Quarkus - Application Data Caching

In this quide, you will learn how to enable application data caching in any CDI
managed bean of your Quarkus application.

This technology is considered preview.

In preview, backward compatibility and presence in the ecosystem is not guaranteed.

o Specific improvements might require to change configuration or APIs and plans to
become stable are under way. Feedback is welcome on our mailing list or as issues in
our GitHub issue tracker.

For a full list of possible extension statuses, check our FAQ entry.

Prerequisites

To complete this guide, you need:

* less than 15 minutes

* an IDE

* JDK 1.8+ installed with JAVA_HOME configured appropriately
* Apache Maven 3.6.3

Scenario

Let’s imagine you want to expose in your Quarkus application a REST API that allows users to retrieve
the weather forecast for the next three days. The problem is that you have to rely on an external
meteorological service which only accepts requests for one day at a time and takes forever to answer.
Since the weather forecast is updated once every twelve hours, caching the service responses would
definitely improve your API performances.

We’ll do that using a single Quarkus annotation.

Solution

We recommend that you follow the instructions in the next sections and create the application step by
step. However, you can go right to the completed example.

Clone the Git repository: git clone https://github.com/quarkusio/quarkus-
quickstarts.git, ordownload an archive.

The solution is located in the cache—-quickstart directory.

https://groups.google.com/d/forum/quarkus-dev
https://github.com/quarkusio/quarkus/issues
https://quarkus.io/faq/#extension-status
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts/archive/master.zip

Creating the Maven project

First, we need to create a new Quarkus project using Maven with the following command:

mvn io.quarkus:quarkus-maven-plugin:1.5.2.Final:create \
-DprojectGroupId=org.acme \
-DprojectArtifactId=cache-quickstart \
-DclassName="org.acme.cache.WeatherForecastResource" \
-Dpath="/weather" \
-Dextensions="cache,resteasy-jsonb"

This command generates the Maven project with a REST endpoint and imports the cache and
resteasy-jsonb extensions.

If you already have your Quarkus project configured, you can add the cache extension to your project
by running the following command in your project base directory:

./mvnw quarkus:add-extension -Dextensions="cache"
This will add the following to your pom. xm1:

<dependency>
<groupId>io.quarkus</groupId>
<artifactId>quarkus-cache</artifactId>
</dependency>

Creating the REST API

Let’'s start by creating a service that will simulate an extremely slow call to the external
meteorological service. Create
src/main/java/org/acme/cache/WeatherForecastService.java with the following
content:

package org.acme.cache;
import java.time.LocalDate;
import javax.enterprise.context.ApplicationScoped;

@ApplicationScoped
public class WeatherForecastService {

public String getDailyForecast(LocalDate date, String city) {
try {
Thread.sleep(2000L); @
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
return date.getDayOfWeek() + " will be " + getDailyResult
(date.getDayOfMonth() % 4) + " in " + city,;
}

private String getDailyResult(int dayOfMonthModuloFour) {
switch (dayOfMonthModuloFour) {
case 0:
return "sunny";
case 1:
return "cloudy";
case 2:
return "chilly";
case 3:
return "rainy";
default:
throw new IllegalArgumentException();

@ This is where the slowness comes from.

We also need a class that will contain the response sent to the users when they ask for the next three
days weather forecast. Create src/main/java/org/acme/cache/WeatherForecast. java this
way:

package org.acme.cache;

import java.util.List;

public class WeatherForecast {
private List<String> dailyForecasts;
private long executionTimeInMs;

public WeatherForecast(List<String> dailyForecasts, long
executionTimeInMs) {
this.dailyForecasts = dailyForecasts;
this.executionTimeInMs = executionTimeInMs;

}

public List<String> getDailyForecasts() ({
return dailyForecasts;

}

public long getExecutionTimeInMs() {
return executionTimeInMs;

Now, we just need to update the generated WeatherForecastResource class to use the service
and response:

package org.acme.cache;

import java.time.LocalDate;
import java.util.Arrays;
import java.util.List;

import javax.inject.Inject;

import javax.ws.rs.GET,;

import javax.ws.rs.Path;

import javax.ws.rs.Produces;
import javax.ws.rs.core.MediaType;

import org.jboss.resteasy.annotations.jaxrs.QueryParam;

("/weather")
public class WeatherForecastResource {

WeatherForecastService service;

(MediaType.APPLICATION_JSON)
public WeatherForecast getForecast(String city,
long daysInFuture) { @
long executionStart = System.currentTimeMillis();
List<String> dailyForecasts = Arrays.asList(
service.getDailyForecast(LocalDate.now().plusDays
(daysInFuture), city),
service.getDailyForecast(LocalDate.now().plusDays
(daysInFuture + 1L), city),
service.getDailyForecast(LocalDate.now().plusDays
(daysInFuture + 2L), city)
)¢
long executionEnd = System.currentTimeMillis();
return new WeatherForecast(dailyForecasts, executionEnd -
executionStart);

}

@ If the daysInFuture query parameter is omitted, the three days weather forecast will start from
the current day. Otherwise, it will start from the current day plus the daysInFuture value.

We’'re all done! Let’s check if everything’s working.
First, run the application using . /mvnw compile quarkus:dev from the project directory.

Then, call http://localhost:8080/weather?city=Raleigh from a browser. After six long
seconds, the application will answer something like this:

http://localhost:8080/weather?city=Raleigh
http://localhost:8080/weather?city=Raleigh
http://localhost:8080/weather?city=Raleigh
http://localhost:8080/weather?city=Raleigh
http://localhost:8080/weather?city=Raleigh

{"dailyForecasts":["MONDAY will be cloudy in Raleigh","TUESDAY will
be chilly in Raleigh","WEDNESDAY will be rainy in
Raleigh"],"executionTimeInMs":6001}

@ The response content may vary depending on the day you run the code.

You can try calling the same URL again and again, it will always take six seconds to answer.

Enabling the cache

Now that your Quarkus application is up and running, let’s tremendously improve its response time by
caching the external meteorological service responses. Update the WeatherForecastService

class like this:

package org.acme.cache;
import java.time.LocalDate;
import javax.enterprise.context.ApplicationScoped;

import io.quarkus.cache.CacheResult;

public class WeatherForecastService {

(cacheName = "weather-cache") @
public String getDailyForecast(LocalDate date, String city) {
try {
Thread.sleep(2000L);
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
return date.getDayOfWeek() + " will be " + getDailyResult
(date.getDayOfMonth() % 4) + " in " + city,
}

private String getDailyResult(int dayOfMonthModuloFour) {
switch (dayOfMonthModuloFour) {
case 0:
return "sunny";
case 1:
return "cloudy";
case 2:
return "chilly";
case 3:
return "rainy";
default:
throw new IllegalArgumentException();

@ We only added this annotation (and the associated import of course).

Let’stry tocall http://localhost:8080/weather?city=Raleigh again. You’re still waiting a
long time before receiving an answer. This is normal since the server just restarted and the cache was
empty.

Wait a second! The server restarted by itself after the WeatherForecastService update? Yes, this
is one of Quarkus amazing features for developers called 1ive codinag.

Now that the cache was loaded during the previous call, try calling the same URL. This time, you
should get a super fast answer with an executionTimeInMs value close to O.

http://localhost:8080/weather?city=Raleigh
http://localhost:8080/weather?city=Raleigh
http://localhost:8080/weather?city=Raleigh
http://localhost:8080/weather?city=Raleigh
http://localhost:8080/weather?city=Raleigh

Let’s see what happens if we start from one day in the future using the http://localhost:8080/
weather?city=Raleigh&daysInFuture=1 URL. You should get an answer two seconds later
since two of the requested days were already loaded in the cache.

You can also try calling the same URL with a different city and see the cache in action again. The first
call will take six seconds and the following ones will be answered immediately.

Congratulations! You just added application data caching to your Quarkus application with a single line
of code!

Do you want to learn more about the Quarkus application data caching abilities? The following
sections will show you everything there is to know about it.

Caching annotations

Quarkus offers a set of annotations that can be used in a CDI managed bean to enable caching
abilities.

@CacheResult

Loads a method result from the cache without executing the method body whenever possible.

When a method annotated with @CacheResult is invoked, Quarkus will compute a cache key and use
it to check in the cache whether the method has been already invoked. If the method has one or more
arguments, the key computation is done from all the method arguments if none of them is annotated
with @CacheKey, or all the arguments annotated with @CacheKey otherwise. Each non-primitive
method argument that is part of the key must implement equals () and hashCode () correctly for
the cache to work as expected. This annotation can also be used on a method with no arguments, a
default key derived from the cache name is generated in that case. If a value is found in the cache, it is
returned and the annotated method is never actually executed. If no value is found, the annotated
method is invoked and the returned value is stored in the cache using the computed or generated key.

A method annotated with CacheResult is protected by a lock on cache miss mechanism. If several
concurrent invocations try to retrieve a cache value from the same missing key, the method will only
be invoked once. The first concurrent invocation will trigger the method invocation while the
subsequent concurrent invocations will wait for the end of the method invocation to get the cached
result. The lockTimeout parameter can be used to interrupt the lock after a given delay. The lock
timeout is disabled by default, meaning the lock is never interrupted. See the parameter Javadoc for
more details.

This annotation cannot be used on a method returning void.

@Cachelnvalidate

Removes an entry from the cache.

When a method annotated with @CacheInvalidate is invoked, Quarkus will compute a cache key
and use it to try to remove an existing entry from the cache. If the method has one or more arguments,
the key computation is done from all the method arguments if none of them is annotated with

http://localhost:8080/weather?city=Raleigh&daysInFuture=1
http://localhost:8080/weather?city=Raleigh&daysInFuture=1
http://localhost:8080/weather?city=Raleigh&daysInFuture=1
http://localhost:8080/weather?city=Raleigh&daysInFuture=1
http://localhost:8080/weather?city=Raleigh&daysInFuture=1
http://localhost:8080/weather?city=Raleigh&daysInFuture=1
http://localhost:8080/weather?city=Raleigh&daysInFuture=1

@CacheKey, or all the arguments annotated with @CacheKey otherwise. This annotation can also be
used on a method with no arguments, a default key derived from the cache name is generated in that
case. If the key does not identify any cache entry, nothing will happen.

If the @CacheResult or @CacheInvalidate annotations are used on a method
a
O with no parameters, a unique default cache key derived from the cache name will be
d generated and used.

@CachelnvalidateAll

When a method annotated with @CacheInvalidateAll is invoked, Quarkus will remove all entries
from the cache.

@CacheKey

When a method argument is annotated with @CacheKey, it is identified as a part of the cache key
during an invocation of a method annotated with @CacheResult or@CacheInvalidate.

This annotation is optional and should only be used when some of the method arguments are NOT part
of the cache key.

Configuring the underlying caching provider

This extension uses Caffeine as its underlying caching provider. Caffeine is a high performance, near
optimal caching library.

Caffeine configuration properties

Each of the Caffeine caches backing up the Quarkus application data caching extension can be
configured using the following properties in the application.properties file. By default caches
do not perform any type of eviction if not configured.

(r) You need to replace cache-name in all of the following properties with the real
- name of the cache you want to configure.

& Configuration property fixed at build time - All other configuration properties are overridable at
runtime

Configuration property Type Default

& quarkus.cache.caffeine."cache-name".initial-capacity
Minimum total size for the internal data structures. Providing a large enough

estimate at construction time avoids the need for expensive resizing operations n
later, but setting this value unnecessarily high wastes memory.

https://github.com/ben-manes/caffeine
#quarkus-cache-config-group-cache-config-caffeine-config_configuration
#quarkus-cache-config-group-cache-config-caffeine-config_quarkus.cache.caffeine.-cache-name-.initial-capacity

& quarkus.cache.caffeine."cache-name".maximum-size

Maximum number of entries the cache may contain. Note that the cache may
evict an entry before this limit is exceeded or temporarily exceed the
threshold while evicting. As the cache size grows close to the maximum, the
cache evicts entries that are less likely to be used again. For example, the cache
may evict an entry because it hasn’t been used recently or very often.

long

& quarkus.cache.caffeine."cache-name".expire-after-write

Specifies that each entry should be automatically removed from the cache once Duration
a fixed duration has elapsed after the entry’s creation, or the most recent @
replacement of its value.

& quarkus.cache.caffeine."cache-name".expire-after-access

Specifies that each entry should be automatically removed from the cache once Duration
a fixed duration has elapsed after the entry’s creation, the most recent @
replacement of its value, or its last read.

About the Duration format

The format for durations uses the standard java.time.Duration format. You
can learn more about it in the Duration#parse() javadoc.

o You can also provide duration values starting with a number. In this case, if the value
consists only of a number, the converter treats the value as seconds. Otherwise, PT
is implicitly prepended to the value to obtain a standard java.time.Duration
format.

Here’s what your cache configuration could look like:

quarkus.cache.caffeine."foo".initial-capacity=10 @®
quarkus.cache.caffeine."foo0" .maximum-size=20
quarkus.cache.caffeine."foo".expire-after-write=60S
quarkus.cache.caffeine."bar".maximum-size=1000 @

@ The foo cache is being configured.

@ The bar cache is being configured.

Context propagation

This extension relies on non-blocking calls internally for cache values computations. By default,
there’s no context propagation between the calling thread (from your application) and a thread that
performs such a computation.

The context propagation can be enabled for this extension by simply adding the quarkus-

#quarkus-cache-config-group-cache-config-caffeine-config_quarkus.cache.caffeine.-cache-name-.maximum-size
#quarkus-cache-config-group-cache-config-caffeine-config_quarkus.cache.caffeine.-cache-name-.expire-after-write
https://docs.oracle.com/javase/8/docs/api/java/time/Duration.html
#duration-note-anchor
#quarkus-cache-config-group-cache-config-caffeine-config_quarkus.cache.caffeine.-cache-name-.expire-after-access
https://docs.oracle.com/javase/8/docs/api/java/time/Duration.html
#duration-note-anchor
https://docs.oracle.com/javase/8/docs/api/java/time/Duration.html#parse-java.lang.CharSequence-

smallrye-context-propagation extension to your project.

If you see a javax.enterprise.context.ContextNotActiveException in your application
log during a cache computation, then you probably need to enable the context propagation.

You can find more information about context propagation in Quarkus in the dedicated guide.

Annotated beans examples

Implicit simple cache key

package org.acme.cache;

import javax.enterprise.context.ApplicationScoped;

import io.quarkus.cache.CacheInvalidate;
import io.quarkus.cache.CacheInvalidateAll;
import io.quarkus.cache.CacheResult;

public class CachedService ({

public
//

public

public

(cacheName = "foo")
Object load(Object key) { @
Call expensive service here.

(cacheName = "foo")
void invalidate(Object key) { @

(cacheName = "foo")
void invalidateAll() {

@ The cache key is implicit since there’s no @CacheKey annotation.

Explicit composite cache key

1

context-propagation

package org.acme.cache;
import javax.enterprise.context.Dependent;

import io.quarkus.cache.CacheInvalidate;
import io.quarkus.cache.CachelnvalidateAll;
import io.quarkus.cache.CacheKey;

import io.quarkus.cache.CacheResult;

@Dependent
public class CachedService {

@CacheResult(cacheName = "foo")
public String load(@CacheKey Object keyElementl, @CacheKey
Object keyElement2, Object notPartOfTheKey) { @
// Call expensive service here.

}

@CacheInvalidate(cacheName = "foo")

public void invalidate(@CacheKey Object keyElementl, @CacheKey
Object keyElement2, Object notPartOfTheKey) { @

}

@CacheInvalidateAll (cacheName = "foo")
public void invalidateAll() {
}

@ The cache key is explicitly composed of two elements. The method signature also contains a third
argument which is not part of the key.

Default cache key

package org.acme.cache;
import javax.enterprise.context.Dependent;

import io.quarkus.cache.CacheInvalidate;
import io.quarkus.cache.CachelnvalidateAll;
import io.quarkus.cache.CacheResult;

@Dependent
public class CachedService ({

@CacheResult(cacheName = "foo")
public String load() { @
// Call expensive service here.

}

@CacheInvalidate(cacheName = "foo")
public void invalidate() { @
}

@CachelInvalidateAll (cacheName = "foo")
public void invalidateAll() {
}

@ A unique default cache key derived from the cache name is generated and used.

Multiple annotations on a single method

13

package org.acme.cache;
import javax.inject.Singleton;

import io.quarkus.cache.CacheInvalidate;
import io.quarkus.cache.CachelnvalidateAll;
import io.quarkus.cache.CacheResult;

@Singleton
public class CachedService {

@CachelInvalidate(cacheName = "foo")

@CacheResult(cacheName = "foo")

public String forceCacheEntryRefresh(Object key) { @®
// Call expensive service here.

}

@CachelInvalidateAll (cacheName "foo")
@CacheInvalidateAll (cacheName = "bar")

public void multipleInvalidateAll(Object key) { @
}

@ This method can be used to force a refresh of the cache entry corresponding to the given key.

@ This method will invalidate all entries from the foo and bar caches with a single call.

	Quarkus - Application Data Caching
	Prerequisites
	Scenario
	Solution
	Creating the Maven project
	Creating the REST API
	Enabling the cache
	Caching annotations
	@CacheResult
	@CacheInvalidate
	@CacheInvalidateAll
	@CacheKey

	Configuring the underlying caching provider
	Caffeine configuration properties

	Context propagation
	Annotated beans examples
	Implicit simple cache key
	Explicit composite cache key
	Default cache key
	Multiple annotations on a single method

