Quarkus - Infinispan Client

Infinispan is an in memory data grid that allows running in a server outside of
application processes. This extension provides functionality to allow the client that
can connect to said server when running in Quarkus.

More information can be found about Infinispan at https://infinispan.org and the client/server at
https://infinispan.org/docs/dev/user_guide/user_guide.html#client_server

Configuration

Once you have your Quarkus project configured you can add the infinispan-client extension to
your project by running the following from the command line in your project base directory.

./mvnw quarkus:add-extension -Dextensions="infinispan-client"

This will add the following to your pom.xml

<dependency>
<groupIld>io.quarkus</groupId>
<artifactId>quarkus—-infinispan-client</artifactId>
</dependency>

The Infinispan client is configurable in the application.properties file that can be provided in
the src/main/resources directory. These are the properties that can be configured in this file:

& Configuration property fixed at build time - All other configuration properties are overridable at
runtime

Configuration property Type Default

& quarkus.infinispan-client.near-cache-max-entries

Sets the bounded entry count for near cache. If this value is O or less near cache int 0]
is disabled.

quarkus.infinispan-client.server-list

Sets the host name/port to connect to. Each one is separated by a semicolon string
(eq. host1:11222;host2:11222).

quarkus.infinispan-client.client-intelligence

Sets client intelligence used by authentication string


https://infinispan.org
https://infinispan.org/docs/dev/user_guide/user_guide.html#client_server
https://infinispan.org/docs/dev/user_guide/user_guide.html#client_server
https://infinispan.org/docs/dev/user_guide/user_guide.html#client_server
https://infinispan.org/docs/dev/user_guide/user_guide.html#client_server
https://infinispan.org/docs/dev/user_guide/user_guide.html#client_server
https://infinispan.org/docs/dev/user_guide/user_guide.html#client_server
https://infinispan.org/docs/dev/user_guide/user_guide.html#client_server
https://infinispan.org/docs/dev/user_guide/user_guide.html#client_server
https://infinispan.org/docs/dev/user_guide/user_guide.html#client_server
https://infinispan.org/docs/dev/user_guide/user_guide.html#client_server
https://infinispan.org/docs/dev/user_guide/user_guide.html#client_server
#quarkus-infinispan-client_configuration
#quarkus-infinispan-client_quarkus.infinispan-client.near-cache-max-entries
#quarkus-infinispan-client_quarkus.infinispan-client.server-list
#quarkus-infinispan-client_quarkus.infinispan-client.client-intelligence

quarkus.infinispan-client.use-auth

Enables or disables authentication string
quarkus.infinispan-client.auth-username
Sets user name used by authentication string
quarkus.infinispan-client.auth-password
Sets password used by authentication string
quarkus.infinispan-client.auth-realm
Sets realm used by authentication string
quarkus.infinispan-client.auth-server-name
Sets server name used by authentication string
quarkus.infinispan-client.auth-client-subject
Sets client subject used by authentication string
quarkus.infinispan-client.auth-callback-handler
Sets callback handler used by authentication string
quarkus.infinispan-client.sasl-mechanism

string

Sets SASL mechanism used by authentication

It is also possible to configure a hotrod-client.properties as described in the Infinispan user
guide. Note that the hotrod-client.properties values overwrite any matching property from
the other configuration values (eg. near cache). This properties file is build time only and if it is
changed, requires a full rebuild.

Serialization (Key Value types support)

By default the client will support keys and values of the following types: byte[], primitive wrappers (eq.
Integer, Long, Double etc.), String, Date and Instant. User types require some additional steps that are
detailed here. Let’s say we have the following user classes:


#quarkus-infinispan-client_quarkus.infinispan-client.use-auth
#quarkus-infinispan-client_quarkus.infinispan-client.auth-username
#quarkus-infinispan-client_quarkus.infinispan-client.auth-password
#quarkus-infinispan-client_quarkus.infinispan-client.auth-realm
#quarkus-infinispan-client_quarkus.infinispan-client.auth-server-name
#quarkus-infinispan-client_quarkus.infinispan-client.auth-client-subject
#quarkus-infinispan-client_quarkus.infinispan-client.auth-callback-handler
#quarkus-infinispan-client_quarkus.infinispan-client.sasl-mechanism

Author.java

public class Author {
private final String name;
private final String surname;

public Author(String name, String surname) {
this.name = Objects.requireNonNull(name);
this.surname = Objects.requireNonNull(surname);

}
// Getter/Setter/equals/hashCode/toString omitted
}
Book.java

public class Book ({
private final String title;
private final String description;
private final int publicationYear;
private final Set<Author> authors;

public Book(String title, String description, int
publicationYear, Set<Author> authors) {
this.title = Objects.requireNonNull(title);
this.description = Objects.requireNonNull(description);
this.publicationYear = publicationYear;
this.authors = Objects.requireNonNull (authors);

}
// Getter/Setter/equals/hashCode/toString omitted

Serialization of user types uses a library based on protobuf, called Protostream.

Annotation based Serialization

This can be done automatically by adding protostream annotations to your user classes. In addition a
single Initializer annotated interface is required which controls how the supporting classes are
generated.

Here is an example of how the preceding classes should be changed:



Author.java

public Author(String name, String surname) ({
this.name = Objects.requireNonNull (name);
this.surname = Objects.requireNonNull (surname);

(number = 1)
public String getName() {
return name;

(number = 2)
public String getSurname() {
return surname;

Book.java

public Book(String title, String description, int
publicationYear, Set<Author> authors) {
this.title = Objects.requireNonNull(title);
this.description = Objects.requireNonNull(description);
this.publicationYear = publicationYear;
this.authors = Objects.requireNonNull(authors);

(number = 1)
public String getTitle() {
return title;

(number = 2)
public String getDescription() {
return description;

(number = 3, defaultValue = "-1")
public int getPublicationYear() {
return publicationYear;

(number = 4)
public Set<Author> getAuthors() {
return authors;

}



If your classes have only mutable fields, then the ProtoFactory annotation is not required,
assuming your class has a no arg constructor.

Then all that is required is a very simple SerializationContextInitializer interface with an
annotation on it to specify configuration settings

BookContextlnitializer.java

(includeClasses = { Book.class, Author.class
}, schemaPackageName = "book_sample")
interface BookContextInitializer extends
SerializationContextInitializer (

}

So in this case we will automatically generate the marshaller and schemas for the included classes and
place them in the schema package automatically. The package does not have to be provided, but if you
utilize querying, you must know the generated package.

In Quarkus the schemaFileName and schemaFilePath attributes should NOT be
o set on the AutoProtoSchemaBuilder annotation, setting either will cause native
runtime to error.

User written serialization

The previous method is suggested for any case when the user can annotate their classes.
Unfortunately the user may not be able to annotate all classes they will put in the cache. In this case
you must define your schema and create your own Marshaller(s) yourself.

Protobuf schema

You can supply a protobuf schema through either one of two ways.

1. Proto File
You can put the .proto file in the META-INF directory of the project. These files will

automatically be picked up at initialization time.



library.proto

package book_sample;

message Book {

required string title = 1;

required string description = 2;

required int32 publicationYear = 3; // no native Date type
available in Protobuf

repeated Author authors = 4;
}
message Author {
required string name = 1;
required string surname = 2;
}
2. In Code

Or you can define the proto schema directly in user code by defining a produced bean of type
org.infinispan.protostream.FileDescriptorSource.

FileDescriptorSource bookProtoDefinition() ({
return FileDescriptorSource.fromString("library.proto",
"package book_sample;\n" +
"\n" +
"message Book {\n" +
" required string title = 1;\n" +
required string description = 2;\n" +
required int32 publicationYear = 3; // no
native Date type available in Protobuf\n" +
"\n" +
" repeated Author authors = 4;\n" +
"I\n" +
"\n" +
"message Author {\n" +
" required string name = 1;\n" +
required string surname = 2;\n" +

Il}ll);

User Marshaller

The last thing to do is to provide a org.infinispan.protostream.MessageMarshaller
implementation for each user class defined in the proto schema. This class is then provided via
@Produces in a similar fashion to the code based proto schema definition above.



Here is the Marshaller class for our Author & Book classes.

0 The type name must match the <protobuf package>.<protobuf
message> exactly!

AuthorMarshaller.java

public class AuthorMarshaller implements MessageMarshaller<
Author> {

public String getTypeName() {
return "book_sample.Author";

public Class<? extends Author> getJavaClass() {
return Author.class;

public void writeTo(ProtoStreamWriter writer, Author author)
throws IOException {
writer.writeString("name", author.getName());
writer.writeString("surname", author.getSurname());

public Author readFrom(ProtoStreamReader reader) throws
IOException {
String name = reader.readString("name");
String surname = reader.readString("surname");
return new Author(name, surname);



BookMarshaller.java

public class BookMarshaller implements MessageMarshaller<Book> {

public String getTypeName() {
return "book_sample.Book";

public Class<? extends Book> getJavaClass() {
return Book.class;

public void writeTo(ProtoStreamWriter writer, Book book)

throws IOException {

writer.writeString("title", book.getTitle());

writer.writeString("description", book.getDescription());

writer.writeInt("publicationYear", book.getPublicationYear
)

writer.writeCollection("authors", book.getAuthors(),
Author.class);

}

public Book readFrom(ProtoStreamReader reader) throws

IOException {

String title = reader.readString("title");

String description = reader.readString("description");

int publicationYear = reader.readInt("publicationYear");

Set<Author> authors = reader.readCollection("authors", new
HashSet<>(), Author.class);

return new Book(title, description, publicationYear,
authors);

}

And you pass the marshaller by defining the following:



MessageMarshaller authorMarshaller() {
return new AuthorMarshaller();

MessageMarshaller bookMarshaller() {
return new BookMarshaller();

o The above produced Marshaller method MUST return MessageMarshaller
without types or else it will not be found.

Dependency Injection

As you saw above we support the user injecting Marshaller configuration. You can do the inverse with
the Infinispan client extension providing injection for RemoteCacheManager and RemoteCache
objects. There is one global RemoteCacheManager that takes all of the configuration parameters
setup in the above sections.

It is very simple to inject these components. All you need to do is to add the Inject annotation to the
field, constructor or method. In the below code we utilize field and constructor injection.

SomeClass.java

SomeClass(RemoteCacheManager remoteCacheManager) {
this.remoteCacheManager = remoteCacheManager;

("myCache")
RemoteCache<String, Book> cache;

RemoteCacheManager remoteCacheManager;

If you notice the RemoteCache declaration has an additional optional annotation named Remote.
This is a qualifier annotation allowing you to specify which named cache that will be injected. This
annotation is not required and if it is not supplied, the default cache will be injected.

o Other types may be supported for injection, please see other sections for more
information

Querying

The Infinispan client supports both indexed and non indexed querying as long as the
ProtoStreamMarshaller is configured above. This allows the user to query based on the



properties of the proto schema.

Query builds wupon the proto definitions you can configure when setting up the
ProtoStreamMarshaller. Either method of Serialization above will automatically register the
schema with the server at startup, meaning that you will automatically gain the ability to query objects
stored in the remote Infinispan Server.

You <can read more about this at https://infinispan.org/docs/stable/titles/developing/
developing.html#query_dsl.

You can use either the Query DSL or the Ickle Query language with the Quarkus Infinispan client
extension.

Counters

Infinispan also has a notion of counters and the Quarkus Infinispan client supports them out of the
box.

The Quarkus Infinispan client extension allows for Dependency Injection of the CounterManager
directly. All you need to do is annotate your field, constructor or method and you get it with no fuss.
You can then use counters as you would normally.

CounterManager counterManager;

Near Caching

Near caching is disabled by default, but you can enable it by setting the profile config property
quarkus.infinispan-client.near-cache-max—entries to a value greater than 0. You can
also configure a reqgular expression so that only a subset of caches have near caching applied through
the quarkus.infinispan-client.near-cache-name-pattern attribute.

Encryption

Encryption at this point requires additional steps to get working.

The first step is to configure the hotrod-client.properties file to point to your truststore
and/or keystore. This is further detailed at https://infinispan.org/docs/dev/user_guide/
user_guide.html#hr_encryption.

The Infinispan Client extension enables SSL by default. You can read more about this at Using SSL
With Native Executables.

Authentication

This chart illustrates what mechanisms have been verified to be working properly with the Quarkus


https://infinispan.org/docs/stable/titles/developing/developing.html#query_dsl
https://infinispan.org/docs/stable/titles/developing/developing.html#query_dsl
https://infinispan.org/docs/stable/titles/developing/developing.html#query_dsl
https://infinispan.org/docs/stable/titles/developing/developing.html#query_dsl
https://infinispan.org/docs/stable/titles/developing/developing.html#query_dsl
https://infinispan.org/docs/stable/titles/developing/developing.html#query_dsl
https://infinispan.org/docs/stable/titles/developing/developing.html#query_dsl
https://infinispan.org/docs/stable/titles/developing/developing.html#query_dsl
https://infinispan.org/docs/stable/titles/developing/developing.html#query_dsl
https://infinispan.org/docs/stable/titles/developing/developing.html#query_dsl
https://infinispan.org/docs/stable/titles/developing/developing.html#query_dsl
https://infinispan.org/docs/stable/titles/developing/developing.html#query_dsl
https://infinispan.org/docs/stable/titles/developing/developing.html#query_dsl
https://infinispan.org/docs/dev/user_guide/user_guide.html#hr_encryption
https://infinispan.org/docs/dev/user_guide/user_guide.html#hr_encryption
https://infinispan.org/docs/dev/user_guide/user_guide.html#hr_encryption
https://infinispan.org/docs/dev/user_guide/user_guide.html#hr_encryption
https://infinispan.org/docs/dev/user_guide/user_guide.html#hr_encryption
https://infinispan.org/docs/dev/user_guide/user_guide.html#hr_encryption
https://infinispan.org/docs/dev/user_guide/user_guide.html#hr_encryption
https://infinispan.org/docs/dev/user_guide/user_guide.html#hr_encryption
https://infinispan.org/docs/dev/user_guide/user_guide.html#hr_encryption
https://infinispan.org/docs/dev/user_guide/user_guide.html#hr_encryption
https://infinispan.org/docs/dev/user_guide/user_guide.html#hr_encryption
native-and-ssl
native-and-ssl

Infinispan Client extension.

Table 1. Mechanisms

Name Verified
DIGEST-MD5 Y
PLAIN Y
EXTERNAL Y
GSSAPI N
Custom N

The gquide for configuring these can be found at https://infinispan.org/docs/dev/user_guide/
user_guide.html#authentication. However you need to configure these through the hotrod-
client.properties fileif using Dependency Injection.

Additional Features

The Infinispan Client has additional features that were not mentioned here. This means this feature

was not tested in a Quarkus environment and they may or may not work. Please let us know if you
need these added!

1


https://infinispan.org/docs/dev/user_guide/user_guide.html#authentication
https://infinispan.org/docs/dev/user_guide/user_guide.html#authentication
https://infinispan.org/docs/dev/user_guide/user_guide.html#authentication
https://infinispan.org/docs/dev/user_guide/user_guide.html#authentication
https://infinispan.org/docs/dev/user_guide/user_guide.html#authentication
https://infinispan.org/docs/dev/user_guide/user_guide.html#authentication
https://infinispan.org/docs/dev/user_guide/user_guide.html#authentication
https://infinispan.org/docs/dev/user_guide/user_guide.html#authentication
https://infinispan.org/docs/dev/user_guide/user_guide.html#authentication
https://infinispan.org/docs/dev/user_guide/user_guide.html#authentication
https://infinispan.org/docs/dev/user_guide/user_guide.html#authentication

	Quarkus - Infinispan Client
	Configuration
	Serialization (Key Value types support)
	Annotation based Serialization
	User written serialization

	Dependency Injection
	Querying
	Counters
	Near Caching
	Encryption
	Authentication
	Additional Features

