Quarkus - Funqgy

Quarkus Fungy is part of Quarkus’s serverless strategy and aims to provide a
portable Java API to write functions deployable to various FaaS environments like
AWS Lambda, Azure Functions, Knative, and Knative Events (Cloud Events). It is
also usable as a standalone service.

Another goal of Funqy is to create an RPC framework that is as small and as optimized as possible for
the Quarkus runtime. This means sacrificing a little bit on flexibility to provide a runtime that has little
to no overhead. Fungy should never become more complicated than you see in this initial doc.

Funqgy Basics

The Fungy API is simple. Annotate a method with @Fung. This method may only have one optional
input parameter and may or may not return a response.
import io.quarkus.funqy.Fung;

public class GreetingFunction {

public String greet(String name) {
return "Hello " + name;

Java classes can also be used as input and output and must follow the Java bean convention and have
a default constructor. The Java type that is declared as the parameter or return type is the type that
will be expected by the Funqgy runtime. Funqy does type introspection at build time to speed up boot
time, so any derived types will not be noticed by the Fungy marshalling layer at runtime.

Here’s an example of using a POJO as input and output types.



public class GreetingFunction {
public static class Friend {
String name;

public String getName() { return name; }
public void setName(String name) { this.name = name; }

}

public static class Greeting ({
String msg;

public Greeting() {}
public Greeting(String msg) { this.msg = msqg }

public String getMessage() { return msqg; }
public void setMessage(String msqg) { this.msg = msg; }

public Greeting greet(Friend friend) {
return new Greeting("Hello " + friend.getName());

}

Async Reactive Types

Fungy supports the Smallrye Mutiny Un1i reactive type as a return type. The only requirement is that
the Uni must fill out the generic type.

import io.quarkus.funqy.Fung;
import io.smallrye.mutiny.Uni;

public class GreetingFunction {

public Uni<Greeting> reactiveGreeting(String name) ({

}

Function Names

The function name defaults to the method name and is case sensitive. If you want your function
referenced by a different name, parameterize the @Fung annotation as follows:


https://smallrye.io/smallrye-mutiny

import io.quarkus.funqy.Fung;
public class GreetingFunction {

("HelloWorld")
public String greet(String name) {
return "Hello " + name;

Fungy DI

Each Funqgy Java class is a Quarkus Arc component and supports dependency injection through CDI or
Spring DI. Spring DI requires including the quarkus—-spring-di dependency in your build.

The default object lifecycle for a Funqy class is @Dependent.

import io.quarkus.funqy.Fung;

import javax.inject.Inject;

import javax.enterprise.context.ApplicationScoped;
public class GreetingFunction {

GreetingService service;

public Greeting greet(Friend friend) {
Greeting greeting = new Greeting();
greeting.setMessage(service.greet(friend.getName()));
return greeting;

Context injection

You can inject contextual information that is specific to the Fungy runtime or specific to the Funqgy
binding you are using (lambda, azure, cloud events, etc.).

o We do not recommend injecting contextual information specific to a runtime. Keep
your functions portable.

Contextual information is injected via the @Context annotation which can be used on a function



parameter or a class field.

import io.quarkus.funqy.Fung;
import io.quarkus.fungy.Context;

public class GreetingFunction {

public Greeting greet(Friend friend, AwsContext ctx) {
Greeting greeting = new Greeting();
greeting.setMessage(service.greet(friend.getName()));
return greeting;



	Quarkus - Funqy
	Funqy Basics
	Async Reactive Types
	Function Names
	Funqy DI
	Context injection

