Quarkus - Google Cloud Functions
(Serverless)

The quarkus—-google-cloud-functions extension allows you to use Quarkus
to build your Google Cloud Functions. Your functions can use injection annotations
from CDI or Spring and other Quarkus facilities as you need them.

As the Google Cloud Function Java engine is a new Beta feature of Google Cloud, this extension is
flagged as experimental.

This technology is considered experimental.

In experimental mode, early feedback is requested to mature the idea. There is no

o guarantee of stability nor long term presence in the platform until the solution
matures. Feedback is welcome on our mailing list or as issues in our GitHub issue
tracker.

For a full list of possible extension statuses, check our FAQ entry.

Prerequisites

To complete this guide, you need:

* less than 15 minutes

* JDK 11 (Google Cloud Functions requires JDK 11)
* Apache Maven 3.6.3

* A Google Cloud Account. Free accounts work.

* Cloud SDK CLI Installed

Solution

This quide walks you through generating a sample project followed by creating multiple functions
showing how to implements HttpFunction, BackgroundFunction and
RawBackgroundFunction in Quarkus.. Once built, you will be able to deploy the project to Google
Cloud.

Creating the Maven Deployment Project

Create an application with the quarkus—-google-cloud-functions extension. You can use the
following Maven command to create it:

https://groups.google.com/d/forum/quarkus-dev
https://github.com/quarkusio/quarkus/issues
https://github.com/quarkusio/quarkus/issues
https://quarkus.io/faq/#extension-status
https://cloud.google.com/
https://cloud.google.com/sdk

mvn io.quarkus:quarkus-maven-plugin:1.6.0.CR1l:create \
-DprojectGroupIld=org.acme \
-DprojectArtifactId=qgoogle-cloud-functions \
-DclassName="org.acme.quickstart.GreetingResource" \
-Dpath="/hello" \
-Dextensions="google-cloud-functions"

Login to Google Cloud

Login to Google Cloud is necessary for deploying the application and it can be done as follows:
gcloud auth login

At the time of this writing, Cloud Functions are still in beta so make sure to install the beta command
group.

gcloud components install beta

Creating the functions

For this example project, we will create three functions, one HttpFunction, one
BackgroundFunction (Storage event) and one RawBakgroundFunction (PubSub event).

Choose Your Function

The quarkus—-google-cloud-functions extension scans your project for a class that directly
implements the Google Cloud HttpFunction, BackgroundFunction or
RawBakgroundFunction interface. It must find a class in your project that implements one of these
interfaces or it will throw a build time failure. If it finds more than one function class, a build time
exception will also be thrown.

Sometimes, though, you might have a few related functions that share code and creating multiple
maven modules is just an overhead you don’t want to do. The extension allows you to bundle multiple
functions in one project and use configuration or an environment variable to pick the function you
want to deploy.

To configure the name of the function, you can use the following configuration property:
guarkus.google-cloud-functions.function=test

The quarkus.google-cloud-functions.function property tells Quarkus which function to
deploy. This can be overridden with an environment variable too.

The CDI name of the function class must match the value specified within the quarkus.google-
cloud-functions.function property. This must be done using the @Named annotation.

("test")
public class TestHttpFunction implements HttpFunction {

}

The HttpFunction

import javax.ws.rs.GET,;

import javax.ws.rs.Path;

import javax.ws.rs.Produces;

import javax.ws.rs.core.MediaType;

import java.io.Writer;

import javax.enterprise.context.ApplicationScoped;
import javax.inject.Inject;

import javax.inject.Named,;

import com.google.cloud.functions.HttpFunction;
import com.google.cloud.functions.HttpRequest;
import com.google.cloud.functions.HttpResponse;
import io.quarkus.gcp.function.test.service.GreetingService;

("httpFunction") @
@
public class HttpFunctionTest implements HttpFunction { ®
GreetingService greetingService; @

public void service(HttpRequest httpRequest, HttpResponse
httpResponse) throws Exception { ®
Writer writer = httpResponse.getWriter();
writer.write(greetingService.hello());

1. The @Named annotation allows to name the CDI bean to be used by the quarkus.google-
cloud-functions.function property, this is optional.

2. The function must be a CDI bean

3. This is a reqular Google Cloud Function implementation, so it needs to implement
com.google.cloud. functions.HttpFunction.

4. Injection works inside your function.

5. This is standard Google Cloud Function implementation, nothing fancy here.

The BackgroundFunction

This BackgroundFunction is triggered by a Storage event, you can use any events supported by
Google Cloud instead.

import javax.enterprise.context.ApplicationScoped;

import javax.inject.Inject;

import javax.inject.Named;

import com.google.cloud.functions.BackgroundFunction;

import com.google.cloud.functions.Context;

import io.quarkus.gcp.function.test.service.GreetingService;

("storageTest") @
@
public class BackgroundFunctionStorageTest implements
BackgroundFunction<BackgroundFunctionStorageTest.StorageEvent> { ®
GreetingService greetingService; @

public void accept(StorageEvent event, Context context) throws
Exception { ®
System.out.println("Receive event: " + event);
System.out.println("Be polite, say" + greetingService.
hello());
}

//
public static class StorageEvent { ®

public String name;

1. The @Named annotation allows to name the CDI bean to be used by the quarkus.google-
cloud-functions.function property, this is optional.

2. The function must be a CDI bean

3. This is a reqular Google Cloud Function implementation, so it needs to implement
com.google.cloud.functions.BackgroundFunction.

4. Injection works inside your function.
5. This is standard Google Cloud Function implementation, nothing fancy here.

6. This is the class the event will be deserialized to.

The RawBackgroundFunction

This RawBackgroundFunction is triggered by a PubSub event, you can use any events supported

by Google Cloud instead.

import javax.enterprise.context.ApplicationScoped;

import javax.inject.Inject;

import javax.inject.Named;

import com.google.cloud.functions.Context;

import com.google.cloud.functions.RawBackgroundFunction;
import io.quarkus.gcp.function.test.service.GreetingService;

("rawPubSubTest") @
@

public class RawBackgroundFunctionPubSubTest implements
RawBackgroundFunction { ®
GreetingService greetingService; @

public void accept(String event, Context context) throws
Exception { ®
System.out.println("PubSub event: " + event);
System.out.println("Be polite, say" + greetingService.
hello());
}

1. The @Named annotation allows to name the CDI bean to be used by the quarkus.google-
cloud-functions.function property, this is optional.

2. The function must be a CDI bean

3. This is a reqular Google Cloud Function implementation, so it needs to implement
com.google.cloud.functions.RawBackgroundFunction.

4. Injection works inside your function.

5. This is standard Google Cloud Function implementation, nothing fancy here.

Build and Deploy to Google Cloud

To build your application, you can package it using the standardmvn clean package command.

The result of the previous command is a single JAR file inside the target/deployment repository
that contains classes and dependencies of the project.

Then you will be able to use gcloud beta functions deploy command to deploy your function
to Google Cloud.

The first time you launch this command, you can have the following error message:

ERROR: (gcloud.beta.functions.deploy) OperationError:
code=7, message=Build Failed: Cloud Build has not been
used in project <project_name> before or it is
disabled. Enable it by visiting

A https://console.developers.google.com/apis/api/cloudbui
ld.googleapis.com/overview?project=<my-project> then
retry.

This means that Cloud Build is not activated yet. To overcome this error, open the
URL shown in the error, follow the instructions and then wait a few minutes before
retrying the command.

The HttpFunction

This is an example command to deploy your Ht tpFunction to Google Cloud:

gcloud beta functions deploy quarkus—-example-http \
—-—entry-point=io.quarkus.gcp.functions.QuarkusHttpFunction \
--runtime=javall --trigger-http --source=target/deployment

The entry point must always be set to
o io.quarkus.gcp.functions.QuarkusHttpFunction as this is the class that
integrates Cloud Functions with Quarkus.

This command will give you as output a httpsTrigger.url that points to your function.

The BackgroundFunction

Before deploying your function, you need to create a bucket.
gsutil mb gs://quarkus-hello

This is an example command to deploy your BackgroundFunction to Google Cloud, as the function
is triggered by a Storage event, it needs to use —--trigger-event
google.storage.object.finalize and the ——trigger-resource parameter with the name
of a previously created bucket:

gcloud beta functions deploy quarkus-example-storage \
-—entry
-point=io.quarkus.qgcp.functions.QuarkusBackgroundFunction \
-—trigger-resource quarkus-hello --trigger-event
google.storage.object.finalize \
—--runtime=javall --source=target/deployment

The entry point must always be set to
o io.quarkus.gcp.functions.QuarkusBackgroundFunction as this is the
class that integrates Cloud Functions with Quarkus.

The RawBackgroundFunction

This is an example command to deploy your RawBackgroundFunction to Google Cloud, as the
function is triggered by a PubSub event, it needs to use --trigger-event
google.pubsub.topic.publish and the -—trigger-resource parameter with the name of a
previously created topic:

gcloud beta functions deploy quarkus—-example-pubsub \
—-—entry-point=io.quarkus.gcp.functions.QuarkusBackgroundFunction

\

—--runtime=javall --trigger-resource hello_topic --trigger-event
google.pubsub.topic.publish --source=target/deployment

The entry point must always be set to
o io.quarkus.gcp.functions.QuarkusBackgroundFunction as this is the
class that integrates Cloud Functions with Quarkus.

Testing locally

The easiest way to locally test your function is using the Cloud Function invoker JAR.
You can download it via Maven using the following command:
mvn dependency:copy \
-Dartifact='com.google.cloud.functions.invoker:java-function

—-invoker:1.0.0-betal' \
-DoutputDirectory=.

The HttpFunction

Totestan HttpFunction, you can use this command to launch your function locally.

java —-jar java-function-invoker-1.0.0-betal.jar \
-—-classpath target/google-cloud-functions-1.0-SNAPSHOT-runner.jar
\

-—target io.quarkus.gcp.functions.QuarkusHttpFunction
Your endpoints will be available on http://localhost:8080.

The BackgroundFunction

For background functions, you launch the invoker with a target «class of
io.quarkus.gcp.functions.BackgroundFunction.

java —-jar java-function-invoker-1.0.0-betal.jar \
-—-classpath target/google-cloud-functions-1.0-SNAPSHOT-runner.jar
\

-—target io.quarkus.gcp.functions.QuarkusBackgroundFunction
Then you can call your background function via an HTTP call with a payload containing the event:
curl localhost:8080 -d '{"data":{"name":"hello.txt"}}'

This will call your Storage background function with an event {"name":"hello.txt"}, so an event
onthe hello. txt file.

The RawBackgroundFunction

For background functions, you launch the invoker with a target «class of
io.quarkus.gcp.functions.BackgroundFunction.

java —-jar java-function-invoker-1.0.0-betal.jar \
--classpath target/google-cloud-functions-1.0-SNAPSHOT-runner.jar
\

-—target io.quarkus.gcp.functions.QuarkusBackgroundFunction
Then you can call your background function via an HTTP call with a payload containing the event:
curl localhost:8080 -d '{"data":{"greeting":"world"}}'

This will call your PubSub background function with a PubSubMessage {"greeting" : "world"}.

http://localhost:8080

	Quarkus - Google Cloud Functions (Serverless)
	Prerequisites
	Solution
	Creating the Maven Deployment Project
	Login to Google Cloud
	Creating the functions
	Choose Your Function
	The HttpFunction
	The BackgroundFunction
	The RawBackgroundFunction

	Build and Deploy to Google Cloud
	The HttpFunction
	The BackgroundFunction
	The RawBackgroundFunction

	Testing locally
	The HttpFunction
	The BackgroundFunction
	The RawBackgroundFunction

