Using Transactions in Quarkus

Quarkus comes with a Transaction Manager and uses it to coordinate and expose
transactions to your applications. Each extension dealing with persistence will
integrate with it for you. And you will explicitly interact with transactions via CDI.
This quide will walk you through all that.

Setting it up

You don’t need to worry about setting it up most of the time as extensions needing it will simply add it
as a dependency. Hibernate ORM for example will include the transaction manager and set it up

properly.
You might need to add it as a dependency explicitly if you are using transactions directly without

Hibernate ORM for example. Add the following to your pom. xml:

<dependency>
<groupIld>io.quarkus</groupId>
<artifactId>quarkus—-narayana-jta</artifactId>
</dependency>

Starting and stopping transactions: defining
your boundaries

You can define your transaction boundaries the easy way, or the less easy way :)

Declarative approach

The easiest way to define your transaction boundaries is to use the @Transactional annotation on
your entry method (javax.transaction.Transactional).



public class SantaClausService ({

ChildDAO childDAO;
SantaClausDAO santaDAOQ;

@
public void getAGiftFromSanta(Child child, String
giftDescription) {
// some transaction work
Gift gift = childDAO.addToGiftList(child, giftDescription);
if (gift == null) {
throw new OMGGiftNotRecognizedException(); @

}

else {
santaDAO.addToSantaTodoList(gift);

}

@ This annotation defines your transaction boundaries and will wrap this call within a transaction.

@ ARuntimeException crossing the transaction boundaries will rollback the transaction.

@Transactional can be used to control transaction boundaries on any CDI bean at the method level
or at the class level to ensure every method is transactional. That includes REST endpoints.

You can control whether and how the transaction is started with parameters on @Transactional:
* @Transactional (REQUIRED) (default): starts a transaction if none was started, stays with the
existing one otherwise.

* @Transactional (REQUIRES_NEW): starts a transaction if none was started ; if an existing one
was started, suspends it and starts a new one for the boundary of that method.

* @Transactional (MANDATORY): fails if no transaction was started ; works within the existing
transaction otherwise.

* @Transactional (SUPPORTS): if a transaction was started, joins it ; otherwise works with no
transaction.

* @Transactional (NOT_SUPPORTED): if a transaction was started, suspends it and works with
no transaction for the boundary of the method ; otherwise works with no transaction.

°* @Transactional (NEVER): if a transaction was started, raises an exception ; otherwise works
with no transaction.

REQUIRED or NOT_SUPPORTED are probably the most useful ones. This is how you decide whether a
method is to be running within or outside a transaction. Make sure to check the JavaDoc for the
precise semantic.

The transaction context is propagated to all calls nested in the @Transactional method as you



would expect (in this example childDAO.addToGiftList () and
santaDAO.addToSantaTodolList()). The transaction will commit unless a runtime exception
crosses the method boundary. You can override whether an exception forces the rollback or not by
using@Transactional (dontRollbackOn=SomeException.class) (orrollbackOn).

You can also programmatically ask for a transaction to be marked for rollback. Inject a
TransactionManager for this.

public class SantaClausService ({

TransactionManager tm; @
ChildDAO childDAO;
SantaClausDAO santaDAO;

public void getAGiftFromSanta(Child child, String
giftDescription) {
// some transaction work
Gift gift = childDAO.addToGiftList(child, giftDescription);
if (gift == null) {
tm.setRollbackOnly(); @

}

else {
santaDAO.addToSantaTodoList(gift);

}

@ Inject the TransactionManager to be able to activate setRol1lbackOnly semantic.

@ Programmatically decide to set the transaction for rollback.

Transaction Configuration

Advanced configuration of the transaction is possible with the use of the
@TransactionConfiguration annotation that is set in addition to the standard
@Transactional annotation on your entry method or at the class level.

The @TransactionConfiguration annotation allows to set a timeout property, in seconds, that
applies to transactions created within the annotated method.

This annotation may only be placed on the top level method delineating the transaction. Annotated
nested methods once a transaction has started will throw an exception.

If defined on a class, it is equivalent to defining it on all the methods of the class marked with
@Transactional. The configuration defined on a method takes precedence over the configuration
defined on a class.



Reactive extensions

If your @Transactional-annotated method returns a reactive value, such as:

* CompletionStage (from the JDK)
* Publisher (from Reactive-Streams)

* Any type which can be converted to one of the two previous types using Reactive Type Converters

then the behaviour is a bit different, because the transaction will not be terminated until the returned
reactive value is terminated. In effect, the returned reactive value will be listened to and if it
terminates exceptionally the transaction will be marked for rollback, and will be committed or rolled-
back only at termination of the reactive value.

This allows your reactive methods to keep on working on the transaction asynchronously until their
work is really done, and not just until the reactive method returns.

If you need to propagate your transaction context across your reactive pipeline, please see the
Context Propagation guide.

APl approach

The less easy way is to inject a UserTransaction and use the various transaction demarcation
methods.

public class SantaClausService ({

ChildDAO childDAO;
SantaClausDAO santaDAOQ;
UserTransaction transaction;

public void getAGiftFromSanta(Child child, String
giftDescription) {
// some transaction work
try {
transaction.begin();
Gift gift = childDAO.addToGiftList(child,
giftDescription);
santaDAO.addToSantaTodoList(gift);
transaction.commit();
}
catch(SomeException e) {
// do something on Tx failure
transaction.rollback();


context-propagation

o You cannot use UserTransaction in a method having a transaction started by a
@Transactional call.

Configuring the transaction timeout

You can configure the default transaction timeout, the timeout that applies to all transactions
managed by the transaction manager, via the property quarkus.transaction-
manager.default-transaction-timeout, specified as a duration.

The format for durations uses the standard java.time.Duration format. You
can learn more about it in the Duration#parse() javadoc.

o You can also provide duration values starting with a number. In this case, if the value
consists only of a number, the converter treats the value as seconds. Otherwise, PT
is implicitly prepended to the value to obtain a standard java.time.Duration
format.

The default value is 60 seconds.

Configuring transaction node name identifier

Narayana, as the underlying transaction manager, has a concept of a unique node identifier. This is
important if you consider using XA transactions that involve multiple resources.

The node name identifier plays a crucial part in the identification of a transaction. The node name
identifier is forged into the transaction id when the transaction is created. Based on the node name
identifier, the transaction manager is capable of recognizing the XA transaction counterparts created
in database or JMS broker. The identifier makes possible for the transaction manager to roll back the
transaction counterparts during recovery.

The node name identifier needs to be unique per transaction manager deployment. And the node
identifier needs to be stable over the transaction manager restarts.

The node name identifier may be configured via the property quarkus.transaction-
manager.node-name.

Why always having a transaction manager?

Does it work everywhere | want to?

Yep, it works in your Quarkus application, in your IDE, in your tests, because all of these are
Quarkus applications. JTA has some bad press for some people. | don’t know why. Let’s just say
that this is not your grand’pa’s JTA implementation. What we have is perfectly embeddable and
lean.

Does it do 2 Phase Commit and slow down my app?

No, this is an old folk tale. Let’s assume it essentially comes for free and let you scale to more


https://docs.oracle.com/javase/8/docs/api/java/time/Duration.html#parse-java.lang.CharSequence-

complex cases involving several datasources as needed.

I don’t need transaction when | do read only operations, it’s faster.

Wrong.

First off, just disable the transaction by marking your transaction boundary with
@Transactional (NOT_SUPPORTED) (or NEVER or SUPPORTS depending on the semantic you
want).

Second, it’s again fairy tale that not using transaction is faster. The answer is, it depends on your
DB and how many SQL SELECTs you are making. No transaction means the DB does have a single
operation transaction context anyways.

Third, when you do several SELECTSs, it’s better to wrap them in a single transaction because they
will all be consistent with one another. Say your DB represents your car dashboard, you can see the
number of kilometers remaining and the fuel gauge level. By reading it in one transaction, they will
be consistent. If you read one and the other from two different transactions, then they can be
inconsistent. It can be more dramatic if you read data related to rights and access management for
example.

Why do you prefer JTA vs Hibernate’s transaction management API

Managing the transactions manually via entityManager.getTransaction() .begin() and
friends lead to a butt ugly code with tons of try catch finally that people get wrong. Transactions
are also about JMS and other database access, so one APl makes more sense.

It’s a mess because | don’t know if my JPA persistence unit is using JTA or Resource-level
Transaction

It’s not a mess in Quarkus :) Resource-level was introduced to support JPA in a non managed
environment. But Quarkus is both lean and a managed environment so we can safely always
assume we are in JTA mode. The end result is that the difficulties of running Hibernate ORM + CDI
+ a transaction manager in Java SE mode are solved by Quarkus.



	Using Transactions in Quarkus
	Setting it up
	Starting and stopping transactions: defining your boundaries
	Declarative approach
	Transaction Configuration
	Reactive extensions
	API approach

	Configuring the transaction timeout
	Configuring transaction node name identifier
	Why always having a transaction manager?

