
Quarkus - Authorization of Web
Endpoints

Quarkus has an integrated pluggable web security layer. If security is enabled all
HTTP requests will have a permission check performed to make sure they are
allowed to continue.


Configuration authorization checks are executed before any annotation-based
authorization check is done, so both checks have to pass for a request to be allowed.

Authorization using Configuration
The default implementation allows you to define permissions using config in
application.properties. An example config is shown below:

quarkus.http.auth.policy.role-policy1.roles-allowed=user,admin
①

quarkus.http.auth.permission.roles1.paths=/roles-
secured/*,/other/*,/api/* ②
quarkus.http.auth.permission.roles1.policy=role-policy1

quarkus.http.auth.permission.permit1.paths=/public/*
③
quarkus.http.auth.permission.permit1.policy=permit
quarkus.http.auth.permission.permit1.methods=GET

quarkus.http.auth.permission.deny1.paths=/forbidden
④
quarkus.http.auth.permission.deny1.policy=deny

① This defines a role based policy that allows users with the user and admin roles. This is
referenced by later rules.

② This is a permission set that references the previously defined policy. roles1 is an arbitrary name,
you can call the permission sets whatever you want.

③ This permission references the default permit built-in policy to allow GET methods to /public.
This is actually a no-op in this example, as this request would have been allowed anyway.

④ This permission references the built-in deny policy for /forbidden. This is an exact path match
as it does not end with *.

Permissions are defined in config using permission sets. These are arbitrarily named permission
grouping. Each permission set must specify a policy that is used to control access. There are three
built-in policies: deny, permit and authenticated, which respectively permits all, denies all and

1

only allows authenticated users.

It is also possible to define role based policies, as shown in the example. These policies will only allow
users with the specified roles to access the resources.

Matching on paths, methods
Permission sets can also specify paths and methods as a comma separated list. If a path ends with *
then it is considered to be a wildcard match and will match all sub paths, otherwise it is an exact match
and will only match that specific path:

quarkus.http.auth.permission.permit1.paths=/public/*,/css/*,/js/*,/
robots.txt
quarkus.http.auth.permission.permit1.policy=permit
quarkus.http.auth.permission.permit1.methods=GET,HEAD

Matching path but not method
If a request would match one or more permission sets based on the path, but does not match any due
to method requirements then the request is rejected.


Given the above permission set, GET /public/foo would match both the path
and method and thus be allowed, whereas POST /public/foo would match the
path but not the method and would thus be rejected.

Matching multiple paths: longest path wins
Matching is always done on a longest path wins basis, less specific permission sets are not considered
if a more specific one has been matched:

quarkus.http.auth.permission.permit1.paths=/public/*
quarkus.http.auth.permission.permit1.policy=permit
quarkus.http.auth.permission.permit1.methods=GET,HEAD

quarkus.http.auth.permission.deny1.paths=/public/forbidden-folder/*
quarkus.http.auth.permission.deny1.policy=deny


Given the above permission set, GET /public/forbidden-folder/foo would
match both permission sets' paths, but because it matches the deny1 permission
set’s path on a longer match, deny1 will be chosen and the request will be rejected.

2



Subpath permissions always win against the root path permissions as explained
above in the deny1 versus permit1 permission example. Here is another example
showing a subpath permission allowing a public resource access with the root path
permission requiring the authorization:

quarkus.http.auth.policy.user-policy.roles-allowed=user
quarkus.http.auth.permission.roles.paths=/api/*
quarkus.http.auth.permission.roles.policy=user-policy

quarkus.http.auth.permission.public.paths=/api/noauth/*
quarkus.http.auth.permission.public.policy=permit

Matching multiple paths: most specific method wins
If a path is registered with multiple permission sets then any permission sets that specify a HTTP
method will take precedence and permissions sets without a method will not be considered (assuming
of course the method matches). In this instance, the permission sets without methods will only come
into effect if the request method does not match any of the sets with method permissions.

quarkus.http.auth.permission.permit1.paths=/public/*
quarkus.http.auth.permission.permit1.policy=permit
quarkus.http.auth.permission.permit1.methods=GET,HEAD

quarkus.http.auth.permission.deny1.paths=/public/*
quarkus.http.auth.permission.deny1.policy=deny



Given the above permission set, GET /public/foo would match both permission
sets' paths, but because it matches the permit1 permission set’s explicit method,
permit1 will be chosen and the request will be accepted. PUT /public/foo on
the other hand, will not match the method permissions of permit1 and so deny1
will be activated and reject the request.

Matching multiple paths and methods: both win
If multiple permission sets specify the same path and method (or multiple have no method) then both
permissions have to allow access for the request to proceed. Note that for this to happen both have to
either have specified the method, or have no method, method specific matches take precedence as
stated above:

3

quarkus.http.auth.policy.user-policy1.roles-allowed=user
quarkus.http.auth.policy.admin-policy1.roles-allowed=admin

quarkus.http.auth.permission.roles1.paths=/api/*,/restricted/*
quarkus.http.auth.permission.roles1.policy=user-policy1

quarkus.http.auth.permission.roles2.paths=/api/*,/admin/*
quarkus.http.auth.permission.roles2.policy=admin-policy1


Given the above permission set, GET /api/foo would match both permission sets'
paths, so would require both the user and admin roles.

Configuration Properties to Deny access
There are two configuration settings that alter the RBAC Deny behavior:

• quarkus.security.jaxrs.deny-unannotated-endpoints=true|false - if set to true,
the access will be denied for all JAX-RS endpoints by default. That is if the security annotations do
not define the access control. Defaults to false.

• quarkus.security.deny-unannotated-members=true|false - if set to true, the access
will be denied to all CDI methods and JAX-RS endpoints that do not have security annotations but
are defined in classes that contain methods with security annotations. Defaults to false.

Authorization using Annotations
Quarkus comes with built-in security to allow for Role-Based Access Control (RBAC) based on the
common security annotations @RolesAllowed, @DenyAll, @PermitAll on REST endpoints and
CDI beans. An example of an endpoint that makes use of both JAX-RS and Common Security
annotations to describe and secure its endpoints is given in SubjectExposingResource Example.
Quarkus also provides the io.quarkus.security.Authenticated annotation that will permit
any authenticated user to access the resource (equivalent to @RolesAllowed("**")).

4

https://en.wikipedia.org/wiki/Role-based_access_control

SubjectExposingResource Example

import java.security.Principal;

import javax.annotation.security.DenyAll;
import javax.annotation.security.PermitAll;
import javax.annotation.security.RolesAllowed;
import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.core.Context;
import javax.ws.rs.core.SecurityContext;

@Path("subject")
public class SubjectExposingResource {

 @GET
 @Path("secured")
 @RolesAllowed("Tester") ①
 public String getSubjectSecured(@Context SecurityContext sec) {
 Principal user = sec.getUserPrincipal(); ②
 String name = user != null ? user.getName() : "anonymous";
 return name;
 }

 @GET
 @Path("unsecured")
 @PermitAll ③
 public String getSubjectUnsecured(@Context SecurityContext sec)
{
 Principal user = sec.getUserPrincipal(); ④
 String name = user != null ? user.getName() : "anonymous";
 return name;
 }

 @GET
 @Path("denied")
 @DenyAll ⑤
 public String getSubjectDenied(@Context SecurityContext sec) {
 Principal user = sec.getUserPrincipal();
 String name = user != null ? user.getName() : "anonymous";
 return name;
 }
}

① This /subject/secured endpoint requires an authenticated user that has been granted the role
"Tester" through the use of the @RolesAllowed("Tester") annotation.

② The endpoint obtains the user principal from the JAX-RS SecurityContext. This will be non-null
for a secured endpoint.

5

③ The /subject/unsecured endpoint allows for unauthenticated access by specifying the
@PermitAll annotation.

④ This call to obtain the user principal will return null if the caller is unauthenticated, non-null if the
caller is authenticated.

⑤ The /subject/denied endpoint disallows any access regardless of whether the call is
authenticated by specifying the @DenyAll annotation.

6

	Quarkus - Authorization of Web Endpoints
	Authorization using Configuration
	Matching on paths, methods
	Matching path but not method
	Matching multiple paths: longest path wins
	Matching multiple paths: most specific method wins
	Matching multiple paths and methods: both win
	Configuration Properties to Deny access

	Authorization using Annotations

