Quarkus - Building my first extension

Quarkus extensions enhance your application just as projects dependencies do.
The role of the extensions is to leverage Quarkus paradigms to integrate
seamlessly a library into Quarkus architecture - e.g. do more things at build time.
This is how you can use your battle-tested ecosystem and take advantage of
Quarkus performance and native compilation. Go to code.quarkus.io to get the list
of the supported extensions.

In this guide we are going to develop the Sample Greeting Extension. The extension will expose a
customizable HTTP endpoint which simply greets the visitor.

Disclaimer

application. This guide is a simplified example to explain the concepts of extensions
development. Keep in mind it’s not representative of the power of moving things to
build time or simplifying the build of native images.

o To be sure it’s extra clear you don’t need an extension to add a Servlet to your

Prerequisites

To complete this guide, you need:

* less than 30 minutes
* anIDE
* JDK 1.8+ installed with JAVA_HOME configured appropriately

* Apache Maven 3.6.3

Solution

We recommend that you follow the instructions in the next sections and create the extension step by
step. However, you can go right to the completed example.

Clone the Git repository: git clone https://github.com/quarkusio/quarkus-
quickstarts.git, or download an archive.

The solution is located inthe getting-started-extension directory.

Basic Concepts

First things first, we will need to start with some basic concepts.

* JVM mode vs Native mode

https://code.quarkus.io/
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts/archive/master.zip
https://github.com/quarkusio/quarkus-quickstarts/tree/master/getting-started-extension

> Quarkus is first and foremost a Java framework, that means you can develop, package and run
classic JAR applications, that’s what we call JVM mode.

> Thanks to GraalVM you can compile your Java application into machine specific code (like you
do in Go or C++) and that’s what we call Native mode.

The operation of compiling Java bytecode into a native system-specific machine code is named Ahead
of Time Compilation (aka AoT).

* build time vs runtime in classic Java frameworks

> The build time corresponds to all the actions you apply to your Java source files to convert
them into something runnable (class files, jar/war, native images). Usually this stage is
composed by the compilation, annotation processing, bytecode generation, etc. At this point,
everything is under developer’s scope and control.

> The runtime is all the actions that happen when you execute your application. It’'s obviously
focused on starting your business-oriented actions but it relies on a lot of technical actions like
loading libraries and configuration files, scanning the application’s classpath, configuring the
dependency injection, setting up your Object-Relational Mapping, instantiating your REST
controllers, etc.

Usually, Java frameworks do their bootstrapping during the runtime before actually starting the
application "Business oriented layer". During bootstrap, frameworks dynamically collect metadata by
scanning the classpath to find configurations, entity definitions, dependency injection binding, etc. in
order to instantiate proper objects through reflection. The main consequences are:

* Delaying the readiness of your application: you need to wait a couple of seconds before actually
serving a business request.

* Having a peak of resource consumption at bootstrap: in a constrained environment, you will need
to size the needed resources based on your technical bootstrap needs rather than your actual
business needs.

Quarkus' philosophy is to prevent as much as possible slow and memory intensive dynamic code
execution by shifting left these actions and eventually do them during the build time. A Quarkus
extension is a Java piece of code acting as an adapter layer for your favorite library or technology.

Description of a Quarkus extension

A Quarkus extension consists of two parts:

* The runtime module which represents the capabilities the extension developer exposes to the
application’s developer (an authentication filter, an enhanced data layer API, etc). Runtime
dependencies are the ones the users will add as their application dependencies (in Maven POMs or
Gradle build scripts).

* The deployment module which is used during the augmentation phase of the build, it describes
how to "deploy" a library following the Quarkus philosophy. In other words, it applies all the
Quarkus optimizations to your application during the build. The deployment module is also where
we prepare things for GraalVM’s native compilation.

https://graalvm.org/

Users should not be adding the deployment modules of extension as application
o dependencies. The deployment dependencies are resolved by Quarkus during the
augmentation phase from the runtime dependencies of the application.

At this point, you should have understood that most of the magic will happen at the Augmentation
build time thanks to the deployment module.

Quarkus Application Bootstrap

There are three distinct bootstrap phases of a Quarkus application.

* Augmentation. During the build time, the Quarkus extensions will load and scan your application’s
bytecode (including the dependencies) and configuration. At this stage, the extension can read
configuration files, scan classes for specific annotations, etc. Once all the metadata has been
collected, the extensions can pre-process the libraries bootstrap actions like your ORM, DI or
REST controllers configurations. The result of the bootstrap is directly recorded into bytecode and
will be part of your final application package.

* Static Init. During the run time, Quarkus will execute first a static init method which contains some
extensions actions/configurations. When you will do your native packaging, this static method will
be pre-processed during the build time and the objects it has generated will be serialized into the
final native executable, so the initialization code will not be executed in the native mode (imagine
you execute a Fibonacci function during this phase, the result of the computation will be directly
recorded in the native executable). When running the application in JVM mode, this static init
phase is executed at the start of the application.

* Runtime Init. Well nothing fancy here, we do classic run time code execution. So, the more code
you run during the two phases above, the faster your application will start.

Now that everything is explained, we can start coding!

Maven setup

Quarkus provides create—-extension Maven Mojo to initialize your extension project.

S mvn io.quarkus:quarkus-maven-plugin:1.7.0.Final:create-extension
_N\
-DgroupId=org.acme \ @®
-DartifactId=quarkus-greeting \ @
-Dversion=1.0-SNAPSHOT \ ®
-Dquarkus.nameBase="Greeting Extension" @
[INFO] Scanning for projects...
[INFO]
[INFO] - ————————————————— < org.apache.maven:standalone-pom

[INFO]

[INFO] --- quarkus-maven-plugin:1.7.0.Final:create-extension
(default-cli) @ standalone-pom —---

[INFO]

[INFO] BUILD SUCCESS
[INFO]

[INFO] Total time: 1.233 s
[INFO] Finished at: 2020-04-22T723:28:15+02:00
[INFO]

@ Project’s groupld

@ artifactld for the runtime artifact of the extension (the deployment artifactld will be derived from
the runtime artifactld by appending —deployment)

® Project’s version

@ Prefix for the <name> element values in the generated POMs

Maven has generated a quarkus-greeting directory containing the extension project which
consists of the parent pom. xml, the runtime and the deployment modules.

The parent pom.xml

Your extension is a multi-module project. So let’s start by checking out the parent POM at
./quarkus—-greeting/pom.xml.

<?xml version="1.0" encoding="UTF-8"7?>
<project xmlns="http://maven.apache.orqg/POM/4.0.0"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.orq/POM/4.0.0
https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupId>org.acme</groupId>
<artifactId>quarkus—-greeting-parent</artifactId>
<version>1.0-SNAPSHOT</version>

<name>Greeting Extension - Parent</name>

<packaging>pom</packaging>
<properties>
<project.build.sourceEncoding>UTF-
8</project.build.sourceEncoding>
<project.reporting.outputEncoding>UTF-
8</project.reporting.outputEncoding>
<maven.compiler.source>1.8</maven.compiler.source>
<maven.compiler.target>1.8</maven.compiler.target>
<maven.compiler.parameters>true</maven.compiler.parameters>
<quarkus.version>1.7.0.Final</quarkus.version>
<compiler-plugin.version>3.8.1</compiler-plugin.version>
</properties>
<modules> @
<module>deployment</module>
<module>runtime</module>
</modules>
<dependencyManagement>
<dependencies>
<dependency>
<groupId>io.quarkus</groupId>
<artifactId>quarkus-bom-deployment</artifactId> @
<version>${quarkus.version}</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>
<build>
<pluginManagement>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>S${compiler-plugin.version}</version>

</plugin>
</plugins>
</pluginManagement>
</build>

</project>

@ Your extension declares 2 sub-modules deployment and runtime.

@ The quarkus-bom-deployment aligns your dependencies with those used by Quarkus during
the augmentation phase.

® Quarkus requires a recent version of the Maven compiler plugin supporting the
annotationProcessorPaths configuration.

The Deployment module

Let’s have a look at the deployment’s . /quarkus—greeting/deployment/pom.xml.

<?xml version="1.0" encoding="UTF-8"7?7>
<project xmlns="http://maven.apache.orqg/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://maven.apache.orqg/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>org.acme</groupId>
<artifactId>quarkus-greeting-parent</artifactId>
<version>1.0-SNAPSHOT</version>
<relativePath>../pom.xml</relativePath>
</parent>

<artifactId>quarkus-greeting-deployment</artifactId> @
<name>Greeting Extension - Deployment</name>

<dependencies>
<dependency>
<groupId>io.quarkus</groupIld>
<artifactId>quarkus-core-deployment</artifactId> @
<version>${quarkus.version}</version>
</dependency>
<dependency>
<groupId>org.acme</groupId>
<artifactId>quarkus-greeting</artifactId> ®
<version>S${project.version}</version>
</dependency>
</dependencies>

<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>

<annotationProcessorPaths>
<path>
<groupId>io.quarkus</groupIld>
<artifactId>quarkus-extension-
processor</artifactId> @

<version>${quarkus.version}</version>
</path>
</annotationProcessorPaths>
</configuration>
</plugin>
</plugins>
</build>

</project>

The key points are:

@ By convention, the deployment module has the ~deployment suffix (Qgreeting-deployment).

@ The deployment module depends on the quarkus—core-deployment artifact. We will see later
which dependencies are convenient to add.

® The deployment module also must depend on the runtime module.

@ We add the quarkus-extension-processor to the compiler annotation processors.
In addition to the pom. xml create-extension also generated the
org.acme.quarkus.greeting.deployment.GreetingProcessor class.

package org.acme.quarkus.greeting.deployment;

import io.quarkus.deployment.annotations.BuildStep;
import io.quarkus.deployment.builditem.FeatureBuildItem;

class GreetingProcessor {

private static final String FEATURE = "greeting",;

@BuildStep
FeatureBuildItem feature() (
return new FeatureBuildItem(FEATURE);

FeatureBuildItem represents a functionality provided by an extension. The
o name of the feature gets displayed in the log during application bootstrap. An
extension should provide at most one feature.

Be patient, we will explain the Build Step Processor concept and all the extension deployment
API later on. At this point, you just need to understand that this class explains to Quarkus how to
deploy a feature named greeting which is your extension. In other words, you are augmenting your
application to use the greeting extension with all the Quarkus benefits (build time optimization,
native support, etc.).

The Runtime module

Finally . /quarkus—-greeting/runtime/pom.xml.

<?xml version="1.0" encoding="UTF-8"7>
<project xmlns="http://maven.apache.orqg/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.orq/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>org.acme</groupId>
<artifactId>quarkus-greeting-parent</artifactId>
<version>1.0-SNAPSHOT</version>
<relativePath>../pom.xml</relativePath>
</parent>

<artifactId>quarkus-greeting</artifactId> @
<name>Greeting Extension - Runtime</name>

<dependencies>
</dependencies>

<build>
<plugins>
<plugin>
<groupId>io.quarkus</groupId>
<artifactId>quarkus-bootstrap-maven-
plugin</artifactId> @
<version>${quarkus.version}</version>
<executions>
<execution>
<goals>
<goal>extension-descriptor</goal>

</goals>
<phase>compile</phase>
<confiquration>

<deployment>S${project.groupId}:S{project.artifactId}-
deployment:S${project.version}
</deployment>
</configuration>

</execution>
</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<confiquration>
<annotationProcessorPaths>
<path>
<groupId>io.quarkus</groupId>
<artifactId>quarkus-extension-

processor</artifactId> ®
<version>S${quarkus.version}</version>

</path>
</annotationProcessorPaths>
</configuration>
</plugin>
</plugins>
</build>
</project>

The key points are:

@ By convention, the runtime module has no suffix (greeting) as it is the artifact exposed to the
end user.

@ We add the quarkus-bootstrap-maven-plugin to generate the Quarkus extension
descriptor included into the runtime artifact which links it with the corresponding deployment

artifact.

® We add the quarkus-extension-processor to the compiler annotation processors.

Basic version of the Sample Greeting extension

Implementing the Greeting feature

The (killer) feature proposed by our extension is to greet the user. To do so, our extension will deploy,
in the user application, a Servlet exposing the HTTP endpoint /greeting which responds to the GET
verb with a plain text Hello.

The runtime module is where you develop the feature you want to propose to your users, so it’s time
to create our Web Servlet.

To use Servlets in your applications you need to have a Servlet Container such as Undertow. Luckily,
quarkus—-bom-deployment imported by our parent pom.xml already includes the Undertow
Quarkus extension. All we need to do is add

http://undertow.io

<dependencies>
<dependency>
<groupId>io.quarkus</groupId>
<artifactId>quarkus—-undertow</artifactId>
</dependency>
</dependencies>

toour . /quarkus—-greeting/runtime/pom.xml.

Now we can create our Servlet org.acme.quarkus.greeting.GreetingServlet in the
runtime module.

package org.acme.quarkus.greeting;

import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.IOException;

@WebServlet
public class GreetingServlet extends HttpServlet { @®

@Override
protected void doGet(HttpServletRequest req,
HttpServletResponse resp) throws IOException { @
resp.getWriter() .write("Hello");

@ As usual, defining a servlet requires to extend javax.servlet.http.HttpServlet.

@ Since we want to respond to the HTTP GET verb, we override the doGet method and write Hello
in the Servlet response’s output stream.

Deploying the Greeting feature

Quarkus magic relies on bytecode generation at build time rather than waiting for the runtime code
evaluation, that’s the role of your extension’s deployment module. Calm down, we know, bytecode is
hard and you don’t want to do it manually, Quarkus proposes a high level APl to make your life easier.
Thanks to basic concepts, you will describe the items to produce/consume and the corresponding
steps in order to generate the bytecode to produce during the deployment time.

The io.quarkus.builder.item.BuildItem concept represents object instances you will
produce or consume (and at some point convert into bytecode) thanks to methods annotated with
@io.quarkus.deployment.annotations.BuildStep which describe your extension’s
deployment tasks.

Go back to the generated org.acme.quarkus.greeting.deployment.GreetingProcessor
class.

package org.acme.quarkus.greeting.deployment;

import io.quarkus.deployment.annotations.BuildStep;
import io.quarkus.deployment.builditem.FeatureBuildItem;

class GreetingProcessor {
private static final String FEATURE = "greeting",;

@BuildStep @
FeatureBuildItem feature() {
return new FeatureBuildItem(FEATURE); @

@ feature() method is annotated with @BuildStep which means it is identified as a deployment
task Quarkus will have to execute during the deployment. BuildStep methods are run
concurrently at augmentation time to augment the application. They use a producer/consumer
model, where a step is guaranteed not to be run until all the items that it is consuming have been
produced.

@ io.quarkus.deployment.builditem.FeatureBuildItem is an implementation of
BuildItem which represents the description of an extension. This BuildItem will be used by
Quarkus to display information to the users when the application is starting.

There are many BuildItem implementations, each one represents an aspect of the deployment
process. Here are some examples:

* ServletBuildItem: describes a Servlet (name, path, etc.) we want to generate during the
deployment.

* BeanContainerBuildItem: describes a container used to store and retrieve object instances
during the deployment.

If you don’t find aBuildItem for what you want to achieve, you can create your own implementation.
Keep in mind that a BuildItem should be as fine-grained as possible, representing a specific part of
the deployment. To create your BuildItem you can extend:

®* io.quarkus.builder.item.SimpleBuildItem if you need only a single instance of the
item during the deployment (e.g. BeanContainerBuildItem, you only want one container).

®* io.quarkus.builder.item.MultiBuildItem if you want to have multiple instances (e.q.
ServletBuildItem, you can produce many Servlets during the deployment).

It’s now time to declare our HTTP endpoint. To do so, we need to produce a ServletBuildItem. At
this point, we are sure you understood that if the quarkus—-undertow dependency proposes Serviet
support for our runtime module, we will need the quarkus—-undertow-deployment dependency

1

in our deployment module to have access to the
io.quarkus.undertow.deployment.ServletBuildItem.

Update the . /quarkus—-greeting/deployment/pom.xml as follows:

<dependencies>
<dependency>
<groupId>org.acme</groupIld>
<artifactId>quarkus—-greeting</artifactId>
<version>S${project.version}</version>
</dependency>
<dependency>
<groupId>io.quarkus</groupId>
<artifactId>quarkus-undertow-deployment</artifactId>
</dependency>
</dependencies>

The dependency on quarkus-core-deployment generated by the create-
o extension mojo can now be removed since quarkus-undertow-deployment
already depends on it.

We can now update org.acme.quarkus.greeting.deployment.GreetingProcessor:

package org.acme.quarkus.greeting.deployment;

import io.quarkus.deployment.annotations.BuildStep;
import io.quarkus.deployment.builditem.FeatureBuildItem;
import org.acme.quarkus.greeting.GreetingServlet;

import io.quarkus.undertow.deployment.ServletBuildItem;

class GreetingProcessor {
private static final String FEATURE = "greeting",;

@BuildStep
FeatureBuildItem feature() {

return new FeatureBuildItem(FEATURE);
}

@BuildStep
ServletBuildItem createServlet() { @
ServletBuildItem servletBuildItem =
ServletBuildItem.builder("greeting",
GreetingServlet.class.getName())
.addMapping("/greeting")
.build(); @
return servletBuildItem;

@M We add a createServlet method which returns a ServletBuildItem and annotate it with
@BuildStep. Now, Quarkus will process this new task which will result in the bytecode generation
of the Servlet registration at build time.

@ ServletBuildItem proposes a fluent API to instantiate a Servlet named greeting of type
GreetingServlet (it’s our class provided by our extension runtime module), and map it the
/greeting path.

Testing the Greeting feature

When developing a Quarkus extension, you mainly want to test your feature is properly deployed in an
application and works as expected. That’s why the tests will be hosted in the deployment module.

Let’s add the testing dependencies into the ./quarkus—-greeting/deployment/pom.xml and
maven-surefire configuration

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.orqg/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.orq/POM/4.0.0

13

http://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>

<parent>
<groupId>org.acme</groupIld>
<artifactId>quarkus-greeting-parent</artifactId>
<version>1.0-SNAPSHOT</version>
<relativePath>../pom.xml</relativePath>

</parent>

<artifactId>quarkus-greeting-deployment</artifactId>
<name>Greeting Extension - Deployment</name>

<properties>
<maven.surefire.version>3.0.0-M4</maven.surefire.version>
</properties>

<dependencies>

<dependency>
<groupId>org.acme</groupId>
<artifactId>quarkus—-greeting</artifactId>
<version>S${project.version}</version>

</dependency>

<dependency>
<groupId>io.quarkus</groupId>
<artifactId>quarkus-undertow-deployment</artifactId>

</dependency>

<dependency>
<groupId>io.quarkus</groupId>
<artifactId>quarkus-junit5-internal</artifactId> @
<scope>test</scope>

</dependency>

<dependency>
<groupId>io.rest-assured</groupld>
<artifactId>rest-assured</artifactId> @
<scope>test</scope>

</dependency>

</dependencies>

<build>
<plugins>
<plugin>

<groupIld>org.apache.maven.plugins</groupId>

<artifactId>maven-compiler-plugin</artifactId>

<configuration>

<annotationProcessorPaths>
<path>
<groupId>io.quarkus</groupId>
<artifactId>quarkus—-extension-
processor</artifactId>

<version>S${quarkus.version}</version>
</path>
</annotationProcessorPaths>
</configuration>
</plugin>
<plugin>
<artifactId>maven-surefire-plugin</artifactId> ®
<version>${maven.surefire.version}</version>
<configuration>
<systemPropertyVariables>

<java.util.logging.manager>org. jboss.logmanager.LogManager</java.ut
il.logging.manager>
<maven.home>${maven.home}</maven.home>
</systemPropertyVariables>
</configuration>
</plugin>
</plugins>
</build>

</project>

@ Quarkus proposes facilities to test extensions via the quarkus—-junit5-internal artifact, in
particular the io.quarkus.test.QuarkusUnitTest runner which starts an application with
your extension.

@ We will use RestAssured (massively used in Quarkus) to test our HTTP endpoint.

® In order to not fallback to JUnit 4 legacy mode you need to define a recent version of maven-
surefire plugin.

Currently, the create-extension Maven Mojo does not create the test structure. We’'ll create it
ourselves:

mkdir -p ./quarkus-
greeting/deployment/src/test/java/org/acme/quarkus/greeting/deploym
ent

To start testing your extension, create the following
org.acme.quarkus.greeting.deployment.GreetingTest test class:

15

http://rest-assured.io

package org.acme.quarkus.greeting.deployment;

import io.quarkus.test.QuarkusUnitTest;

import io.restassured.RestAssured;

import org.jboss.shrinkwrap.api.ShrinkWrap;

import org.jboss.shrinkwrap.api.spec.JavaArchive,

import org.junit.jupiter.api.Test;

import org.junit.jupiter.api.extension.RegisterExtension;

import static org.hamcrest.Matchers.containsString;
public class GreetingTest {

@RegisterExtension
static final QuarkusUnitTest config = new QuarkusUnitTest()
.setArchiveProducer(() ->
ShrinkWrap.create(JavaArchive.class)); @®

@Test
public void testGreeting() {

RestAssured.when().get("/greeting").then().statusCode(200) .body(con
tainsString("Hello")); @
}

@ We register a Junit Extension which will start a Quarkus application with the Greeting extension.

@ We verify the application has a greeting endpoint responding to a HTTP GET request with a OK

status (200) and a plain text body containing Hello

Time to test!

S mvn clean test
[INFO] Scanning for projects...
[INFO]

[INFO] Reactor Build Order:

[INFO]

[INFO] Greeting Extension - Parent
[pom]

[INFO] Greeting Extension - Runtime
[jar]

[INFO] Greeting Extension - Deployment
[jar]

[INFO]

[INFO] --- maven-surefire-plugin:3.0.0-M4:test (default-test) @
quarkus-greeting-deployment ---

[INFO]

[INFO] ———————————
[INFO] TESTS

[INFO] —-—=———
[INFO] Running org.acme.quarkus.greeting.deployment.GreetingTest
2020-04-23 13:55:44,612 INFO [io.quarkus] (main) Quarkus
1.7.0.Final started in 0.395s. Listening on: http://0.0.0.0:8081
2020-04-23 13:55:44,614 INFO [io.quarkus] (main) Profile test
activated.

2020-04-23 13:55:44,614 INFO [io.quarkus] (main) Installed
features: [cdi, quarkus-greeting, servlet]

2020-04-23 13:55:45,876 INFO [io.quarkus] (main) Quarkus stopped
in 0.025s

[INFO] Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time
elapsed: 3.609 s - in
org.acme.quarkus.greeting.deployment.GreetingTest

[INFO]

[INFO] Results:

[INFO]

[INFO] Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

[INFO]

[INFO]

[INFO] Reactor Summary for getting-started-extension 1.0-SNAPSHOT:
[INFO]

[INFO] getting-started-extension SUCCESS
[0.076 s]

[INFO] Greeting Extension - Parent SUCCESS
[0.002 s]

[INFO] Greeting Extension - Runtime SUCCESS
[1.467 s]

[INFO] Greeting Extension - Deployment SUCCESS
[4.099 s]

[INFO]

[INFO] BUILD SUCCESS
[INFO]

[INFO] Total time: 5.745 s
[INFO] Finished at: 2020-01-28T22:40:56+01:00
[INFO]

17

Looks good! Congratulations you just finished your first extension.

Debugging your extension

If debugging is the process of removing bugs, then programming must be the process of putting them in.
Edsger W. Dijkstra

Debugging your application build

Since your extension deployment is made during the application build, this process is triggered by
your build tool. That means if your want to debug this phase you need to launch your build tool with
the remote debug mode switched one.

Maven
You can activate Maven remote debugging by using mvnDebug. You can launch your application with
the following command line:

mvnDebug clean compile quarkus:dev

By default, Maven will wait for a connection on localhost :8000. Now, you can run your IDE Remote
configuration to attach it to localhost:8000.

Gradle

You can activate Gradle remote debugging by using the flags org.gradle.debug=true or
org.gradle.daemon.debug=true in daemon mode. You can launch your application with the
following command line:

./gradlew quarkusDev -Dorg.gradle.daemon.debug=true

By default, Maven will wait for a connection on localhost:5005. Now, you can run your IDE Remote
configuration to attach itto localhost:5005.

Debugging your extension tests

We have seen together how to test your extension and sometimes things don’t go so well and you want
to debug your tests. Same principle here, the trick is to enable the Maven Surefire remote debugging
in order to attach an IDE Remot e configuration.

S cd ./greeting
S mvn clean test -Dmaven.surefire.debug

By default, Maven will wait for a connectionon localhost:5005.

Extension publication

Now that you just finish to build your first extension you should be eager to use it in a Quarkus
application!

Classic Maven publication

Because your extension produces traditional JARs, the easiest way to share your extension is to
publish it to a Maven repository. Once published you can simply declare it with your project
dependencies. Let’s demonstrate that by creating a simple Quarkus application

Smvn io.quarkus:quarkus-maven-plugin:1.7.0.Final:create \
-DprojectGroupIld=org.acme \
-DprojectArtifactId=greeting—-app \
-DprojectVersion=1.0-SNAPSHOT \
-DclassName=HelloResource

cd into greeting-app and add the dependency on quarkus—-greeting extension we created
above.

o quarkus—greeting extension has to be installed in the local Maven repository to
be usable in the application.

<dependencies>

<dependency>
<groupId>org.acme</groupld>
<artifactId>quarkus—-greeting</artifactId>
<version>1.0-SNAPSHOT</version>

</dependency>

<dependency>
<groupId>io.quarkus</groupId>
<artifactId>quarkus-resteasy</artifactId>

</dependency>

<!-- the rest of the application dependencies -->

Run the application and notice the Install Features list contains the quarkus—-greeting
extension.

19

S mvn clean compile quarkus:dev
[INFO] Scanning for projects...

[INFO]

[INFO] -~ < org.acme:code-with—-quarkus

S

[INFO] Building code-with—quarkus 1.0.0-SNAPSHOT

B B [jar

] _________________________________

[INFO]

[INFO] --- maven-clean-plugin:2.5:clean (default-clean) @ code-

with-quarkus —---

[INFO] Deleting /tmp/code-with-quarkus/target

[INFO]

[INFO] --- maven-resources-plugin:2.6:resources (default-resources)
@ code-with-quarkus ---

[INFO] Using 'UTF-8' encoding to copy filtered resources.

[INFO] Copying 2 resources

[INFO]

[INFO] -—- maven-compiler-plugin:3.8.1l:compile (default-compile) @
code-with-quarkus —--—-

[INFO] Changes detected - recompiling the module!

[INFO] Compiling 1 source file to /tmp/code-with-
quarkus/target/classes

[INFO]

[INFO] --- quarkus-maven-plugin:1.7.0.Final:dev (default-cli) @
code-with-quarkus ---

Listening for transport dt_socket at address: 5005

-/ __ N/ /7 /7 /7 _ |/ _ N/ __]

=/ /S), </ /\ N\

e W VA 2 A A I AN

2020-04-23 14:17:36,137 INFO [io.quarkus] (Quarkus Main Thread)
greeting-app 1.0-SNAPSHOT (powered by Quarkus 1.7.0.Final) started
in 0.985s. Listening on: http://0.0.0.0:8080

2020-04-23 14:17:36,140 INFO [io.quarkus] (Quarkus Main Thread)
Profile dev activated. Live Coding activated.

2020-04-23 14:17:36,140 INFO [io.quarkus] (Quarkus Main Thread)
Installed features: [cdi, quarkus—-greeting, resteasy, servlet]

From an extension developer standpoint the Maven publication strateqy is very handy and fast but
Quarkus wants to go one step further by also ensuring a reliability of the ecosystem for the people
who will use the extensions. Think about it, we all had a poor Developer Experience with an
unmaintained library, an incompatibility between dependencies (and we don’t even talk about legal

issues). That’s why there is the Quarkus Platform.

Quarkus Platform

Quarkus proposes a quarkus—universe-bom which is a certified list of extensions placed under the

20

Quarkus Platform label. From an application developer, the objectives of the platform are:

* To guarantee a supportability of the extension (bugfix, security issues, dependency upgrades)
* To ease the extension discovery through the Quarkus CLI or https://code.quarkus.io/

* To ensure a global consistency of the extension ecosystem

Should I publish my extension to the platform?

If you feel your extensions is for you or a limited group, simply publishing to Maven
. is fine. If the extension solves a general problem, it is very handy for Quarkus users
O to see it on https://code.quarkus.io. But this comes with some responsibility for you,
keeping it up to date with Quarkus minor releases (every month or so at the
moment). When in doubt, have a conversation with the community in the Quarkus
Google Group. We can make a collective decision.

As for now, the process to propose a new extension is not defined yet. Your best
o chance is to present your extension on the Quarkus Google Group and wait for an
official invitation to join the Quarkus Platform.

Conclusion

Creating new extensions may appear to be an intricate task at first but once you understood the
Quarkus game-changer paradigm (build time vs runtime) the structure of an extension makes
perfectly sense.

As usual, along the path Quarkus simplifies things under the hood (Maven Mojo, bytecode generation
or testing) to make it pleasant to develop new features.

21

https://code.quarkus.io/
https://code.quarkus.io
https://groups.google.com/forum/#!forum/quarkus-dev
https://groups.google.com/forum/#!forum/quarkus-dev
https://groups.google.com/forum/#!forum/quarkus-dev

	Quarkus - Building my first extension
	Prerequisites
	Solution
	Basic Concepts
	Description of a Quarkus extension
	Quarkus Application Bootstrap
	Maven setup
	The parent pom.xml
	The Deployment module
	The Runtime module

	Basic version of the Sample Greeting extension
	Implementing the Greeting feature
	Deploying the Greeting feature
	Testing the Greeting feature
	Debugging your extension
	Extension publication

	Conclusion

