli until the updated extension is
available.

boolean true

quarkus.picocli.top-command

Name of bean annotated with
io.quarkus.picocli.runtime.annotations.TopCommand or FQCN of string
class which will be used as entry point for Picocli CommandLine instance. This

class needs to be annotated with picocli.CommandLine.Command.


#quarkus-picocli_configuration
#quarkus-picocli_quarkus.picocli.native-image.processing.enable
#quarkus-picocli_quarkus.picocli.top-command

	Quarkus - Command Mode with Picocli
	Configuration
	Simple command line application
	Command line application with multiple Commands
	Customizing Picocli CommandLine instance
	Different entry command for each profile
	Providing own QuarkusMain
	Native mode support
	Configuration Reference

