
Quarkus - Using a Credentials
Provider

Interacting with a datastore typically implies first connecting using credentials.
Those credentials will allow the client to be identified, authenticated and
eventually authorized. Username/password based authentication is very common,
but that is not by any means the only one. Such credentials information may
appear in the application configuration, but it is becoming increasingly popular to
store this type of sensitive information in secure stores, such as HashiCorp Vault,
Azure Key Vault or the AWS Secrets Manager to name just a few.

To bridge datastores that consume credentials, which can take different forms, and secure stores that
provide those credentials, Quarkus introduces an intermediate abstraction called Credentials
Provider, that some extensions may support to consume credentials (e.g. agroal), and some
others may implement to produce credentials (e.g. vault).

This Service Programming Interface (SPI) may also be used by implementers that want to support
custom providers not yet implemented in Quarkus (e.g. Azure Key Vault).

Currently, the Credentials Provider interface is implemented by the vault extension, and is
supported by the following credentials consumer extensions:

• agroal

• reactive-db2-client

• reactive-mysql-client

• reactive-pg-client

All extensions that rely on username/password authentication also allow setting configuration
properties in the application.properties as an alternative. But the Credentials Provider
is the only option if credentials are generated (e.g. Vault Dynamic DB Credentials) or if a
custom credentials provider is required.

This guide will show how to use the Credentials Provider provided in the vault extension, then
we will look at implementing a custom Credentials Provider, and finally we will talk about
additional considerations regarding implementing a Credentials Provider in a new extension.



This technology is considered preview.

In preview, backward compatibility and presence in the ecosystem is not guaranteed.
Specific improvements might require to change configuration or APIs and plans to
become stable are under way. Feedback is welcome on our mailing list or as issues in
our GitHub issue tracker.

For a full list of possible extension statuses, check our FAQ entry.

1

https://groups.google.com/d/forum/quarkus-dev
https://github.com/quarkusio/quarkus/issues
https://quarkus.io/faq/#extension-status

Prerequisites
To complete this guide, you need:

• roughly 20 minutes

• an IDE

• JDK 1.8+ installed with JAVA_HOME configured appropriately

• Apache Maven 3.6.3

• Docker installed

Vault Credentials Provider
To configure a Vault Credentials Provider you need to provide the following properties:

quarkus.vault.credentials-provider.<name>.<property>=<value>

The <name> will be used in the consumer to refer to this provider. The <property> and <value>
fields are specific to the Vault Credentials Provider. For complete details, please refer to the
Vault Datasource guide.

For instance:

quarkus.vault.credentials-provider.mydatabase.kv-path=myapps/vault-
quickstart/db

Once defined, the mydatabase provider can be used in any extension that supports the
Credentials Provider interface. For instance in agroal:

configure your datasource
quarkus.datasource.db-kind = postgresql
quarkus.datasource.username = sarah
quarkus.datasource.credentials-provider = mydatabase
quarkus.datasource.jdbc.url =
jdbc:postgresql://localhost:5432/mydatabase

Note that quarkus.datasource.username is the original agroal property, whereas the
password property is not included because the value will come from the mydatabase credentials
provider we just defined. An alternative is to define both username and password in Vault and drop the
quarkus.datasource.username property from configuration. All consuming extensions do
support the ability to fetch both the username and password from the provider, or just the password.

2

vault-datasource

Custom Credentials Provider
Implementing a custom credentials provider is the only option when a vault product is not yet
supported in Quarkus, or if credentials need to be retrieved from a custom store.

The only interface to implement is:

public interface CredentialsProvider {

 String USER_PROPERTY_NAME = "user";
 String PASSWORD_PROPERTY_NAME = "password";

 Map<String, String> getCredentials(String
credentialsProviderName);

}

USER_PROPERTY_NAME and PASSWORD_PROPERTY_NAME are standard properties that should be
recognized by any consuming extension that support username/password based authentication.

It is required that implementations be valid @ApplicationScoped CDI beans.

Here is a simple example:

@ApplicationScoped
@Unremovable
public class MyCredentialsProvider implements CredentialsProvider {

 @Override
 public Map<String, String> getCredentials(String
credentialsProviderName) {

 Map<String, String> properties = new HashMap<>();
 properties.put(USER_PROPERTY_NAME, "hibernate_orm_test");
 properties.put(PASSWORD_PROPERTY_NAME, "hibernate_orm_test
");
 return properties;
 }

}

Note that we decided here to return both the username and the password.

This provider may be used in a datasource definition like this:

3

quarkus.datasource.db-kind=postgresql
quarkus.datasource.credentials-provider=custom
quarkus.datasource.jdbc.url=jdbc:postgresql://localhost:5431/hibern
ate_orm_test

It is also possible to pass configuration properties to the provider using standard MicroProfile Config
injection:

custom.foo=bar

And in the provider implementation:

@Inject
Config config;

@Override
public Map<String, String> getCredentials(String
credentialsProviderName) {

 System.out.println("MyCredentialsProvider called with foo=" +
config.getValue(credentialsProviderName + ".foo", String.class));
 ...

New Credentials Provider extension
When creating a custom credentials provider in a new extension, there are a few additional
considerations.

First, you need to name it to avoid collisions in case multiple credentials providers are available in the
project:

@ApplicationScoped
@Unremovable
@Named("my-credentials-provider")
public class MyCredentialsProvider implements CredentialsProvider {

It is the responsibility of the consumer to allow a credentials-provider-name property:

quarkus.datasource.credentials-provider = custom
quarkus.datasource.credentials-provider-name = my-credentials-
provider

4

The extension should allow runtime config, such as the CredentialsProviderConfig from the
vault extension to configure any custom property in the provider. For an AWS Secrets Manager
extension, this could be:

• region

• credentials-type

• secrets-id

Note also that some consumers such as agroal will add to their connection configuration any
properties returned by the credentials provider, not just the username and password. So when you
design the new credentials provider limit the properties to what would be understood by consumers,
or provide appropriate configuration options to support different modes.

5

	Quarkus - Using a Credentials Provider
	Prerequisites
	Vault Credentials Provider
	Custom Credentials Provider
	New Credentials Provider extension

