
Quarkus - Funqy Knative Events
Quarkus Funqy Knative Events builds off of the Funqy HTTP extension to allow you
to route and process Knative Events within a Funqy function.

The guide walks through quickstart code to show you how you can deploy and invoke on Funqy
functions with Knative Events.

Prerequisites
To complete this guide, you need:

• 60+ minutes

• Read about Funqy Basics. This is a short read!

• JDK 1.8+ installed with JAVA_HOME configured appropriately

• Apache Maven 3.6.3

• Have gone through the Knative Tutorial, specifically Brokers and Triggers

Setting up Knative
Setting up Knative locally in a Minikube environment is beyond the scope of this guide. It is advised to
follow this Knative Tutorial put together by Red Hat. It walks through how to set up Knative on
Minikube or Openshift in a local environment.


Specifically you should run the Brokers and Triggers tutorial as this guide requires
that you can invoke on a Broker to trigger the quickstart code.

Read about Cloud Events
The Cloud Event specification is a good read to give you an even greater understanding of Knative
Events.

The Quickstart
Clone the Git repository: git clone https://github.com/quarkusio/quarkus-
quickstarts.git, or download an archive.

The solution is located in the funqy-knative-events-quickstart directory.

The Quickstart Flow
The quickstart works by manually sending an HTTP request containing a Cloud Event to the Knative

1

https://knative.dev/docs/eventing
funqy-http
funqy
https://redhat-developer-demos.github.io/knative-tutorial/knative-tutorial/index.html
https://redhat-developer-demos.github.io/knative-tutorial/knative-tutorial-eventing/eventing-trigger-broker.html
https://redhat-developer-demos.github.io/knative-tutorial/knative-tutorial/index.html
https://redhat-developer-demos.github.io/knative-tutorial/knative-tutorial-eventing/eventing-trigger-broker.html
https://cloudevents.io/
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts/archive/master.zip
https://github.com/quarkusio/quarkus-quickstarts/tree/master/funqy-quickstarts/funqy-knative-events-quickstart

Broker using curl. The Knative Broker receives the request and triggers the startup of the Funqy
container built by the quickstart. The event triggers the invocation of a chain of Funqy functions. The
output of one function triggers the invocation of another Funqy function.

Funqy and Cloud Events
When living within a Knative Events environment, Funqy functions are triggered by a specific Cloud
Event type. You can have multiple Funqy functions within a single application/deployment, but they
must be triggered by a specific Cloud Event Type. The exception to this rule is if there is only one
Funqy function in the application. In that case, the event is pushed to that function irregardless of the
Cloud Event type.

Currently, Funqy can only consume JSON-based data. It supports both Binary and Structured mode of
execution, but the data component of the Cloud Event message must be JSON. This JSON must also
be marshallable to and from the Java parameters and return types of your functions.

The Code
Let’s start looking at our quickstart code so that you can understand how Knative Events map to
Funqy. Open up SimpleFunctionChain.java

The first function we’ll look at is defaultChain.

import io.quarkus.funqy.Funq;

public class SimpleFunctionChain {
 @Funq
 public String defaultChain(String input) {
 log.info("*** defaultChain ***");
 return input + "::" + "defaultChain";
 }

As is, a Funqy function has a default Cloud Event mapping. By default, the Cloud Event type must
match the function name for the function to trigger. If the function returns output, the response is
converted into a Cloud Event and returned to the Broker to be routed to other triggers. The default
Cloud Event type for this response is the function name + .output. The default Cloud Event source is
the function name.

So, for the defaultChain function, the Cloud Event type that triggers the function is
defaultChain. It generates a response that triggers a new Cloud Event whose type is
defaultChain.output and the event source is defaultChain.

While the default mapping is simple, it might not always be feasible. You can change this default
mapping through configuration. Let’s look at the next function:

2

https://github.com/quarkusio/quarkus-quickstarts/tree/master/funqy-quickstarts/funqy-knative-events-quickstart/src/main/java/org/acme/funqy/SimpleFunctionChain.java

import io.quarkus.funqy.Funq;

public class SimpleFunctionChain {
 @Funq
 public String configChain(String input) {
 log.info("*** configChain ***");
 return input + "::" + "configChain";
 }

The configChain function has its Cloud Event mapping changed by configuration within
application.properties.

quarkus.funqy.knative-
events.mapping.configChain.trigger=defaultChain.output
quarkus.funqy.knative-events.mapping.configChain.response-
type=annotated
quarkus.funqy.knative-events.mapping.configChain.response-
source=configChain

In this case, the configuration maps the incoming Cloud Event type defaultChain.output to the
configChain function. The configChain function maps its response to the annotated Cloud
Event type, and the Cloud Event source configChain.

• quarkus.funqy.knative-events.mapping.{function name}.trigger sets the Cloud
Event type that triggers a specific function

• quarkus.funqy.knative-events.mapping.{function name}.response-type sets
the Cloud Event type of the response

• quarkus.funqy.knative-events.mapping.{function name}.resource-source sets
the Cloud Event source of the response

The Funqy Knative Events extension also has annotations to do this Cloud Event mapping to your
functions. Take a look at the annotatedChain method

import io.quarkus.funqy.Funq;
import io.quarkus.funqy.knative.events.CloudEventMapping;

public class SimpleFunctionChain {
 @Funq
 @CloudEventMapping(trigger = "annotated", responseSource =
"annotated", responseType = "lastChainLink")
 public String annotatedChain(String input) {
 log.info("*** annotatedChain ***");
 return input + "::" + "annotatedChain";
 }

3

https://github.com/quarkusio/quarkus-quickstarts/tree/master/funqy-quickstarts/funqy-knative-events-quickstart/src/main/resources/application.properties

If you use the @CloudEventMapping annotation on your function you can map the Cloud Event type
trigger and the Cloud Event response. In this example the annotatedChain function will be
triggered by the annotated Cloud Event type and the response will be mapped to a
lastChainLink type and annotated Cloud Event source.

So, if look at all the functions defined within SimpleFunctionChain you’ll notice that one function
triggers the next. The last function that is triggered is lastChainLink.

import io.quarkus.funqy.Context;
import io.quarkus.funqy.Funq;

public class SimpleFunctionChain {
 @Funq
 public void lastChainLink(String input, @Context CloudEvent
event) {
 log.info("*** lastChainLink ***");
 log.info(input + "::" + "lastChainLink");
 }
}

There are two things to notice about this function. One, it has no output. Your functions are not
required to return output. Second, there is an additional event parameter to the function.

If you want to know additional information about the incoming Cloud Event, you can inject the
CloudEvent interface using the Funqy @Context annotation. The CloudEvent interface exposes
information about the triggering event.

public interface CloudEvent {
 String id();
 String specVersion();
 String source();
 String subject();
 OffsetDateTime time();
}

Maven
If you look at the pom, you’ll see that it is a typical Quarkus pom that pulls in one funqy dependency

<dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-funqy-knative-events</artifactId>
</dependency>

4

https://github.com/quarkusio/quarkus-quickstarts/tree/master/funqy-quickstarts/funqy-knative-events-quickstart/pom.xml

Dev mode and Testing
Funqy Knative Events support dev mode and unit testing using RestAssured. You can invoke on Funqy
Knative Events functions using the same invocation model as Funqy HTTP using normal HTTP
requests, or Cloud Event Binary mode, or Structured Mode. All invocation modes are supported at the
same time.

So, if you open up the unit test code in FunqyTest.java you’ll see that its simply using RestAssured to
make HTTP invocations to test the functions.

Funqy also works with Quarkus Dev mode!

Build the Project
First build the Java artifacts:

mvn clean install

Next, a docker image is required by Knative, so you’ll need to build that next:

docker build -f src/main/docker/Dockerfile.jvm -t
yourAccountName/funqy-knative-events-quickstart .

Make sure to replace yourAccountName with your docker or quay account name when you run
docker build. The Dockerfile is a standard Quarkus dockerfile. No special Knative magic.

Push your image to docker hub or quay

docker push yourAccountName/funqy-knative-events-quickstart

Again, make sure to replace yourAccountName with your docker or quay account name when you
run docker push.

Deploy to Kubernetes/Openshift
The first step is to define a Kubernetes/Openshift service to points to your the docker image you
created and pushed during build. Take a look at funqy-service.yaml

5

funqy-http
https://github.com/quarkusio/quarkus-quickstarts/tree/master/funqy-quickstarts/funqy-knative-events-quickstart/src/test/java/org/acme/funqy/FunqyTest.java
https://github.com/quarkusio/quarkus-quickstarts/tree/master/funqy-quickstarts/funqy-knative-events-quickstart/src/main/k8s/funqy-service.yaml

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: funqy-knative-events-quickstart
spec:
 template:
 metadata:
 name: funqy-knative-events-quickstart-v1
 annotations:
 autoscaling.knative.dev/target: "1"
 spec:
 containers:
 - image: docker.io/yourAccountName/funqy-knative-events-
quickstart

This is a standard Kubernetes service definition yaml file.


Make sure you change the image url to point to the image you built and pushed
earlier!

For our quickstart, one Kubernetes service will contain all functions. There’s no reason you couldn’t
break up this quickstart into multiple different projects and deploy a service for each function. For
simplicity, and to show that you don’t have to have a deployment per function, the quickstart
combines everything into one project, image, and service.

Deploy the service yaml.

kubectl apply -n knativetutorial -f src/main/k8s/funqy-service.yaml

The next step is to deploy Knative Event triggers for each of the event types. As noted in the code
section, each Funqy function is mapped to a specific Cloud Event type. You must create Knative Event
triggers that map a Cloud Event and route it to a specific Kubernetes service. We have 4 different
triggers.

defaultChain-trigger.yaml

6

https://github.com/quarkusio/quarkus-quickstarts/tree/master/funqy-quickstarts/funqy-knative-events-quickstart/src/main/k8s/defaultChain-trigger.yaml

apiVersion: eventing.knative.dev/v1alpha1
kind: Trigger
metadata:
 name: defaultchain
spec:
 filter:
 attributes:
 type: defaultChain
 subscriber:
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: funqy-knative-events-quickstart

The spec:filter:attributes:type maps a Cloud Event type to the Kubernetes service defined
in spec:subscriber:ref. When a Cloud Event is pushed to the Broker, it will trigger the spin up of
the service mapped to that event.

There’s a trigger yaml file for each of our 4 Funqy functions. Deploy them all:

kubectl apply -n knativetutorial -f src/main/k8s/defaultChain-
trigger.yaml
kubectl apply -n knativetutorial -f src/main/k8s/configChain-
trigger.yaml
kubectl apply -n knativetutorial -f src/main/k8s/annoatedChain-
trigger.yaml
kubectl apply -n knativetutorial -f src/main/k8s/lastChainLink-
trigger.yaml

Run the demo
You’ll need two different terminal windows. One to do a curl request to the Broker, the other to watch
the pod log files so you can see the messages flowing through the Funqy function event chain.

Make sure you have the stern tool installed. See the Knative Tutorial setup for information on that.
Run stern to look for logs outputed by our Funqy deployment

stern funq user-container

Open a separate terminal. You’ll first need to learn the URL of the broker. Execute this command to
find it.

kubectl get broker default -o jsonpath='{.status.address.url}'

7

This will provide you a url like this (exactly like this if you followed the knative tutorial):
http://default-broker.knativetutorial.svc.cluster.local Remember this URL.

Next thing we need to do is ssh into our Kubernetes cluster so that we can send a curl request to our
broker.

kubectl -n knativetutorial exec -it curler -- /bin/bash

You will now be in a shell within the Kubernetes cluster. Within the shell, execute this curl command

curl -v "http://default-broker.knativetutorial.svc.cluster.local" \
-X POST \
-H "Ce-Id: 1234" \
-H "Ce-Specversion: 1.0" \
-H "Ce-Type: defaultChain" \
-H "Ce-Source: curl" \
-H "Content-Type: application/json" \
-d '"Start"'

This posts a Knative Event to the broker, which will trigger the defaultChain function. As discussed
earlier, the output of defaultChain triggers an event that is posted to configChain which
triggers an event posted to annotatedChain then finally to the lastChainLink function. You can
see this flow in your stern window. Something like this should be outputted.

funqy-knative-events-quickstart-v1-deployment-59bb88bcf4-9jwdx
user-container 2020-05-12 13:44:02,256 INFO
[org.acm.fun.SimpleFunctionChain] (executor-thread-1) ***
defaultChain ***
funqy-knative-events-quickstart-v1-deployment-59bb88bcf4-9jwdx
user-container 2020-05-12 13:44:02,365 INFO
[org.acm.fun.SimpleFunctionChain] (executor-thread-2) ***
configChain ***
funqy-knative-events-quickstart-v1-deployment-59bb88bcf4-9jwdx
user-container 2020-05-12 13:44:02,394 INFO
[org.acm.fun.SimpleFunctionChain] (executor-thread-1) ***
annotatedChain ***
funqy-knative-events-quickstart-v1-deployment-59bb88bcf4-9jwdx
user-container 2020-05-12 13:44:02,466 INFO
[org.acm.fun.SimpleFunctionChain] (executor-thread-2) ***
lastChainLink ***
funqy-knative-events-quickstart-v1-deployment-59bb88bcf4-9jwdx
user-container 2020-05-12 13:44:02,467 INFO
[org.acm.fun.SimpleFunctionChain] (executor-thread-2)
Start::defaultChain::configChain::annotatedChain::lastChainLink

8

http://default-broker.knativetutorial.svc.cluster.local

	Quarkus - Funqy Knative Events
	Prerequisites
	Setting up Knative
	Read about Cloud Events
	The Quickstart
	The Quickstart Flow
	Funqy and Cloud Events
	The Code
	Maven
	Dev mode and Testing
	Build the Project
	Deploy to Kubernetes/Openshift
	Run the demo

