Quarkus - Fungy Amazon Lambda
Binding
The guide walks through quickstart code to show you how you can deploy Funqgy
functions to Amazon Lambda.

Fungy functions can be deployed using the AWS Lambda Java Runtime, or you can build a native
executable and use Lambda Custom Runtime if you want a smaller memory footprint and faster cold
boot startup time.

This technology is considered preview.

In preview, backward compatibility and presence in the ecosystem is not guaranteed.

o Specific improvements might require to change configuration or APIs and plans to
become stable are under way. Feedback is welcome on our mailing list or as issues in
our GitHub issue tracker.

For a full list of possible extension statuses, check our FAQ entry.

Prerequisites

To complete this guide, you need:

* less than 30 minutes

* Read about Fungy Basics. This is a short read!
* JDK 11 (AWS requires JDK 1.8 or 11)

* Apache Maven 3.6.3

* An Amazon AWS account

* AWS CLI

* AWS SAM CLI, for local testing

o Fungy Amazon Lambdas build off of our Quarkus Amazon Lambda support.

Installing AWS bits

Installing all the AWS bits is probably the most difficult thing about this guide. Make sure that you
follow all the steps for installing AWS CLI.

The Quickstart

Clone the Git repository: git clone https://github.com/quarkusio/quarkus-

https://groups.google.com/d/forum/quarkus-dev
https://github.com/quarkusio/quarkus/issues
https://quarkus.io/faq/#extension-status
funqy
https://aws.amazon.com
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-cli-install.html
amazon-lambda
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git

quickstarts.git, or download an archive.

The solution is located in the fungy—amazon-lambda-quickstart directory.

The Code

There is nothing special about the code and more importantly nothing AWS specific. Fungy functions
can be deployed to many different environments and AWS Lambda is one of them. The Java code is
actually the same exact code as the fungy-http-quickstart.

Choose Your Function

Only one Fungy function can be exported per Amazon Lambda deployment. If you have multiple
functions defined within your project, then you will need to choose the function within your Quarkus
application.properties:

guarkus.funqgy.export=greet

You can see how the quickstart has done it within its own application.properties.

Alternatively, you can set the QUARKUS_FUNQY_EXPORT environment variable when you create the
Amazon Lambda using the aws cli.

Deploy to AWS Lambda Java Runtime

There are a few steps to get your Funqy function running on AWS Lambda. The quickstart maven
project generates a helpful script to create, update, delete, and invoke your functions for pure Java
and native deployments. This script is generated at build time.

Build and Deploy

Build the project using maven.
./mvnw clean package

This will compile and package your code.

Create an Execution Role

View the Getting Started Guide for deploying a lambda with AWS CLI. Specifically, make sure you have
created an Execution Role. You will need to define a LAMBDA_ROLE _ARN environment variable in
your profile or console window, Alternatively, you can edit the manage. sh script that is generated by
the build and put the role value directly there:

https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts/archive/master.zip
https://github.com/quarkusio/quarkus-quickstarts/tree/master/funqy-quickstarts/funqy-amazon-lambda-quickstart
https://github.com/quarkusio/quarkus-quickstarts/tree/master/funqy-quickstarts/funqy-http-quickstart
https://github.com/quarkusio/quarkus-quickstarts/tree/master/funqy-quickstarts/funqy-amazon-lambda-quickstart/src/main/resources/application.properties
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-awscli.html

LAMBDA_ROLE_ARN="arn:aws:iam: :1234567890:role/lambda-role"

Extra Build Generated Files

After you run the build, there are a few extra files generated by the quarkus-fungy-amazon-
lambda extension. These files are in the the build directory: target/ for maven, build/ for gradle.

* function.zip - lambda deployment file

* manage.sh - wrapper around aws lambda cli calls

* bootstrap-example.sh - example bootstrap script for native deployments
* sam.jvm.yaml - (optional) for use with sam cli and local testing

* sam.native.yaml - (optional) for use with sam cli and native local testing

Create the function

The target/manage. sh script is for managing your Funqy function using the AWS Lambda Java
runtime. This script is provided only for your convenience. Examine the output of the manage. sh
script if you want to learn what aws commands are executed to create, delete, and update your
functions.

manage . sh supports four operation: create,delete, update,and invoke.

To verify your setup, that you have the AWS CLI installed, executed aws configure

o for the AWS access keys, and setup the LAMBDA_ROLE_ARN environment variable
(as described above), please execute manage. sh without any parameters. A usage
statement will be printed to guide you accordingly.

To see the usage statement, and validate AWS configuration:
sh target/manage.sh
You can create your function using the following command:
sh target/manage.sh create
or if you do not have LAMBDA_ROLE_ARN already defined in this shell:

LAMBDA_ROLE_ARN="arn:aws:iam::1234567890:role/lambda-role" sh
target/manage.sh create

Do not <change the handler switch. This must be hardcoded to
io.quarkus.fungy.lambda.FunqgyStreamHandler: :handleRequest. This
special handler is Fungy’s integration point with AWS Lambda.

If there are any problems creating the function, you must delete it with the delete function before
re-running the create command.

sh target/manage.sh delete
Commands may also be stacked:

sh target/manage.sh delete create

Invoke the function

Use the invoke command to invoke your function.
sh target/manage.sh invoke

The example function takes input passed in via the ——payload switch which points to a json file in the
root directory of the project.

The function can also be invoked locally with the SAM CLI like this:

sam local invoke --template target/sam.jvm.yaml --event
payload. json

If you are working with your native image build, simply replace the template name with the native
version:

sam local invoke --template target/sam.native.yaml --event
payload. json

Update the function

You can update the Java code as you see fit. Once you’ve rebuilt, you can redeploy your function by
executing the update command.

sh target/manage.sh update

Deploy to AWS Lambda Custom (native)
Runtime

If you want a lower memory footprint and faster initialization times for your Fungy function, you can
compile your Java code to a native executable. Just make sure to rebuild your project with the
-Pnative switch.

For Linux hosts execute:

mvn package -Pnative

If you are building on a non-Linux system, you will need to also pass in a property
instructing Quarkus to use a docker build as Amazon Lambda requires linux binaries.

o You can do this by passing this property to your Maven build: -Dnative
—-image.docker-build=true, or for Gradle: ——docker-build=true. This
requires you to have docker installed locally, however.

./mvnw clean install -Pnative -Dnative-image.docker-build=true

Either of these commands will compile and create a native executable image. It also generates a zip
file target/function.zip. This zip file contains your native executable image renamed to
bootstrap. This is a requirement of the AWS Lambda Custom (Provided) Runtime.

The instructions here are exactly as above with one change: you’ll need to add native as the first
parameter to the manage. sh script:

sh target/manage.sh native create

As above, commands can be stacked. The only requirement is that native be the first parameter
should you wish to work with native image builds. The script will take care of the rest of the details
necessary to manage your native image function deployments.

Examine the output of the manage. sh script if you want to learn what aws commands are executed to
create, delete, and update your functions.

One thing to note about the create command for native is that the aws lambda create-function
call must set a specific environment variable:

——environment 'Variables={DISABLE_SIGNAL_HANDLERS=true}'

Examine the POM

There is nothing special about the POM other than the inclusion of the quarkus-fungy-amazon-
lambda and quarkus-test-amazon-lambda extensions as a dependencies. The extension
automatically generates everything you might need for your lambda deployment.

Integration Testing

Fungy Amazon Lambda support leverages the Quarkus AWS Lambda test framework so that you can
unit tests your Funqgy functions. This is true for both JVM and native modes. This test framework
provides similar functionality to the SAM CLI, without the overhead of Docker.

If you open up FungyTest.java you’ll see that the test replicates the AWS execution environment.

package org.acme.funqy;

import io.quarkus.amazon.lambda.test.LambdaClient;
import io.quarkus.test.junit.QuarkusTest;

import org.junit.jupiter.api.Assertions;

import org.junit.jupiter.api.Test;

@QuarkusTest
public class FunqgyTest {
@Test
public void testSimplelLambdaSuccess() throws Exception {
Friend friend = new Friend("Bill");
Greeting out = LambdaClient.invoke(Greeting.class, friend);
Assertions.assertEquals("Hello Bill", out.getMessage());

Testing with the SAM CLI

The AWS SAM CLI allows you to run your functions locally on your laptop in a simulated Lambda
environment. This requires docker to be installed. This is an optional approach should you choose to
take advantage of it. Otherwise, the Quarkus JUnit integration should be sufficient for most of your
needs.

A starter template has been generated for both JVM and native execution modes.

Run the following SAM CLI command to locally test your function, passing the appropriate SAM
template. The event parameter takes any JSON file, in this case the sample payload. json.

sam local invoke --template target/sam.jvm.yaml --event
payload. json

https://github.com/quarkusio/quarkus-quickstarts/tree/master/funqy-quickstarts/funqy-amazon-lambda-quickstart/src/test/java/org/acme/funqy/FunqyTest.java
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-cli-install.html
https://www.docker.com/products/docker-desktop

The native image can also be locally tested using the sam.native.yaml template:

sam local invoke --template target/sam.native.yaml --event
payload. json

Modifying function.zip

The are times where you may have to add additional entries to the function.zip lambda
deployment that is generated by the build. To do this create a zip.jvm or zip.native directory
within src/main. Create zip.jvm/ if you are doing a pure Java. zip.native/ if you are doing a
native deployment.

Any you files and directories you create under your zip directory will be included within
function.zip

Custom bootstrap script

There are times you may want to set specific system properties or other arguments when lambda
invokes your native Funqy deployment. If you include a bootstrap script file within zip.native,
the Fungy extension will automatically rename the executable to runner within function.zip and
set the unix mode of the bootstrap script to executable.

o The native executable must be referenced as runner if you include a custom
bootstrap script.

The extension generates an example script within target/bootstrap-example.sh.

	Quarkus - Funqy Amazon Lambda Binding
	Prerequisites
	Installing AWS bits
	The Quickstart
	The Code
	Choose Your Function
	Deploy to AWS Lambda Java Runtime
	Build and Deploy
	Create an Execution Role
	Extra Build Generated Files
	Create the function
	Invoke the function
	Update the function
	Deploy to AWS Lambda Custom (native) Runtime
	Examine the POM
	Integration Testing
	Testing with the SAM CLI
	Modifying function.zip
	Custom bootstrap script

