
Quarkus - Container Images
Quarkus provides extensions for building (and pushing) container images.
Currently it supports:

• Jib

• Docker

• S2I

Container Image extensions

Jib
The extension quarkus-container-image-jib is powered by Jib for performing container image
builds. The major benefit of using Jib with Quarkus is that all the dependencies (everything found
under target/lib) are cached in a different layer than the actual application making rebuilds really
fast and small (when it comes to pushing). Another important benefit of using this extension is that it
provides the ability to create a container image without having to have any dedicated client side
tooling (like Docker) or running daemon processes (like the Docker daemon) when all that is needed is
the ability to push to a container image registry.

To use this feature, add the following extension to your project:

./mvnw quarkus:add-extension -Dextensions="container-image-jib"



In situations where all that is needed to build a container image and no push to a
registry is necessary (essentially by having set quarkus.container-
image.build=true and left quarkus.container-image.push unset - it
defaults to false), then this extension creates a container image and registers it
with the Docker daemon. This means that although Docker isn’t used to build the
image, it is nevertheless necessary. Also note that using this mode, the built
container image will show up when executing docker images.

Including extra files

There are cases when additional files (other than ones produced by the Quarkus build) need to be
added to a container image. To support these cases, Quarkus copies any file under src/main/jib
into the built container image (which is essentially the same idea that the Jib Maven and Gradle
plugins support). For example, the presence of src/main/jib/foo/bar would result in /foo/bar
being added into the container filesystem.

1

https://github.com/GoogleContainerTools/jib

Docker
The extension quarkus-container-image-docker is using the Docker binary and the generated
Dockerfiles under src/main/docker in order to perform Docker builds.

To use this feature, add the following extension to your project.

./mvnw quarkus:add-extension -Dextensions="container-image-docker"

S2I
The extension quarkus-container-image-s2i is using S2I binary builds in order to perform
container builds inside the OpenShift cluster. The idea behind the binary build is that you just upload
the artifact and its dependencies to the cluster and during the build they will be merged to a builder
image (defaults to fabric8/s2i-java).

The benefit of this approach, is that it can be combined with OpenShift’s DeploymentConfig that
makes it easy to roll out changes to the cluster.

To use this feature, add the following extension to your project.

./mvnw quarkus:add-extension -Dextensions="container-image-s2i"

S2I builds require creating a BuildConfig and two ImageStream resources, one for the builder
image and one for the output image. The creation of such objects is being taken care of by the
Quarkus Kubernetes extension.

Building
To build a container image for your project, quarkus.container-image.build=true needs to
be set using any of the ways that Quarkus supports.

./mvnw clean package -Dquarkus.container-image.build=true

Pushing
To push a container image for your project, quarkus.container-image.push=true needs to be
set using any of the ways that Quarkus supports.

./mvnw clean package -Dquarkus.container-image.push=true

2


If no registry is set (using quarkus.container-image.registry) then
docker.io will be used as the default.

Customizing
The following properties can be used to customize the container image build process.

Container Image Options
 Configuration property fixed at build time - All other configuration properties are overridable at
runtime

Configuration property Type Default

 quarkus.container-image.group

The group the container image will be part of string
${user
.name}

 quarkus.container-image.name

The name of the container image. If not set defaults to the application name
string

${quar
kus.ap
plicat
ion.na
me:uns
et}

 quarkus.container-image.tag

The tag of the container image. If not set defaults to the application version

string

${quar
kus.ap
plicat
ion.ve
rsion:
latest
}

 quarkus.container-image.additional-tags

Additional tags of the container image.
list of
string

 quarkus.container-image.registry

The container registry to use string

 quarkus.container-image.username

The username to use to authenticate with the registry where the built image will
be pushed

string

3

#quarkus-container-image_configuration
#quarkus-container-image_quarkus.container-image.group
#quarkus-container-image_quarkus.container-image.name
#quarkus-container-image_quarkus.container-image.tag
#quarkus-container-image_quarkus.container-image.additional-tags
#quarkus-container-image_quarkus.container-image.registry
#quarkus-container-image_quarkus.container-image.username

 quarkus.container-image.password

The password to use to authenticate with the registry where the built image will
be pushed

string

 quarkus.container-image.insecure

Whether or not insecure registries are allowed boolean false

 quarkus.container-image.build

Whether or not a image build will be performed. boolean false

 quarkus.container-image.push

Whether or not an image push will be performed. boolean false

Jib Options
In addition to the generic container image options, the container-image-jib also provides the
following options:

 Configuration property fixed at build time - All other configuration properties are overridable at
runtime

Configuration property Type Default

 quarkus.jib.base-jvm-image

The base image to be used when a container image is being produced for the jar
build string

fabric
8/java
-alpin
e-
openjd
k11-
jre

 quarkus.jib.base-native-image

The base image to be used when a container image is being produced for the
native binary build

string

regist
ry.acc
ess.re
dhat.c
om/ubi
8/ubi-
minima
l

4

#quarkus-container-image_quarkus.container-image.password
#quarkus-container-image_quarkus.container-image.insecure
#quarkus-container-image_quarkus.container-image.build
#quarkus-container-image_quarkus.container-image.push
#quarkus-container-image-jib_configuration
#quarkus-container-image-jib_quarkus.jib.base-jvm-image
#quarkus-container-image-jib_quarkus.jib.base-native-image

 quarkus.jib.jvm-arguments

Additional JVM arguments to pass to the JVM when starting the application

list of
string

-Dquar
kus.ht
tp.hos
t=0.0.
0.0,-
Djava.
util.l
ogging
.manag
er=org
.jboss
.logma
nager.
LogMan
ager

 quarkus.jib.native-arguments

Additional arguments to pass when starting the native application list of
string

-Dquar
kus.ht
tp.hos
t=0.0.
0.0

 quarkus.jib.jvm-entrypoint

If this is set, then it will be used as the entry point of the container image. There
are a few things to be aware of when creating an entry point - A valid entrypoint
is jar package specific (see quarkus.package.type) - A valid entrypoint
depends on the location of both the launching scripts and the application jar file.
To that end it’s helpful to remember that when fast-jar packaging is used, all
necessary application jars are added to the /work directory and that the same
directory is also used as the working directory. When legacy or uber-jar are
used, the application jars are unpacked under the /app directory and that
directory is used as the working directory. - Even if the jvmArguments field is
set, it is ignored completely When this is not set, a proper default entrypoint will
be constructed. As a final note, a very useful tool for inspecting container image
layers that can greatly aid when debugging problems with endpoints is dive

list of
string

 quarkus.jib.native-entrypoint

If this is set, then it will be used as the entry point of the container image. There
are a few things to be aware of when creating an entry point - A valid entrypoint
depends on the location of both the launching scripts and the native binary file.
To that end it’s helpful to remember that the native application is added to the
/work directory and that and the same directory is also used as the working
directory - Even if the nativeArguments field is set, it is ignored completely
When this is not set, a proper default entrypoint will be constructed. As a final
note, a very useful tool for inspecting container image layers that can greatly aid
when debugging problems with endpoints is dive

list of
string

5

#quarkus-container-image-jib_quarkus.jib.jvm-arguments
#quarkus-container-image-jib_quarkus.jib.native-arguments
#quarkus-container-image-jib_quarkus.jib.jvm-entrypoint
https://github.com/wagoodman/dive
#quarkus-container-image-jib_quarkus.jib.native-entrypoint
https://github.com/wagoodman/dive

 quarkus.jib.base-registry-username

The username to use to authenticate with the registry used to pull the base JVM
image

string

 quarkus.jib.base-registry-password

The password to use to authenticate with the registry used to pull the base JVM
image

string

 quarkus.jib.environment-variables

Environment variables to add to the container image

Map<St
ring,S
tring>

required


 quarkus.jib.labels

Custom labels to add to the generated image

Map<St
ring,S
tring>

required


Docker Options
In addition to the generic container image options, the container-image-docker also provides
the following options:

 Configuration property fixed at build time - All other configuration properties are overridable at
runtime

Configuration property Type Default

 quarkus.docker.dockerfile-jvm-path

Path to the the JVM Dockerfile. If not set
${project.root}/src/main/docker/Dockerfile.jvm will be used If set to an
absolute path then the absolute path will be used, otherwise the path will be
considered relative to the project root

string

 quarkus.docker.dockerfile-native-path

Path to the the JVM Dockerfile. If not set
${project.root}/src/main/docker/Dockerfile.native will be used If set to an
absolute path then the absolute path will be used, otherwise the path will be
considered relative to the project root

string

 quarkus.docker.build-args

Build args passed to docker via --build-arg

Map<St
ring,S
tring>

required


6

#quarkus-container-image-jib_quarkus.jib.base-registry-username
#quarkus-container-image-jib_quarkus.jib.base-registry-password
#quarkus-container-image-jib_quarkus.jib.environment-variables-environment-variables
#quarkus-container-image-jib_quarkus.jib.labels-labels
#quarkus-container-image-docker_configuration
#quarkus-container-image-docker_quarkus.docker.dockerfile-jvm-path
#quarkus-container-image-docker_quarkus.docker.dockerfile-native-path
#quarkus-container-image-docker_quarkus.docker.build-args-build-args

S2I Options
In addition to the generic container image options, the container-image-s2i also provides the
following options:

 Configuration property fixed at build time - All other configuration properties are overridable at
runtime

Configuration property Type Default

 quarkus.s2i.base-jvm-image

The base image to be used when a container image is being produced for the jar
build

string

fabric
8/s2i-
java:2
.3

 quarkus.s2i.base-native-image

The base image to be used when a container image is being produced for the
native binary build

string

quay.i
o/quar
kus/ub
i-
quarku
s-
native
-binar
y-
s2i:1.
0

 quarkus.s2i.jvm-arguments

Additional JVM arguments to pass to the JVM when starting the application

list of
string

-Dquar
kus.ht
tp.hos
t=0.0.
0.0,-
Djava.
util.l
ogging
.manag
er=org
.jboss
.logma
nager.
LogMan
ager

 quarkus.s2i.native-arguments

Additional arguments to pass when starting the native application list of
string

-Dquar
kus.ht
tp.hos
t=0.0.
0.0

7

#quarkus-container-image-s2i_configuration
#quarkus-container-image-s2i_quarkus.s2i.base-jvm-image
#quarkus-container-image-s2i_quarkus.s2i.base-native-image
#quarkus-container-image-s2i_quarkus.s2i.jvm-arguments
#quarkus-container-image-s2i_quarkus.s2i.native-arguments

 quarkus.s2i.jar-directory

The directory where the jar is added during the assemble phase. This is
dependent on the S2I image and should be supplied if a non default image is
used.

string
/deplo
yments
/

 quarkus.s2i.jar-file-name

The resulting filename of the jar in the S2I image. This option may be used if the
selected S2I image uses a fixed name for the jar.

string

 quarkus.s2i.native-binary-directory

The directory where the native binary is added during the assemble phase. This
is dependent on the S2I image and should be supplied if a non-default image is
used.

string
/home/
quarku
s/

 quarkus.s2i.native-binary-file-name

The resulting filename of the native binary in the S2I image. This option may be
used if the selected S2I image uses a fixed name for the native binary.

string

 quarkus.s2i.build-timeout

The build timeout.
Duration


PT5M



About the Duration format

The format for durations uses the standard java.time.Duration format. You
can learn more about it in the Duration#parse() javadoc.

You can also provide duration values starting with a number. In this case, if the value
consists only of a number, the converter treats the value as seconds. Otherwise, PT
is implicitly prepended to the value to obtain a standard java.time.Duration
format.

8

#quarkus-container-image-s2i_quarkus.s2i.jar-directory
#quarkus-container-image-s2i_quarkus.s2i.jar-file-name
#quarkus-container-image-s2i_quarkus.s2i.native-binary-directory
#quarkus-container-image-s2i_quarkus.s2i.native-binary-file-name
#quarkus-container-image-s2i_quarkus.s2i.build-timeout
https://docs.oracle.com/javase/8/docs/api/java/time/Duration.html
#duration-note-anchor
https://docs.oracle.com/javase/8/docs/api/java/time/Duration.html#parse-java.lang.CharSequence-

	Quarkus - Container Images
	Container Image extensions
	Jib
	Docker
	S2I

	Building
	Pushing
	Customizing
	Container Image Options
	Jib Options
	Docker Options
	S2I Options

