Quarkus - Using Kogito to add
business automation capabilities to an
application

This guide demonstrates how your Quarkus application can use Kogito to add
business automation to power it up with business processes and rules.

Kogito is a next generation business automation toolkit that originates from well known Open Source
projects Drools (for business rules) and jBPM (for business processes). Kogito aims at providing
another approach to business automation where the main message is to expose your business
knowledge (processes, rules and decisions) in a domain specific way.

This technology is considered preview.

In preview, backward compatibility and presence in the ecosystem is not guaranteed.

o Specific improvements might require to change configuration or APIs and plans to
become stable are under way. Feedback is welcome on our mailing list or as issues in
our GitHub issue tracker.

For a full list of possible extension statuses, check our FAQ entry.

Prerequisites

To complete this guide, you need:

* less than 15 minutes

* an IDE (Eclipse is preferred with the BPMN modeller plugin)

* JDK 1.8+ installed with JAVA_HOME configured appropriately
* Apache Maven 3.6.3

* Docker

Install modelling plugins in your IDE
Kogito Tooling is currently supported in Eclipse and VSCode:
* Eclipse

To be able to make use of visual modelling of your processes, download Eclipse IDE and install from
Market place Eclipse BPMN2 Modeller plugin (with jJBPM Runtime Extension)

* VSCode

Download and install the VSCode Extension from Kogito Tooling release page to edit and model

https://groups.google.com/d/forum/quarkus-dev
https://github.com/quarkusio/quarkus/issues
https://quarkus.io/faq/#extension-status
https://github.com/kiegroup/kogito-tooling/releases

process definitions from VSCode IDE.
* Online

To avoid any modeler installation you can use directly use BPMN.new to design and model your
process through your favorite web browser.

Architecture

In this example, we build a very simple microservice which offers one REST endpoint:

* /persons

This endpoint will be automatically generated based on business process, that in turn will make use of
business rules to make certain decisions based on the data being processed.

Business process

The business process will be responsible for encapsulating business logic of our microservice. It should
provide complete set of steps to achieve a business goal. At the same time this is the entry point to
the service that can be consumed by clients.

Business rule

A business rule allows to externalise decision logic into reusable pieces that can be easily used in
declarative way. There are multiple ways of writing rules like decision tables, decision trees, rules, etc.
For this example we focus on the rule format backed by DRL (Drools Rule Language).

Solution

We recommend that you follow the instructions in the next sections and create the application step by
step. However, you can go right to the complete example.

Clone the Git repository: git clone https://github.com/quarkusio/quarkus-
quickstarts.git, or download an archive.

The solution is located in the kogito-quickstart directory.

Creating the Maven Project

First, we need a new project. Create a new project with the following command:

https://bpmn.new
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts/archive/master.zip
https://github.com/quarkusio/quarkus-quickstarts/tree/master/kogito-quickstart

mvn io.quarkus:quarkus-maven-plugin:1.5.1.Final:create \
-DprojectGroupIld=org.acme \
-DprojectArtifactId=kogito-quickstart \
-Dextensions="kogito"

cd kogito-quickstart

This command generates a Maven project, importing the kogito extension that comes with all
needed dependencies and configuration to equip your application with business automation.

If you already have your Quarkus project configured, you can add the kogito extension to your
project by running the following command in your project base directory:

./mvnw quarkus:add-extension -Dextensions="kogito"

This will add the following to your pom. xm1:

<dependency>
<groupId>org.kie.kogito</groupId>
<artifactId>kogito-quarkus</artifactId>
</dependency>

Writing the application

Let’s start by implementing the simple data object Person. As you can see from the source code
below it is just a POJO:

package org.acme.kogito.model;
public class Person {

private String name;
private int age;
private boolean adult;

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

public int getAge() {
return age;

}

public void setAge(int age) {
this.age = age;

}

public boolean isAdult() {
return adult;

}

public void setAdult(boolean adult) {
this.adult = adult,;
}

@Override
public String toString() {
return "Person [name=" + name + ", age=" + age + ", adult="
+ adult + "]1";

}

Next, we create a rule file person-rules.drl inside the
src/main/resources/org/acme/kogito folder of the generated project.

package org.acme.kogito

import org.acme.kogito.model.Person;

rule "Is adult" ruleflow-group "person

when
Sperson: Person(age > 18)
then
modify(Sperson) {
setAdult (true)

s
end

This is really a simple rule that marks a person who is older that 18 years as an adult.

Finally we create a business process that will make use of this rule and some other activities to
approve a given person. Using new item wizard (File > New — Other - BPMN2 Model) create
persons.bpmninside src/main/resources/org/acme/kogito folder of the generated project.

This process should consist of

* start event

* business rule task
* exclusive gateway
* user task

* end events

And should look like

() . Evaluate . < \ . Special
Handling for
Person X child rgn

O

To get started quickly copy the process definition from the quickstart

https://github.com/quarkusio/quarkus-quickstarts/tree/master/kogito-quickstart/src/main/resources/org/acme/kogito/persons.bpmn2

To model this process yourself, just follow these steps (start event should be automatically added)

* define a process variable with name person of type org.acme.kogito.model.Person

* drag the Tasks — Business Rule Task from the palette and drop it next to start event, link it with
start event

> double click on the business rule task

= on tab I/0O Parameters, set data input and output (map person process variable to input
data with name person and same for data output)

= on tab Business Rule Task, set rule flow group to the value defined in the drl file (person)

drag the Gateways = XOR gateway from the palette and drop it next to the business rule task, link

it with rule task
* drag the Tasks = User Task from the palette and drop it next to the gateway, link it with gateway
> double click on the user task

= on tak User Task, set task name to ChildrenHandling

= on tab |/O Parameters, set data input (map person process variable to input data with

name person)

* drag the End Events = End from the palette and drop it next to the user task, link it with the user

task

* drag the End Events = End from the palette and drop it next to the gateway, link it with the user

task
* double click on the gateway
> on tab Gateway, set the diverging direction for the gateway
> on tab Gateway, set conditions on sequence flow list
® —> goingtoendeventreturn person.isAdult() == true; withlanguage Java
® - goingtousertask return person.isAdult() == false; withlanguage Java

* save the file

Running and Using the Application

Running in Developer Mode

To run the microservice in dev mode, use . /mvnw clean compile quarkus:dev.

Running in JVM Mode

When you’re done playing with "dev-mode" you can run it as a standard Java application.

First compile it:

./mvnw package
Then run it:

java —-jar ./target/kogito-quickstart-runner.jar

Running in Native Mode

This same demo can be compiled into native code: no modifications required.

This implies that you no longer need to install a JVM on your production environment, as the runtime
technology is included in the produced binary, and optimized to run with minimal resource overhead.

Compilation will take a bit longer, so this step is disabled by default; let’s build again by enabling the
native profile:

./mvnw package -Dnative
After getting a cup of coffee, you’ll be able to run this binary directly:

./target/kogito-quickstart-runner

Testing the Application

To test your application, just send request to the service with giving the person as JSON payload.

curl -X POST http://localhost:8080/persons \
-H 'content-type: application/json' \
-H '"accept: application/json' \
-d '{"person": {"name":"John Quark", "age": 20}}'

In the response, the person should be approved as an adult and that should also be visible in the
response payload.

{"id":"daceld6a-a5fa-429d-b253-d6b66e265bbc", "person": {"adult":
true,"age":20,"name":"John Quark"}}

You can also verify that there are no more active instances

curl -X GET http://localhost:8080/persons \
-H 'content-type: application/json' \
-H 'accept: application/json'

To verify the non adult case, send another request with the age set to less than 18

curl -X POST http://localhost:8080/persons \
-H 'content-type: application/json' \
-H 'accept: application/json' \
-d '{"person": {"name":"Jenny Quark", "age": 15}}'

this time there should be one active instance, replace {uuid} with the id attribute taken from the

response

curl -X GET http://localhost:8080/persons/{uuid}/tasks \
-H 'content-type: application/json' \
-H 'accept: application/json'

You can get the details of the task by calling another endpoint, replace uuids with the values taken
from the responses (uuid-1 is the process instance id and uuid-2 is the task instance id). First
corresponds to the process instance id and the other to the task instance id.

curl -X GET http://localhost:8080/persons/{uuid-
1}/ChildrenHandling/{uuid-2} \

-H 'content-type: application/json' \

-H 'accept: application/json'

You can complete this person evaluation process instance by calling the same endpoint but with
POST, replace uuids with the values taken from the responses (uuid-1 is the process instance id
and uuid-2is the task instance id).

curl -X POST http://localhost:8080/persons/{uuid-
1}/ChildrenHandling/{uuid-2} \

-H 'content-type: application/json' \

-H '"accept: application/json' \

-d '{}'

Enabling persistence

Since 0.3.0 of Kogito, there is an option to enable persistence to preserve process instance state
across application restarts. That supports long running process instances that can be resumed at any

point in time.

Prerequisites

Kogito uses Infinispan as the persistence service so you need to have Infinispan server installed and
running. Version of the Infinispan is aligned with Quarkus BOM so make sure the right version is
installed.

Add dependencies to project

<dependency>
<groupId>io.quarkus</groupId>
<artifactId>quarkus-infinispan-client</artifactId>

</dependency>

<dependency>
<groupId>org.kie.kogito</groupId>
<artifactId>infinispan-persistence-addon</artifactId>
<version>S{kogito.version}</version>

</dependency>

Configure connection with Infinispan server

Add following into the src/main/resources/application.properties file (create the file if it does not
exist)

quarkus.infinispan-client.server-list=localhost:11222
0 Adjust the host and port number according to your Infinispan server installation.

Test with enabled persistence

After configuring persistence on the project level, you can test and verify that the process instance
state is preserved across application restarts.

* start Infinispan server
* build and run your project

* execute non adult use case

curl -X POST http://localhost:8080/persons \
-H 'content-type: application/json' \
-H 'accept: application/json' \
-d '{"person": {"name":"Jenny Quark",

age": 15}}'

You can also verify that there is active instance

curl -X GET http://localhost:8080/persons \
-H 'content-type: application/json' \
-H 'accept: application/json'
Restart your application while keeping Infinispan server up and running.
Check if you can see active instance which should have exactly the same id
curl -X GET http://localhost:8080/persons \

-H 'content-type: application/json' \
-H 'accept: application/json'

To learn more about persistence in Kogito visit this page

Using decision tables

Kogito allows to define business rules as decision tables using the Microsoft Excel file formats. To be
able to use such assets in your application, an additional dependency is required:

<dependency>
<groupId>org.kie.kogito</groupId>
<artifactId>drools-decisiontables</artifactId>
</dependency>

Once the dependency is added to the project, decision tables in x1s or x1sx format can be properly
handled.

References

* Kogito Website

* Kogito Documentation

https://github.com/kiegroup/kogito-runtimes/wiki/Persistence
https://kogito.kie.org
https://docs.jboss.org/kogito/release/latest/html_single

	Quarkus - Using Kogito to add business automation capabilities to an application
	Prerequisites
	Install modelling plugins in your IDE

	Architecture
	Business process
	Business rule

	Solution
	Creating the Maven Project
	Writing the application
	Running and Using the Application
	Running in Developer Mode
	Running in JVM Mode
	Running in Native Mode

	Testing the Application
	Enabling persistence
	Prerequisites
	Add dependencies to project
	Configure connection with Infinispan server
	Test with enabled persistence

	Using decision tables
	References

