Quarkus - Amazon Lambda

The quarkus—amazon-lambda extension allows you to use Quarkus to build
your AWS Lambdas. Your lambdas can use injection annotations from CDI or
Spring and other Quarkus facilities as you need them.

Quarkus lambdas can be deployed using the Amazon Java Runtime, or you can build a native
executable and use Amazon’s Custom Runtime if you want a smaller memory footprint and faster cold
boot startup time.

This technology is considered preview.

In preview, backward compatibility and presence in the ecosystem is not guaranteed.

o Specific improvements might require to change configuration or APIs and plans to
become stable are under way. Feedback is welcome on our mailing list or as issues in
our GitHub issue tracker.

For a full list of possible extension statuses, check our FAQ entry.

Prerequisites

To complete this guide, you need:

* less than 30 minutes

* JDK 11 (AWS requires JDK 1.8 or 11)
* Apache Maven 3.6.3

* An Amazon AWS account

* AWS CLI

AWS SAM CLI, for local testing

o For Gradle projects please see below, or for further reference consult the guide in
the Gradle setup page.

Getting Started

This gquide walks you through generating an example Java project via a maven archetype and
deploying it to AWS.

Installing AWS bits

Installing all the AWS bits is probably the most difficult thing about this guide. Make sure that you
follow all the steps for installing AWS CLI.


https://groups.google.com/d/forum/quarkus-dev
https://github.com/quarkusio/quarkus/issues
https://quarkus.io/faq/#extension-status
https://aws.amazon.com
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-cli-install.html
gradle-tooling

Creating the Maven Deployment Project

Create the Quarkus AWS Lambda maven project using our Maven Archetype.

mvn archetype:generate \
-DarchetypeGroupId=io.quarkus \
-DarchetypeArtifactId=quarkus—-amazon-lambda-archetype \
-DarchetypeVersion=1.6.1.Final

If you prefer to use Gradle, you can quickly and easily generate a Gradle project via
code.quarkus.io adding the quarkus—amazon-1lambda extension as a dependency.

Copy the build.gradle, gradle.properties and settings.gradle into the above
generated Maven archetype project, to follow along with this guide.

o Execute: gradle wrapper to setup the gradle wrapper (recommended).

The dependency for quarkus—-test—-amazon-lambda will also need to be added
to your build.gradle.

For full Gradle details see below.

Choose Your Lambda

The quarkus—-amazon-1lambda extension scans your project for a class that directly implements the
Amazon RequestHandler<?, 7> or RequestStreamHandler interface. It must find a class in
your project that implements this interface or it will throw a build time failure. If it finds more than one
handler class, a build time exception will also be thrown.

Sometimes, though, you might have a few related lambdas that share code and creating multiple
maven modules is just an overhead you don’t want to do. The quarkus—-amazon-lambda extension
allows you to bundle multiple lambdas in one project and use configuration or an environment variable
to pick the handler you want to deploy.

The generated project has three lambdas within it. Two that implement the RequestHandler<?,
?> interface, and one that implements the RequestStreamHandler interface. One that is used and
two that are unused. If you open up src/main/resources/application.properties you’ll see
this:

quarkus.lambda.handler=test

The quarkus.lambda.handler property tells Quarkus which lambda handler to deploy. This can be
overridden with an environment variable too.

If you look at the three generated handler classes in the project, you’ll see that they are @Named
differently.


https://code.quarkus.io/

@Named("test")

public class TestLambda implements RequestHandler<InputObject,
OutputObject> {

}

@Named ("unused")

public class UnusedLambda implements RequestHandler<InputObject,
OutputObject> {

}

@Named("stream")
public class StreamLambda implements RequestStreamHandler {

}

The CDI name of the handler class must match the value specified within the
quarkus.lambda.handler property.

Deploy to AWS Lambda Java Runtime

There are a few steps to get your lambda running on AWS. The generated maven project contains a
helpful script to create, update, delete, and invoke your lambdas for pure Java and native
deployments.

Build and Deploy

Build the project using maven.
./mvnw clean package

or, if using Gradle:
./gradlew clean assemble

This will compile and package your code.

Create an Execution Role

View the Getting Started Guide for deploying a lambda with AWS CLI. Specifically, make sure you have
created an Execution Role. You will need to define a LAMBDA_ROLE _ARN environment variable in
your profile or console window, Alternatively, you can edit the manage. sh script that is generated by
the build and put the role value directly there:


https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-awscli.html

LAMBDA_ROLE_ARN="arn:aws:iam: :1234567890:role/lambda-role"

Extra Build Generated Files

After you run the build, there are a few extra files generated by the quarkus—-amazon-lambda
extension. These files are in the the build directory: target/ for maven, build/ for gradle.

* function.zip - lambda deployment file

* manage.sh - wrapper around aws lamba cli calls

* bootstrap-example.sh - example bootstrap script for native deployments
* sam.jvm.yaml - (optional) for use with sam cli and local testing

* sam.native.yaml - (optional) for use with sam cli and native local testing

Create the function

The target/manage. sh script is for managing your lambda using the AWS Lambda Java runtime.
This script is provided only for your convenience. Examine the output of the manage. sh script if you
want to learn what aws commands are executed to create, delete, and update your lambdas.

manage . sh supports four operation: create,delete,update,and invoke.

To verify your setup, that you have the AWS CLI installed, executed aws configure

o for the AWS access keys, and setup the LAMBDA_ROLE_ARN environment variable
(as described above), please execute manage. sh without any parameters. A usage
statement will be printed to guide you accordingly.

o If using Gradle, the path to the binaries in the manage.sh must be changed from
targettobuild

To see the usage statement, and validate AWS configuration:
sh target/manage.sh

You can create your function using the following command:
sh target/manage.sh create

or if you do not have LAMBDA_ROLE_ARN already defined in this shell:



LAMBDA_ROLE_ARN="arn:aws:iam: :1234567890:role/lambda-role" sh
target/manage.sh create

Do not <change the handler switch. This must be hardcoded to

A io.quarkus.amazon.lambda.runtime.QuarkusStreamHandler: :handle
Request. This handler bootstraps Quarkus and wraps your actual handler so that
injection can be performed.

If there are any problems creating the function, you must delete it with the delete function before
re-running the create command.

sh target/manage.sh delete
Commands may also be stacked:

sh target/manage.sh delete create

Invoke the Lambda

Use the invoke command to invoke your function.
sh target/manage.sh invoke

The example lambda takes input passed in via the ——payload switch which points to a json file in the
root directory of the project.

The lambda can also be invoked locally with the SAM CLI like this:

sam local invoke —--template target/sam.jvm.yaml --event
payload. json

If you are working with your native image build, simply replace the template name with the native
version:

sam local invoke --template target/sam.native.yaml --event
payload. json

Update the Lambda

You can update the Java code as you see fit. Once you’ve rebuilt, you can redeploy your lambda by



executing the update command.

sh target/manage.sh update

Deploy to AWS Lambda Custom (native)
Runtime

If you want a lower memory footprint and faster initialization times for your lambda, you can compile
your Java code to a native executable. Just make sure to rebuild your project with the —Pnative
switch.

For Linux hosts execute:
mvn package —-Pnative
or, if using Gradle:

./gradlew build -Dquarkus.package.type=native

If you are building on a non-Linux system, you will need to also pass in a property
instructing quarkus to use a docker build as Amazon Lambda requires linux binaries.

o You can do this by passing this property to your Maven build: -Dnative
—-image.docker-build=true, or for Gradle: ——docker-build=true. This
requires you to have docker installed locally, however.

./mvnw clean install -Pnative -Dnative-image.docker-build=true
or, if using Gradle:

./gradlew build -Dquarkus.package.type=native
-Dquarkus.native.container-build=true

Either of these commands will compile and create a native executable image. It also generates a zip
file target/function.zip. This zip file contains your native executable image renamed to
bootstrap. This is a requirement of the AWS Lambda Custom (Provided) Runtime.

The instructions here are exactly as above with one change: you'll need to add native as the first
parameter to the manage. sh script:

sh target/manage.sh native create



As above, commands can be stacked. The only requirement is that native be the first parameter
should you wish to work with native image builds. The script will take care of the rest of the details
necessary to manage your native image function deployments.

Examine the output of the manage. sh script if you want to learn what aws commands are executed to
create, delete, and update your lambdas.

One thing to note about the create command for native is that the aws lambda create-function
call must set a specific environment variable:

——environment 'Variables={DISABLE_SIGNAL_HANDLERS=true}'

Examine the POM and Gradle build

There is nothing special about the POM other than the inclusion of the quarkus—amazon-lambda
and quarkus-test—-amazon-lambda extensions as a dependencies. The extension automatically
generates everything you might need for your lambda deployment.

o In previous versions of this extension you had to set up your pom or gradle to zip up
your executable for native deployments, but this is not the case anymore.

Gradle build

Similarly for Gradle projects, you also just have to add the quarkus-amazon-lambda and
gquarkus-test-amazon-lambda dependencies. The extension automatically generates everything
you might need for your lambda deployment.

Example Gradle dependencies:
dependencies {
implementation enforcedPlatform("S$S{quarkusPlatformGroupId}:
S{quarkusPlatformArtifactId}:S{quarkusPlatformVersion}")

implementation 'io.quarkus:quarkus-resteasy'
implementation 'io.quarkus:quarkus—-amazon-lambda'

testimplementation "io.quarkus:quarkus-test-amazon-lambda"

testImplementation 'io.quarkus:quarkus-junit5'
testImplementation 'io.rest-assured:rest-assured'’

Integration Testing

The Quarkus Amazon Lambda extension has a matching test framework that provides functionality to
execute standard JUnit tests on your AWS Lambda function, via the integration layer that Quarkus



provides. This is true for both JVM and native modes. It provides similar functionality to the SAM CLI,
without the overhead of Docker.

To illustrate, the project generated by the Maven archetype, generates a JUnit test for the
RequestHandler<?, ?> implementation, which is shown below. The test replicates the execution
environment, for the function that is selected for invocation, as described above.

To use the integration tests in vyour project there is a required property, in
src/test/resources/application.properties. If not included, the integration tests will be
in a constant loop.

quarkus.lambda.enable-polling-jvm-mode=true

If you are following along with the example Maven archetype project for AWS

o Lambda in this quide, it includes the required property
quarkus.lambda.enable-polling-jvm-mode=true in the test
application.properties.

public class LambdaHandlerTest ({

public void testSimpleLambdaSuccess() throws Exception {
InputObject in = new InputObject();
in.setGreeting("Hello");
in.setName("Stu");

OutputObject out = LambdaClient.invoke(OutputObject.class,
in);

Assertions.assertEquals("Hello Stu", out.getResult());
Assertions.assertTrue(out.getRequestId().matches("aws-
request-\\d"), "Expected requestId as 'aws-request-<number>'");

}

Similarly, if you are using a RequestStreamHandler implementation, you can add a matching JUnit
test, like below, which aligns to the generated StreamLambda class in the generated project.

Obviously, these two types of tests are mutually exclusive. You must have a test that corresponds to
the implemented AWS Lambda interfaces, whether RequestHandler<?, ?>  or
RequestStreamHandler.

Two versions of the Test for RequestStreamHandler are presented below. You can use either,
depending on the needs of your Unit test. The first is obviously simpler and quicker. Using Java
streams can require more coding.



public class LambdaStreamHandlerTest {

private static Logger LOG = Logger.getlLogger
(LambdaStreamHandlerTest.class);

public void testSimpleLambdaSuccess() throws Exception {
String out = LambdaClient.invoke(String.class, "lowercase"

);
Assertions.assertEquals ("LOWERCASE", out);
}
public void testInputStreamSuccess() {
try {
String input = "{ \"name\": \"Bill\", \"greeting\":
\"hello\"}";

InputStream inputStream = new ByteArrayInputStream
(input.getBytes());

ByteArrayOutputStream outputStream = new
ByteArrayOutputStream() ;

LambdaClient.invoke(inputStream, outputStream);

ByteArrayInputStream out = new ByteArrayInputStream
(outputStream.toByteArray());
StringBuilder response = new StringBuilder();
int 1 = 0;
while ((i = out.read()) != -1) {
response.append((char)i);

}

Assertions.assertTrue(response.toString().contains(
"BILL"));
} catch (Exception e) {
Assertions.fail(e.getMessage());

If your code uses CDI injection, this too will be executed, along with mocking functionality, see the Test
Guide for more details.

To add JUnit functionality for native tests, add the @NativeImageTest annotation to a subclass of
your test class, which will execute against your native image, and can be leveraged in an IDE.


getting-started-testing
getting-started-testing

Testing with the SAM CLI

The AWS SAM CLI allows you to run your lambdas locally on your laptop in a simulated Lambda
environment. This requires docker to be installed. This is an optional approach should you choose to
take advantage of it. Otherwise, the Quarkus JUnit integration should be sufficient for most of your
needs.

A starter template has been generated for both JVM and native execution modes.

Run the following SAM CLI command to locally test your lambda function, passing the appropriate
SAM template. The event parameter takes any JSON file, in this case the sample payload. json.

o If using Gradle, the path to the binaries in the YAML templates must be changed
from target tobuild

sam local invoke —--template target/sam.jvm.yaml --event
payload. json

The native image can also be locally tested using the sam.native.yaml template:

sam local invoke --template target/sam.native.yaml --event
payload. json

Modifying function.zip

The are times where you may have to add some additions to the function.zip lambda deployment
that is generated by the build. To do this create a zip.jvm or zip.native directory within
src/main. Create zip.jvm/ if you are doing a pure Java lambda. zip.native/ if you are doing a
native deployment.

Any you files and directories you create under your zip directory will be included within
function.zip

Custom bootstrap script

There are times you may want to set a specific system properties or other arguments when lambda
invokes your native quarkus lambda deployment. If you include a bootstrap script file within
zip.native, the quarkus extension will automatically rename the executable to runner within
function.zip and set the unix mode of the bootstrap script to executable.

o The native executable must be referenced as runner if you include a custom
bootstrap script.

The extension generates an example script within target/bootstrap-example.sh.


https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-cli-install.html
https://www.docker.com/products/docker-desktop

Tracing with AWS XRay and GraalVM

If you are building native images, and want to use AWS X-Ray Tracing with your lambda you will need
to include quarkus—-amazon-lambda-xray as a dependency in your pom. The AWS X-Ray library is
not fully compatible with GraalVM so we had to do some integration work to make this work.

In addition, remember to enable the AWS X-Ray tracing parameter in manage.sh, in the

cmd_create () function. This can also be set in the AWS Management Console.
-—tracing-config Mode=Active

For the sam template files, add the following to the YAML function Properties.

Tracing: Active

AWS X-Ray does add many classes to your distribution, do ensure you are using at least the 256MB
AWS Lambda memory size. This is explicitly set in manage.sh cmd_create(). Whilst the native
image potentially can always use a lower memory setting, it would be recommended to keep the
setting the same, especially to help compare performance.

Using HTTPS or SSL/TLS

If your code makes HTTPS calls, such as to a micro-service (or AWS service), you will need to add
configuration to the native image, as GraalVM will only include the dependencies when explicitly
declared. Quarkus, by default enables this functionality on extensions that implicitly require it. For
further information, please consult the Quarkus SSL guide

Open src/main/resources/application.properties and add the following line to enable SSL in your
native image.

quarkus.ssl.native=true

Using the AWS Java SDK v2

Quarkus now has extensions for DynamoDB, S3, SNS and SQS (more coming).
Please check those quides on how to use the various AWS Services with Quarkus, as
opposed to wiring manually like below.

With minimal integration, it is possible to leverage the AWS Java SDK v2, which can be used to invoke
services such as SQS, SNS, S3 and DynamoDB.

For native image, however the URL Connection client must be preferred over the Apache HTTP Client
when using synchronous mode, due to issues in the GraalVM compilation (at present).

1


https://aws.amazon.com/xray
native-and-ssl

Add quarkus-jaxb as a dependency in your Maven pom. xml, or Gradle build.gradle file.

You must also force your AWS service client for SQS, SNS, S3 et al, to use the URL Connection client,
which connects to AWS services over HTTPS, hence the inclusion of the SSL enabled property, as
described in the Using HTTPS or SSL/TLS section above.

// select the appropriate client, in this case SQS, and
// insert your region, instead of XXXX, which also improves startup
time over the default client

client = SgsClient.builder().region(Region.XXXX).httpClient
(software.amazon.awssdk.http.urlconnection.UrlConnectionHttpClient.
builder().build()).build();

For Maven, add the following to your pom. xml.

<properties>
<aws.sdk2.version>2.10.69</aws.sdk2.version>
</properties>

<dependencyManagement>
<dependencies>

<dependency>
<groupId>software.amazon.awssdk</groupIld>
<artifactId>bom</artifactId>
<version>S${aws.sdk2.version}</version>
<type>pom</type>
<scope>import</scope>

</dependency>

</dependencies>
</dependencyManagement>
<dependencies>

<dependency>
<groupId>software.amazon.awssdk</groupIld>
<artifactId>url-connection-client</artifactId>
</dependency>

<dependency>
<groupId>software.amazon.awssdk</groupIld>
<artifactId>apache-client</artifactId>
<exclusions>
<exclusion>
<groupId>commons-logging</groupld>
<artifactId>commons-logging</artifactId>
</exclusion>
</exclusions>



</dependency>

<dependency>
<groupId>software.amazon.awssdk</groupId>
<!-- sgs/sns/s3 etc -->

<artifactId>sgs</artifactId>
<exclusions>
<!-- exclude the apache-client and netty client -->
<exclusion>
<groupId>software.amazon.awssdk</groupId>
<artifactId>apache-client</artifactId>
</exclusion>
<exclusion>
<groupId>software.amazon.awssdk</groupIld>
<artifactId>netty-nio-client</artifactId>
</exclusion>
<exclusion>
<groupId>commons-logging</groupIld>
<artifactId>commons-logging</artifactId>
</exclusion>
</exclusions>
</dependency>

<dependency>
<groupld>org.jboss.logging</groupIld>
<artifactId>commons-logging-jboss-logging</artifactId>
<version>1.0.0.Final</version>

</dependency>
</dependencies>
if you are using GraalVM earlier than 19.3, or see
java.security.InvalidAlgorithmParameterException: the
o trustAnchors parameter must be non-empty or similar SSL error, due to
the current status of GraalVM, there is some additional work to bundle the

function.zip, as below. For more information, please see the Quarkus Native SSL
Guide.

Additional requirements for client SSL

The native executable requires some additional steps to enable client ssl that S3 and other aws
libraries need.

1. A custom bootstrap script
2. libsunec.so must be added to function.zip

3. cacerts must be addedto function.zip

To do this, first create a directory src/main/zip.native/ with your build. Next create a shell

13


native-and-ssl
native-and-ssl

script file called bootstrap within src/main/zip.native/, like below. An example is create
automatically in your build folder (target or build), called bootstrap-example.sh
#!/usr/bin/env bash
./runner -Djava.library.path=./

-Djavax.net.ssl.trustStore=./cacerts

Additional set -Djavax.net.ssl.trustStorePassword=changeit if your cacerts file is
password protected.

Next you must copy some files from your GraalVM distribution into src/main/zip.native/.

o GraalVM versions can have different paths for these files, and whether you using the
Java 8 or 11 version. Adjust accordingly.

cp SGRAALVM_HOME/lib/libsunec.so SPROJECT_DIR/src/main/zip.native/
cp SGRAALVM_HOME/lib/security/cacerts
SPROJECT_DIR/src/main/zip.native/

Now when you run the native build all these files will be included within function.zip

o If you are using a Docker image to build, then you must extract these files from this
image.

To extract the required ssl, you must start up a Docker container in the background, and attach to that
container to copy the artifacts.

First, let’s start the GraalVM container, noting the container id output.

docker run -it -d --entrypoint bash quay.io/quarkus/ubi-quarkus-
native-image:19.3.1-java8

# This will output a container id, like
6304eeab6179522aff69acb38eca90bedfd4b970ab5475aa37ccda3585bc2abdde
# Note this value as we will need it for the commands below

First, libsunec.so, the C library used for the SSL implementation:

docker cp {container-id-from-
above}:/opt/graalvm/jre/lib/amdé64/libsunec.so src/main/zip.native/

Second, cacerts, the certificate store. You may need to periodically obtain an updated copy, also.



docker cp {container-id-from-
above}:/opt/graalvm/jre/lib/security/cacerts src/main/zip.native/

Your final archive will look like this:

jar tvi target/function.zip

bootstrap
runner
cacerts
libsunec.so

Amazon Alexa Integration

To use Alexa with Quarkus native, please add the following extension.

<dependency>
<groupId>io.quarkus</groupId>
<artifactId>quarkus—-amazon-alexa</artifactId>
</dependency>

Create your Alexa handler, as normal, by sub-classing the abstract
com.amazon.ask.SkillStreamHandler, and add your request handler implementation.

That’s all there is to it!

15



	Quarkus - Amazon Lambda
	Prerequisites
	Getting Started
	Installing AWS bits
	Creating the Maven Deployment Project
	Choose Your Lambda
	Deploy to AWS Lambda Java Runtime
	Build and Deploy
	Create an Execution Role
	Extra Build Generated Files
	Create the function
	Invoke the Lambda
	Update the Lambda
	Deploy to AWS Lambda Custom (native) Runtime
	Examine the POM and Gradle build
	Gradle build
	Integration Testing
	Testing with the SAM CLI
	Modifying function.zip
	Custom bootstrap script
	Tracing with AWS XRay and GraalVM
	Using HTTPS or SSL/TLS
	Using the AWS Java SDK v2
	Additional requirements for client SSL
	Amazon Alexa Integration

