
Quarkus - Testing Your Application
Learn how to test your Quarkus Application. This guide covers:

• Testing in JVM mode

• Testing in native mode

• Injection of resources into tests

1. Prerequisites
To complete this guide, you need:

• less than 15 minutes

• an IDE

• JDK 1.8+ installed with JAVA_HOME configured appropriately

• Apache Maven 3.6.3

• The completed greeter application from the Getting Started Guide

2. Architecture
In this guide, we expand on the initial test that was created as part of the Getting Started Guide. We
cover injection into tests and also how to test native executables.

3. Solution
We recommend that you follow the instructions in the next sections and create the application step by
step. However, you can go right to the completed example.

Clone the Git repository: git clone https://github.com/quarkusio/quarkus-
quickstarts.git, or download an archive.

The solution is located in the getting-started-testing directory.

This guide assumes you already have the completed application from the getting-started
directory.

4. Recap of HTTP based Testing in JVM mode
If you have started from the Getting Started example you should already have a completed test,
including the correct pom.xml setup.

In the pom.xml file you should see 2 test dependencies:

1

getting-started
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts/archive/master.zip

<dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-junit5</artifactId>
 <scope>test</scope>
</dependency>
<dependency>
 <groupId>io.rest-assured</groupId>
 <artifactId>rest-assured</artifactId>
 <scope>test</scope>
</dependency>

quarkus-junit5 is required for testing, as it provides the @QuarkusTest annotation that controls
the testing framework. rest-assured is not required but is a convenient way to test HTTP
endpoints, we also provide integration that automatically sets the correct URL so no configuration is
required.

Because we are using JUnit 5, the version of the Surefire Maven Plugin must be set, as the default
version does not support Junit 5:

<plugin>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>${surefire-plugin.version}</version>
 <configuration>
 <systemPropertyVariables>

<java.util.logging.manager>org.jboss.logmanager.LogManager</java.ut
il.logging.manager>
 <maven.home>${maven.home}</maven.home>
 </systemPropertyVariables>
 </configuration>
</plugin>

We also set the java.util.logging system property to make sure tests will use the correct
logmanager and maven.home to ensure that custom configuration from
${maven.home}/conf/settings.xml is applied (if any).

The project should also contain a simple test:

2

https://maven.apache.org/surefire/maven-surefire-plugin/

package org.acme.getting.started.testing;

import io.quarkus.test.junit.QuarkusTest;
import org.junit.jupiter.api.Test;

import java.util.UUID;

import static io.restassured.RestAssured.given;
import static org.hamcrest.CoreMatchers.is;

@QuarkusTest
public class GreetingResourceTest {

 @Test
 public void testHelloEndpoint() {
 given()
 .when().get("/hello")
 .then()
 .statusCode(200)
 .body(is("hello"));
 }

 @Test
 public void testGreetingEndpoint() {
 String uuid = UUID.randomUUID().toString();
 given()
 .pathParam("name", uuid)
 .when().get("/hello/greeting/{name}")
 .then()
 .statusCode(200)
 .body(is("hello " + uuid));
 }

}

This test uses HTTP to directly test our REST endpoint. When the test is run the application will be
started before the test is run.

4.1. Controlling the test port
While Quarkus will listen on port 8080 by default, when running tests it defaults to 8081. This allows
you to run tests while having the application running in parallel.

3



Changing the test port

You can configure the ports used by tests by configuring quarkus.http.test-
port for HTTP and quarkus.http.test-ssl-port for HTTPS in your
application.properties:

quarkus.http.test-port=8083
quarkus.http.test-ssl-port=8446

0 will result in the use of a random port (assigned by the operating system).

Quarkus also provides RestAssured integration that updates the default port used by RestAssured
before the tests are run, so no additional configuration should be required.

4.2. Injecting a URI
It is also possible to directly inject the URL into the test which can make is easy to use a different
client. This is done via the @TestHTTPResource annotation.

Let’s write a simple test that shows this off to load some static resources. First create a simple HTML
file in src/main/resources/META-INF/resources/index.html :

<html>
 <head>
 <title>Testing Guide</title>
 </head>
 <body>
 Information about testing
 </body>
</html>

We will create a simple test to ensure that this is being served correctly:

4

package org.acme.getting.started.testing;

import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.net.URL;
import java.nio.charset.StandardCharsets;

import org.junit.jupiter.api.Assertions;
import org.junit.jupiter.api.Test;

import io.quarkus.test.common.http.TestHTTPResource;
import io.quarkus.test.junit.QuarkusTest;

@QuarkusTest
public class StaticContentTest {

 @TestHTTPResource("index.html") ①
 URL url;

 @Test
 public void testIndexHtml() throws Exception {
 try (InputStream in = url.openStream()) {
 String contents = readStream(in);
 Assertions.assertTrue(contents.contains("<title>Testing
Guide</title>"));
 }
 }

 private static String readStream(InputStream in) throws
IOException {
 byte[] data = new byte[1024];
 int r;
 ByteArrayOutputStream out = new ByteArrayOutputStream();
 while ((r = in.read(data)) > 0) {
 out.write(data, 0, r);
 }
 return new String(out.toByteArray(), StandardCharsets.
UTF_8);
 }
}

① This annotation allows you to directly inject the URL of the Quarkus instance, the value of the
annotation will be the path component of the URL

For now @TestHTTPResource allows you to inject URI, URL and String representations of the
URL.

5

5. Injection into tests
So far we have only covered integration style tests that test the app via HTTP endpoints, but what if
we want to do unit testing and test our beans directly?

Quarkus supports this by allowing you to inject CDI beans into your tests via the @Inject annotation
(in fact, tests in Quarkus are full CDI beans, so you can use all CDI functionality). Let’s create a simple
test that tests the greeting service directly without using HTTP:

package org.acme.getting.started.testing;

import javax.inject.Inject;

import org.junit.jupiter.api.Assertions;
import org.junit.jupiter.api.Test;

import io.quarkus.test.junit.QuarkusTest;

@QuarkusTest
public class GreetingServiceTest {

 @Inject ①
 GreetingService service;

 @Test
 public void testGreetingService() {
 Assertions.assertEquals("hello Quarkus", service.greeting(
"Quarkus"));
 }
}

① The GreetingService bean will be injected into the test

6. Applying Interceptors to Tests
As mentioned above Quarkus tests are actually full CDI beans, and as such you can apply CDI
interceptors as you would normally. As an example, if you want a test method to run within the context
of a transaction you can simply apply the @Transactional annotation to the method and the
transaction interceptor will handle it.

In addition to this you can also create your own test stereotypes. For example we could create a
@TransactionalQuarkusTest as follows:

6

@QuarkusTest
@Stereotype
@Transactional
@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.TYPE)
public @interface TransactionalQuarkusTest {
}

If we then apply this annotation to a test class it will act as if we had applied both the @QuarkusTest
and @Transactional annotations, e.g.:

@TransactionalQuarkusTest
public class TestStereotypeTestCase {

 @Inject
 UserTransaction userTransaction;

 @Test
 public void testUserTransaction() throws Exception {
 Assertions.assertEquals(Status.STATUS_ACTIVE,
userTransaction.getStatus());
 }

}

7. Testing Different Profiles
So far in all our examples we only start Quarkus once for all tests. Before the first test is run Quarkus
will boot, then all tests will run, then Quarkus will shutdown at the end. This makes for a very fast
testing experience however it is a bit limited as you can’t test different configurations.

To get around this Quarkus supports the idea of a test profile. If a test has a different profile to the
previously run test then Quarkus will be shut down and started with the new profile before running the
tests. This is obviously a bit slower, as it adds a shutdown/startup cycle to the test time, but gives a
great deal of flexibility.


In order to reduce the amount of times Quarkus needs to restart it is recommended
that you place all tests that need a specific profile into their own package, and then
run tests alphabetically.

7.1. Writing a Profile
To implement a test profile we need to implement
io.quarkus.test.junit.QuarkusTestProfile:

7

package org.acme.getting.started.testing;

import java.util.Collections;
import java.util.Map;
import java.util.Set;

import io.quarkus.test.junit.QuarkusTestProfile;

public class MockGreetingProfile implements QuarkusTestProfile {

 @Override
 public Map<String, String> getConfigOverrides() { ①
 return Collections.singletonMap("quarkus.resteasy.path",
"/api");
 }

 @Override
 public Set<Class<?>> getEnabledAlternatives() { ②
 return Collections.singleton(MockGreetingService.class);
 }

 @Override
 public String getConfigProfile() { ③
 return "test";
 }
}

① This method allows us to override configuration properties. Here we are changing the JAX-RS root
path.

② This method allows us to enable CDI @Alternative beans. This makes it easy to mock out
certain beans functionality.

③ This can be used to change the config profile. As this default is test this does nothing, but is
included for completeness.

Now we have defined our profile we need to include it on our test class. We do this with
@TestProfile(MockGreetingProfile.class).

All the test profile config is stored in a single class, which makes it easy to tell if the previous test ran
with the same configuration.

8. Mock Support
Quarkus supports the use of mock objects using two different approaches. You can either use CDI
alternatives to mock out a bean for all test classes, or use QuarkusMock to mock out beans on a per
test basis.

8

8.1. CDI @Alternative mechanism.
To use this simply override the bean you wish to mock with a class in the src/test/java directory,
and put the @Alternative and @Priority(1) annotations on the bean. Alternatively, a
convenient io.quarkus.test.Mock stereotype annotation could be used. This built-in stereotype
declares @Alternative, @Priority(1) and @Dependent. For example if I have the following
service:

@ApplicationScoped
public class ExternalService {

 public String service() {
 return "external";
 }

}

I could mock it with the following class in src/test/java:

@Mock
@ApplicationScoped ①
public class MockExternalService extends ExternalService {

 @Override
 public String service() {
 return "mock";
 }
}

① Overrides the @Dependent scope declared on the @Mock stereotype.

It is important that the alternative be present in the src/test/java directory rather than
src/main/java, as otherwise it will take effect all the time, not just when testing.

Note that at present this approach does not work with native image testing, as this would required the
test alternatives to be baked into the native image.

8.2. Mocking using QuarkusMock
The io.quarkus.test.junit.QuarkusMock class can be used to temporarily mock out any
normal scoped bean. If you use this method in a @BeforeAll method the mock will take effect for all
tests on the current class, while if you use this in a test method the mock will only take effect for the
duration of the current test.

This method can be used for any normal scoped CDI bean (e.g. @ApplicationScoped,
@RequestScoped etc, basically every scope except @Singleton and @Dependent).

9

An example usage could look like:

@QuarkusTest
public class MockTestCase {

 @Inject
 MockableBean1 mockableBean1;

 @Inject
 MockableBean2 mockableBean2;

 @BeforeAll
 public static void setup() {
 MockableBean1 mock = Mockito.mock(MockableBean1.class);
 Mockito.when(mock.greet("Stuart")).thenReturn("A mock for
Stuart");
 QuarkusMock.installMockForType(mock, MockableBean1.class);
①
 }

 @Test
 public void testBeforeAll() {
 Assertions.assertEquals("A mock for Stuart", mockableBean1
.greet("Stuart"));
 Assertions.assertEquals("Hello Stuart", mockableBean2.
greet("Stuart"));
 }

 @Test
 public void testPerTestMock() {
 QuarkusMock.installMockForInstance(new BonourGreeter(),
mockableBean2); ②
 Assertions.assertEquals("A mock for Stuart", mockableBean1
.greet("Stuart"));
 Assertions.assertEquals("Bonjour Stuart", mockableBean2
.greet("Stuart"));
 }

 @ApplicationScoped
 public static class MockableBean1 {

 public String greet(String name) {
 return "Hello " + name;
 }
 }

 @ApplicationScoped
 public static class MockableBean2 {

10

 public String greet(String name) {
 return "Hello " + name;
 }
 }

 public static class BonourGreeter extends MockableBean2 {
 @Override
 public String greet(String name) {
 return "Bonjour " + name;
 }
 }
}

① As the injected instance is not available here we use installMockForType, this mock is used for
both test methods

② We use installMockForInstance to replace the injected bean, this takes effect for the
duration of the test method.

Note that there is no dependency on Mockito, you can use any mocking library you like, or even
manually override the objects to provide the behaviour you require.

8.2.1. Further simplification with @InjectMock

Building on the features provided by QuarkusMock, Quarkus also allows users to effortlessly take
advantage of Mockito for mocking the beans supported by QuarkusMock. This functionality is
available via the @io.quarkus.test.junit.mockito.InjectMock annotation which is
available in the quarkus-junit5-mockito dependency.

Using @InjectMock, the previous example could be written as follows:

11

https://site.mockito.org/

@QuarkusTest
public class MockTestCase {

 @InjectMock
 MockableBean1 mockableBean1; ①

 @InjectMock
 MockableBean2 mockableBean2;

 @BeforeEach
 public void setup() {
 Mockito.when(mockableBean1.greet("Stuart")).thenReturn("A
mock for Stuart"); ②
 }

 @Test
 public void firstTest() {
 Assertions.assertEquals("A mock for Stuart", mockableBean1
.greet("Stuart"));
 Assertions.assertEquals(null, mockableBean2.greet("Stuart"
)); ③
 }

 @Test
 public void secondTest() {
 Mockito.when(mockableBean2.greet("Stuart")).thenReturn(
"Bonjour Stuart"); ④
 Assertions.assertEquals("A mock for Stuart", mockableBean1
.greet("Stuart"));
 Assertions.assertEquals("Bonjour Stuart", mockableBean2
.greet("Stuart"));
 }

 @ApplicationScoped
 public static class MockableBean1 {

 public String greet(String name) {
 return "Hello " + name;
 }
 }

 @ApplicationScoped
 public static class MockableBean2 {

 public String greet(String name) {
 return "Hello " + name;
 }
 }
}

12

① @InjectMock results in a mock being and is available in test methods of the test class (other test
classes are not affected by this)

② The mockableBean1 is configured here for every test method of the class

③ Since the mockableBean2 mock has not been configured, it will return the default Mockito
response.

④ In this test the mockableBean2 is configured, so it returns the configured response.

Although the test above is good for showing the capabilities of @InjectMock, it is not a good
representation of a real test. In a real test we would most likely configure a mock, but then test a bean
that uses the mocked bean. Here is an example:

13

@QuarkusTest
public class MockGreetingServiceTest {

 @InjectMock
 GreetingService greetingService;

 @Test
 public void testGreeting() {
 when(greetingService.greet()).thenReturn("hi");
 given()
 .when().get("/greeting")
 .then()
 .statusCode(200)
 .body(is("hi")); ①
 }

 @Path("greeting")
 public static class GreetingResource {

 final GreetingService greetingService;

 public GreetingResource(GreetingService greetingService) {
 this.greetingService = greetingService;
 }

 @GET
 @Produces("text/plain")
 public String greet() {
 return greetingService.greet();
 }
 }

 @ApplicationScoped
 public static class GreetingService {
 public String greet(){
 return "hello";
 }
 }
}

① Since we configured greetingService as a mock, the GreetingResource which uses the
GreetingService bean, we get the mocked response instead of the response of the regular
GreetingService bean

8.2.2. Using Spies instead of Mocks with @InjectSpy

Building on the features provided by InjectMock, Quarkus also allows users to effortlessly take
advantage of Mockito for spying on the beans supported by QuarkusMock. This functionality is

14

https://site.mockito.org/

available via the @io.quarkus.test.junit.mockito.InjectSpy annotation which is available
in the quarkus-junit5-mockito dependency.

Sometimes when testing you only need to verify that a certain logical path was taken, or you only need
to stub out a single method’s response while still executing the rest of the methods on the Spied clone.
Please see Mockito documentation for more details on Spy partial mocks. In either of those situations
a Spy of the object is preferable. Using @InjectSpy, the previous example could be written as
follows:

@QuarkusTest
public class SpyGreetingServiceTest {

 @InjectSpy
 GreetingService greetingService;

 @Test
 public void testDefaultGreeting() {
 given()
 .when().get("/greeting")
 .then()
 .statusCode(200)
 .body(is("hello"));

 Mockito.verify(greetingService, Mockito.times(1)).greet();
①
 }

 @Test
 public void testOverrideGreeting() {
 when(greetingService.greet()).thenReturn("hi"); ②
 given()
 .when().get("/greeting")
 .then()
 .statusCode(200)
 .body(is("hi")); ③
 }

 @Path("greeting")
 public static class GreetingResource {

 final GreetingService greetingService;

 public GreetingResource(GreetingService greetingService) {
 this.greetingService = greetingService;
 }

 @GET
 @Produces("text/plain")
 public String greet() {

15

https://javadoc.io/doc/org.mockito/mockito-core/latest/org/mockito/Mockito.html#spy-T-

 return greetingService.greet();
 }
 }

 @ApplicationScoped
 public static class GreetingService {
 public String greet(){
 return "hello";
 }
 }
}

① Instead of overriding the value, we just want to ensure that the greet method on our
GreetingService was called by this test.

② Here we are telling the Spy to return "hi" instead of "hello". When the GreetingResource
requests the greeting from GreetingService we get the mocked response instead of the
response of the regular GreetingService bean

③ We are verifying that we get the mocked response from the Spy.

8.2.3. Using @InjectMock with @RestClient

The @RegisterRestClient registers the implementation of the rest-client at runtime, and because
the bean needs to be a regular scope, you have to annotate your interface with
@ApplicationScoped.

@Path("/")
@ApplicationScoped
@RegisterRestClient
public interface GreetingService {

 @GET
 @Path("/hello")
 @Produces(MediaType.TEXT_PLAIN)
 String hello();
}

For the test class here is an example:

16

@QuarkusTest
public class GreetingResourceTest {

 @InjectMock
 @RestClient ①
 GreetingService greetingService;

 @Test
 public void testHelloEndpoint() {
 Mockito.when(greetingService.hello()).thenReturn("hello
from mockito");

 given()
 .when().get("/hello")
 .then()
 .statusCode(200)
 .body(is("hello from mockito"));
 }

}

① Indicate that this injection point is meant to use an instance of RestClient.

8.3. Mocking with Panache
If you are using the quarkus-hibernate-orm-panache or quarkus-mongodb-panache
extensions, check out the Hibernate ORM with Panache Mocking and MongoDB with Panache Mocking
documentation for the easiest way to mock your data access.

9. Starting services before the Quarkus
application starts
A very common need is to start some services on which your Quarkus application depends, before the
Quarkus application starts for testing. To address this need, Quarkus provides
@io.quarkus.test.common.QuarkusTestResource and
io.quarkus.test.common.QuarkusTestResourceLifecycleManager.

By simply annotating any test in the test suite with @QuarkusTestResource, Quarkus will run the
corresponding QuarkusTestResourceLifecycleManager before any tests are run. A test suite is
also free to utilize multiple @QuarkusTestResource annotations, in which case all the
corresponding QuarkusTestResourceLifecycleManager objects will be run before the tests.

Quarkus provides a few implementations of QuarkusTestResourceLifecycleManager out of the
box (see io.quarkus.test.h2.H2DatabaseTestResource which starts an H2 database, or
io.quarkus.test.kubernetes.client.KubernetesMockServerTestResource which
starts a mock Kubernetes API server), but it is common to create custom implementations to address
specific application needs. Common cases include starting docker containers using Testcontainers (an

17

hibernate-orm-panache#mocking
mongodb-panache#mocking
https://www.testcontainers.org/

example of which can be found here), or starting a mock HTTP server using Wiremock (an example of
which can be found here).

10. Test Bootstrap Configuration Options
There are a few system properties that can be used to tune the bootstrap of the test, specifically its
classpath.

• quarkus-bootstrap-offline - (boolean) if set by the user, depending on the value, will enable or
disable the offline mode for the Maven artifact resolver used by the bootstrap to resolve the
deployment dependencies of the Quarkus extensions used in the test. If the property is not set to
any value, the artifact resolver will use the system’s default (user’s settings.xml).

• quarkus-workspace-discovery - (boolean) controls whether the bootstrap artifact resolver should
look for the test dependencies among the projects in the current workspace and use their output
(classes) directories when setting up the classpath for the test to run. The default value is true.

• quarkus-classpath-cache - (boolean) enables or disables the bootstrap classpath cache. With the
number of the project dependencies growing, the dependency resolution will take more time which
could at some point become annoying. The Quarkus bootstrap allows to cache the resolved
classpath and store it in the output directory of the project. The cached classpath will be
recalculated only after any of the pom.xml file in the workspace has been changed. The cache
directory is also removed each time the project’s output directory is cleaned, of course. The
default value is true.

11. Native Executable Testing
It is also possible to test native executables using @NativeImageTest. This supports all the features
mentioned in this guide except injecting into tests (and the native executable runs in a separate non-
JVM process this is not really possible).

This is covered in the Native Executable Guide.

12. Running @QuarkusTest from an IDE
Most IDEs offer the possibility to run a selected class as JUnit test directly. For this you should set a
few properties in the settings of your chosen IDE:

• java.util.logging.manager (see Logging Guide)

• maven.home (only if there are any custom settings in ${maven.home}/conf/settings.mxl,
see Maven Guide)

12.1. Eclipse separate JRE definition
Copy your current "Installed JRE" definition into a new one, where you will add the properties as a new
VM arguments:

• -Djava.util.logging.manager=org.jboss.logmanager.LogManager

18

https://github.com/quarkusio/quarkus-quickstarts/blob/master/kafka-quickstart/src/test/java/org/acme/kafka/KafkaResource.java
http://wiremock.org/
https://github.com/geoand/quarkus-test-demo/blob/master/src/test/java/org/acme/getting/started/country/WiremockCountries.java
building-native-image
logging
maven-tooling

• -Dmaven.home=<path-to-your-maven-installation>

Use this JRE definition as your Quarkus project targeted runtime and the workaround will be applied
to any "Run as JUnit" configuration.

12.2. VSCode "run with" configuration
The settings.json placed in the root of your project directory or in the workspace will need the
workaround in your test configuration:

"java.test.config": [
 {
 "name": "quarkusConfiguration",
 "vmargs": ["
-Djava.util.logging.manager=org.jboss.logmanager.LogManager
-Dmaven.home=<path-to-your-maven-installation> ..."],
 ...
 },
 ...
]

12.3. IntelliJ JUnit template
Nothing needed in IntelliJ because the IDE will pick the systemPropertyVariables from the
surefire plugin configuration in pom.xml.

19

	Quarkus - Testing Your Application
	1. Prerequisites
	2. Architecture
	3. Solution
	4. Recap of HTTP based Testing in JVM mode
	4.1. Controlling the test port
	4.2. Injecting a URI

	5. Injection into tests
	6. Applying Interceptors to Tests
	7. Testing Different Profiles
	7.1. Writing a Profile

	8. Mock Support
	8.1. CDI @Alternative mechanism.
	8.2. Mocking using QuarkusMock
	8.3. Mocking with Panache

	9. Starting services before the Quarkus application starts
	10. Test Bootstrap Configuration Options
	11. Native Executable Testing
	12. �Running @QuarkusTest from an IDE
	12.1. Eclipse separate JRE definition
	12.2. VSCode "run with" configuration
	12.3. IntelliJ JUnit template

