Quarkus - Deploying on OpenShift
with S2I

This guide covers:

* The deployment of the application to OpenShift using S2I to build

Prerequisites

For this guide you need:

* roughly 5 minutes

* having access to an OpenShift cluster. Minishift is a valid option.

Solution

We recommend to follow the instructions in the next sections and build the application step by step.
However, you can go right to the completed example.

Clone the Git repository: git clone https://github.com/quarkusio/quarkus-
quickstarts.git, ordownload an archive.

The solution is located in the getting-started directory.

Deploying the application as GraalVM native
executable in OpenShift

In this section, we are going to leverage the S2I build mechanism of OpenShift. We use Quarkus'
GraalVM Native S2I Builder, and therefore do not need a Dockerfile in this approach. You do not
need to locally clone the Git repository, as it will be directly built inside OpenShift. We are going to
create an OpenShift build executing it:

https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts/archive/master.zip

To build the image on OpenShift

OoC new-app quay.io/quarkus/ubi-quarkus-native-s2i:19.3.1-
javall~https://github.com/quarkusio/quarkus—quickstarts.qgit
——-context-dir=qgetting-started --name=quarkus—-quickstart-native
oc logs -f bc/quarkus—-quickstart-native

To create the route
oCc expose svc/quarkus—-quickstart-native

Get the route URL

export URL="http://S(oc get route grep quarkus—-quickstart-native
| awk '{print $2}')"

echo SURL

curl SURL/hello/greeting/quarkus

Your application is accessible at the printed URL.

Note that GraalVM-based native build are more memory & CPU intensive than regular pure Java
builds. By default, builds are completed by pods using unbound resources, such as memory and CPU,
but note that your OpenShift Project may have limit ranges defined.

Testing indicates that the "hello, world" getting-started demo application builds in around 2 minutes
on typical hardware when the build is given 4 GB of RAM and 4 (virtual) CPUs for concurrency. You
therefore may need to increase the respective limits for OpenShift’s S21 build containers like so:

apiVersion: "v1"
kind: "BuildConfig"
metadata:
name: "quarkus—-quickstart-native"
spec:
resources:
limits:
cpu: '4'
memory: 4Gi

The following oc patch command adds these 1imits,and oc start-build launches a new build:

oc patch bc/quarkus-quickstart-native -p
"{"spec":{"resources":{"limits":{"cpu":"4", "memory":"4Gi"}}}}'

oc start-build quarkus—-quickstart-native

Building a minimal runtime container

As an alternative to creating an application from the S2I build process one can use chained builds to

https://docs.openshift.com/container-platform/3.11/dev_guide/builds/advanced_build_operations.html
https://docs.openshift.com/container-platform/3.11/admin_guide/limits.html#admin-guide-limits

produce a runner image that is minimal in size and does not contain all the dependencies required to
build the application.

The following command will create a chained build that is triggered whenever the quarkus-quickstart-
native is built.

oc new-build --name=minimal-quarkus—-quickstart-native \
-—-docker-image=registry.access.redhat.com/ubi7-dev-preview/ubi

-minimal \
-—-source-image=quarkus—-quickstart-native \
—-—-source-image-path='/home/quarkus/application:."' \

--dockerfile=$'FROM registry.access.redhat.com/ubi7-dev-
preview/ubi-minimal:latest\nCOPY application /application\nCMD
/application\nEXPOSE 8080'

To create a service from the minimal build run the following command:

oC new—app minimal-quarkus—-quickstart-native

OoC expose svc minimal-quarkus—-quickstart-native

The end result is an image that is less than 40 MB in size (compressed) and does not contain build
dependencies like GraalVM, OpenJDK, Maven, etc.

Creating build without config.

The minimal build is depending on the S2I build since it is using the output (native
runnable application) from the S2| build. However, you do not need to create an
application with oc new-app. Instead you could use oc new-build like this:

[oc new-build quay.io/quarkus/ubi-quarkus-native-
s2i:19.3.1-javall~https://qgithub.com/quarkusio/quarkus-
quickstarts.git \

——-context-dir=getting-started --name=quarkus
—quickstart-native

Deploying the application as Java application
in OpenShift

In this section, we are going to leverage the S2I build mechanism of OpenShift. We use a Java S2|
Builder, and therefore do not need a Dockerfile in this approach. You do not need to locally clone
the Git repository, as it will be directly built inside OpenShift. We are going to create an OpenShift
build executingit:

To build the image on OpenShift

oc new-app registry.access.redhat.com/ubi8/openjdk-
1l1:latest~https://github.com/quarkusio/quarkus—-quickstarts.qgit
—-context-dir=qgetting-started --name=quarkus—-quickstart

oc logs -f bc/quarkus—-quickstart

To create the route
oC expose svc/quarkus—-quickstart

Get the route URL

export URL="http://S(oc get route grep quarkus—-quickstart awk
"{print $2}')"

curl SURL/hello/greeting/quarkus

Your application is accessible at the printed URL.

The .s2i/environment file in the quickstart sets required variables for the S2I| Builder image to
find the Quarkus runner JAR, and copy the JARs from the 1ib/ directory:

MAVEN_S2I_ARTIFACT_DIRS=target
S2I_SOURCE_DEPLOYMENTS_FILTER=%*-runner.jar 1lib
JAVA_OPTIONS=-Dquarkus.http.host=0.0.0.0
AB_JOLOKIA_OFF=true

Going further

This guide covered the deployment of a Quarkus application on OpenShift using S2I. However, there is
much more, and the integration with these environments has been tailored to make Quarkus
applications execution very smooth. For instance, the health extension can be used for health check;
the configuration support allows mounting the application configuration using config map, the metric
extension produces data scrapable by Prometheus and so on.

	Quarkus - Deploying on OpenShift with S2I
	Prerequisites
	Solution
	Deploying the application as GraalVM native executable in OpenShift
	Building a minimal runtime container
	Deploying the application as Java application in OpenShift
	Going further

