
Quarkus - Security Guide
Quarkus security allows you to define security authorization requirements for your
code using annotations and/or configuration, and provides several ways to load
security authentication information using Quarkus extensions.

Authentication sources
Quarkus supports several sources to load authentication information from. You need to import at least
one of the following extensions in order for Quarkus to know how to find the authentication
information to check for authorizations:

Table 1. Security Extensions

Extension Description

quarkus-elytron-security-properties-file Provides support for simple properties files that
can be used for testing security. This supports
both embedding user info in
application.properties and standalone
properties files.

quarkus-security-jpa Provides support for authenticating via JPA.

quarkus-elytron-security-jdbc Provides support for authenticating via JDBC.

quarkus-elytron-security-oauth2 Provides support for OAuth2 flows using Elytron.
This extension will likely be deprecated soon and
replaced by a reactive Vert.x version.

quarkus-smallrye-jwt A MicroProfile JWT implementation that provides
support for authenticating using Json Web
Tokens. This also allows you to inject the token
and claims into the application as per the MP JWT
spec.

quarkus-oidc Provides support for authenticating via an OpenID
Connect provider such as Keycloak.

quarkus-keycloak-authorization Provides support for a policy enforcer using
Keycloak Authorization Services.

Please see the linked documents above for details on how to setup the various extensions.

Authenticating via HTTP
Quarkus has two built in authentication mechanisms for HTTP based FORM and BASIC auth. This
mechanism is pluggable however so extensions can add additional mechanisms (most notably OpenID
Connect for Keycloak based auth).

1

security-properties
security-jpa
security-jdbc
security-oauth2
security-jwt
security-openid-connect
security-keycloak-authorization

Basic Authentication
To enable basic authentication set quarkus.http.auth.basic=true. You must also have at least
one extension installed that provides a username/password based IdentityProvider, such as
Elytron JDBC.

Form Based Authentication
Quarkus provides form based authentication that works in a similar manner to traditional Servlet form
based auth. Unlike traditional form authentication the authenticated user is not stored in a HTTP
session, as Quarkus does not provide clustered HTTP session support. Instead the authentication
information is stored in an encrypted cookie, which can be read by all members of the cluster
(provided they all share the same encryption key).

The encryption key can be set using the quarkus.http.auth.session.encryption-key
property, and it must be at least 16 characters long. This key is hashed using SHA-256 and the
resulting digest is used as a key for AES-256 encryption of the cookie value. This cookie contains a
expiry time as part of the encrypted value, so all nodes in the cluster must have their clocks
synchronised. At one minute intervals a new cookie will be generated with an updated expiry time if
the session is in use.

The following properties can be used to configure form based auth:

 Configuration property fixed at build time - All other configuration properties are overridable at
runtime

Configuration property Type Default

 quarkus.http.auth.form.enabled

If form authentication is enabled boolean false

 quarkus.http.auth.form.login-page

The login page string
/login
.html

 quarkus.http.auth.form.error-page

The error page string
/error
.html

 quarkus.http.auth.form.landing-page

The landing page to redirect to if there is no saved page to redirect back to string
/index
.html

 quarkus.http.auth.form.redirect-after-login

Option to disable redirect to landingPage if there is no saved page to redirect
back to. Form Auth POST is followed by redirect to landingPage by default.

boolean true

2

security-jdbc
#quarkus-vertx-http-config-group-form-auth-config_configuration
#quarkus-vertx-http-config-group-form-auth-config_quarkus.http.auth.form.enabled
#quarkus-vertx-http-config-group-form-auth-config_quarkus.http.auth.form.login-page
#quarkus-vertx-http-config-group-form-auth-config_quarkus.http.auth.form.error-page
#quarkus-vertx-http-config-group-form-auth-config_quarkus.http.auth.form.landing-page
#quarkus-vertx-http-config-group-form-auth-config_quarkus.http.auth.form.redirect-after-login

 quarkus.http.auth.form.timeout

The inactivity (idle) timeout When inactivity timeout is reached, cookie is not
renewed and a new login is enforced.

Duration


PT30M

 quarkus.http.auth.form.new-cookie-interval

How old a cookie can get before it will be replaced with a new cookie with an
updated timeout, also referred to as "renewal-timeout". Note that smaller values
will result in slightly more server load (as new encrypted cookies will be
generated more often), however larger values affect the inactivity timeout as the
timeout is set when a cookie is generated. For example if this is set to 10
minutes, and the inactivity timeout is 30m, if a users last request is when the
cookie is 9m old then the actual timeout will happen 21m after the last request,
as the timeout is only refreshed when a new cookie is generated. In other words
no timeout is tracked on the server side; the timestamp is encoded and
encrypted in the cookie itself and it is decrypted and parsed with each request.

Duration


PT1M

 quarkus.http.auth.form.cookie-name

The cookie that is used to store the persistent session string

quarku
s-
creden
tial



About the Duration format

The format for durations uses the standard java.time.Duration format. You
can learn more about it in the Duration#parse() javadoc.

You can also provide duration values starting with a number. In this case, if the value
consists only of a number, the converter treats the value as seconds. Otherwise, PT
is implicitly prepended to the value to obtain a standard java.time.Duration
format.

Proactive Authentication
By default Quarkus does what we call proactive authentication. This means that if an incoming request
has a credential then that request will always be authenticated (even if the target page does not
require authentication).

This means that requests with an invalid credential will always be rejected, even for public pages. You
can change this behaviour and only authenticate when required by setting
quarkus.http.auth.proactive=false.

Authorization in REST endpoints and CDI
beans using annotations
Quarkus comes with built-in security to allow for Role-Based Access Control (RBAC) based on the

3

#quarkus-vertx-http-config-group-form-auth-config_quarkus.http.auth.form.timeout
https://docs.oracle.com/javase/8/docs/api/java/time/Duration.html
#duration-note-anchor
#quarkus-vertx-http-config-group-form-auth-config_quarkus.http.auth.form.new-cookie-interval
https://docs.oracle.com/javase/8/docs/api/java/time/Duration.html
#duration-note-anchor
#quarkus-vertx-http-config-group-form-auth-config_quarkus.http.auth.form.cookie-name
https://docs.oracle.com/javase/8/docs/api/java/time/Duration.html#parse-java.lang.CharSequence-
https://en.wikipedia.org/wiki/Role-based_access_control

common security annotations @RolesAllowed, @DenyAll, @PermitAll on REST endpoints and
CDI beans. An example of an endpoint that makes use of both JAX-RS and Common Security
annotations to describe and secure its endpoints is given in SubjectExposingResource Example.
Quarkus also provides the io.quarkus.security.Authenticated annotation that will permit
any authenticated user to access the resource (equivalent to @RolesAllowed("**")).

SubjectExposingResource Example

import java.security.Principal;

import javax.annotation.security.DenyAll;
import javax.annotation.security.PermitAll;
import javax.annotation.security.RolesAllowed;
import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.core.Context;
import javax.ws.rs.core.SecurityContext;

@Path("subject")
public class SubjectExposingResource {

 @GET
 @Path("secured")
 @RolesAllowed("Tester") ①
 public String getSubjectSecured(@Context SecurityContext sec) {
 Principal user = sec.getUserPrincipal(); ②
 String name = user != null ? user.getName() : "anonymous";
 return name;
 }

 @GET
 @Path("unsecured")
 @PermitAll③
 public String getSubjectUnsecured(@Context SecurityContext sec)
{
 Principal user = sec.getUserPrincipal(); ④
 String name = user != null ? user.getName() : "anonymous";
 return name;
 }

 @GET
 @Path("denied")
 @DenyAll⑤
 public String getSubjectDenied(@Context SecurityContext sec) {
 Principal user = sec.getUserPrincipal();
 String name = user != null ? user.getName() : "anonymous";
 return name;
 }
}

4

① This /subject/secured endpoint requires an authenticated user that has been granted the role
"Tester" through the use of the @RolesAllowed("Tester") annotation.

② The endpoint obtains the user principal from the JAX-RS SecurityContext. This will be non-null for
a secured endpoint.

③ The /subject/unsecured endpoint allows for unauthenticated access by specifying the
@PermitAll annotation.

④ This call to obtain the user principal will return null if the caller is unauthenticated, non-null if the
caller is authenticated.

⑤ The /subject/denied endpoint disallows any access regardless of whether the call is
authenticated by specifying the @DenyAll annotation.

Authorization of Web Endpoints using
configuration
Quarkus has an integrated plugable web security layer. If security is enabled all HTTP requests will
have a permission check performed to make sure they are permitted to continue.


Configuration authorization checks are executed before any annotation-based
authorization check is done, so both checks have to pass for a request to be allowed.

The default implementation allows you to define permissions using config in
application.properties. An example config is shown below:

quarkus.http.auth.policy.role-policy1.roles-allowed=user,admin
①

quarkus.http.auth.permission.roles1.paths=/roles-
secured/*,/other/*,/api/* ②
quarkus.http.auth.permission.roles1.policy=role-policy1

quarkus.http.auth.permission.permit1.paths=/public/*
③
quarkus.http.auth.permission.permit1.policy=permit
quarkus.http.auth.permission.permit1.methods=GET

quarkus.http.auth.permission.deny1.paths=/forbidden
④
quarkus.http.auth.permission.deny1.policy=deny

① This defines a role based policy that allows users with the user and admin roles. This is
referenced by later rules

② This is a permission set that references the previously defined policy. roles1 is an arbitrary name,
you can call the permission sets whatever you want.

③ This permission references the default permit built in policy to allow GET methods to /public.

5

This is actually a no-op in this example, as this request would have been allowed anyway.

④ This permission references the built in deny build in policy /forbidden. This is an exact path
match as it does not end with *.

Permissions are defined in config using permission sets. These are arbitrarily named permission
grouping. Each permission set must specify a policy that is used to control access. There are three
built in policies: deny, permit and authenticated, which permit all, deny all and only allow
authenticated users respectively.

It is also possible to define role based policies, as shown in the example. These policies will only allow
users with the specified roles to access the resources.

Matching on paths, methods
Permission sets can also specify paths and methods as a comma separated list. If a path ends with '*'
then it is considered to be a wildcard match and will match all sub paths, otherwise it is an exact match
and will only match that specific path:

quarkus.http.auth.permission.permit1.paths=/public/*,/css/*,/js/*,/
robots.txt
quarkus.http.auth.permission.permit1.policy=permit
quarkus.http.auth.permission.permit1.methods=GET,HEAD

Matching path but not method
If a request would match one or more permission sets based on the path, but does not match any due
to method requirements then the request is rejected.


Given the above permission set, GET /public/foo would match both the path
and method and thus be allowed, whereas POST /public/foo would match the
path but not the method and would thus be rejected.

Matching multiple paths: longest wins
Matching is always done on a longest path basis, less specific permission sets are not considered if a
more specific one has been matched:

quarkus.http.auth.permission.permit1.paths=/public/*
quarkus.http.auth.permission.permit1.policy=permit
quarkus.http.auth.permission.permit1.methods=GET,HEAD

quarkus.http.auth.permission.deny1.paths=/public/forbidden-folder/*
quarkus.http.auth.permission.deny1.policy=deny

6


Given the above permission set, GET /public/forbidden-folder/foo would
match both permission sets' paths, but because it matches the deny1 permission
set’s path on a longer match, deny1 will be chosen and the request will be rejected.

Matching multiple paths: most specific method wins
If a path is registered with multiple permission sets then any permission sets that specify a HTTP
method will take precedence and permissions sets without a method will not be considered (assuming
of course the method matches). In this instance, the permission sets without methods will only come
into effect if the request method does not match any of the sets with method permissions.

quarkus.http.auth.permission.permit1.paths=/public/*
quarkus.http.auth.permission.permit1.policy=permit
quarkus.http.auth.permission.permit1.methods=GET,HEAD

quarkus.http.auth.permission.deny1.paths=/public/*
quarkus.http.auth.permission.deny1.policy=deny



Given the above permission set, GET /public/foo would match both permission
sets' paths, but because it matches the permit1 permission set’s explicit method,
permit1 will be chosen and the request will be accepted. PUT /public/foo on
the other hand, will not match the method permissions of permit1 and so deny1
will be activated and reject the request.

Matching multiple paths and methods: both win
If multiple permission sets specify the same path and method (or multiple have no method) then both
permissions have to allow access for the request to proceed. Note that for this to happen both have to
either have specified the method, or have no method, method specific matches take precedence as
stated above:

quarkus.http.auth.policy.user-policy1.roles-allowed=user
quarkus.http.auth.policy.admin-policy1.roles-allowed=admin

quarkus.http.auth.permission.roles1.paths=/api/*,/restricted/*
quarkus.http.auth.permission.roles1.policy=user-policy1

quarkus.http.auth.permission.roles2.paths=/api/*,/admin/*
quarkus.http.auth.permission.roles2.policy=admin-policy1


Given the above permission set, GET /api/foo would match both permission sets'
paths, so would require both the user and admin roles.

7

Authenticated representation
For every authenticated resource, you can inject a SecurityIdentity instance to get the
authenticated identity information.

In some other contexts you may have other parallel representations of the same information (or parts
of it) such as SecurityContext for JAX-RS or JsonWebToken for JWT.

Configuration
There are two configuration settings that alter the RBAC behavior:

• quarkus.security.jaxrs.deny-unannotated-endpoints=true|false - if set to true,
the access will be denied for all JAX-RS endpoints by default. That is if the security annotations do
not define the access control. Defaults to false

• quarkus.security.deny-unannotated-members=true|false - if set to true, the access
will be denied to all CDI methods and JAX-RS endpoints that do not have security annotations but
are defined in classes that contain methods with security annotations. Defaults to false.

Registering Security Providers
When running in native mode the default behavior for Graal native image generation is to only include
the main "SUN" provider unless you have enabled SSL, in which case all security providers are
registered. If you are not using SSL, then you can selectively register security providers by name using
the quarkus.security.security-providers property. The following example illustrates
configuration to register the "SunRsaSign" and "SunJCE" security providers:

Example Security Providers Configuration

quarkus.security.security-providers=SunRsaSign,SunJCE
...

Security Identity Customization
Internally, the identity providers create and update an istance of the
io.quarkus.security.identity.SecurityIdentity class which holds the principal, roles,
credentials which were used to authenticate the client (user) and other security attributes. An easy
option to customize SecurityIdentity is to register a custom SecurityIdentityAugmentor,
for example, the augmentor below adds an addition role:

8

import io.quarkus.security.identity.AuthenticationRequestContext;
import io.quarkus.security.identity.SecurityIdentity;
import io.quarkus.security.identity.SecurityIdentityAugmentor;
import io.quarkus.security.runtime.QuarkusSecurityIdentity;
import io.smallrye.mutiny.Uni;

import javax.enterprise.context.ApplicationScoped;
import java.util.function.Supplier;

@ApplicationScoped
public class RolesAugmentor implements SecurityIdentityAugmentor {

 @Override
 public int priority() {
 return 0;
 }

 @Override
 public Uni<SecurityIdentity> augment(SecurityIdentity identity,
AuthenticationRequestContext context) {
 return context.runBlocking(build(identity));
 }

 private Supplier<SecurityIdentity> build(SecurityIdentity
identity) {
 if(identity.isAnonymous()) {
 return () -> identity;
 } else {
 // create a new builder and copy principal, attributes,
credentials and roles from the original
 QuarkusSecurityIdentity.Builder builder =
QuarkusSecurityIdentity.builder()
 .setPrincipal(identity.getPrincipal())
 .addAttributes(identity.getAttributes())
 .addCredentials(identity.getCredentials())
 .addRoles(identity.getRoles());

 // add custom role source here
 builder.addRole("dummy");
 return builder::build;
 }
 }
}

Reactive Security
If you are going to use security in a reactive environment, you will likely need SmallRye Context

9

Propagation:

<dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-smallrye-context-propagation</artifactId>
</dependency>

This will allow you to propagate the identity throughout the reactive callbacks. You also need to make
sure you are using an executor that is capable of propagating the identity (e.g. no
CompletableFuture.supplyAsync), to make sure that quarkus can propagate it. For more
information see the Context Propagation Guide.

10

context-propagation

	Quarkus - Security Guide
	Authentication sources
	Authenticating via HTTP
	Basic Authentication
	Form Based Authentication
	Proactive Authentication

	Authorization in REST endpoints and CDI beans using annotations
	Authorization of Web Endpoints using configuration
	Matching on paths, methods
	Matching path but not method
	Matching multiple paths: longest wins
	Matching multiple paths: most specific method wins
	Matching multiple paths and methods: both win

	Authenticated representation
	Configuration
	Registering Security Providers

	Security Identity Customization
	Reactive Security

