
Quarkus - Scheduler Reference Guide
Modern applications often need to run specific tasks periodically. There are two
scheduler extensions in Quarkus. The quarkus-scheduler extension brings the
API and a lightweight in-memory scheduler implementation. The quarkus-
quartz extension implements the API from the quarkus-scheduler extension
and contains a scheduler implementation based on the Quartz library. You will only
need quarkus-quartz for more advanced scheduling use cases, such as
persistent tasks, clustering and programmatic scheduling of jobs.


If you add the quarkus-quartz dependency to your project the lightweight
scheduler implementation from the quarkus-scheduler extension is
automatically disabled.

1. Scheduled Methods
If you annotate a method with @io.quarkus.scheduler.Scheduled it is automatically scheduled
for invocation. In fact, such a method must be a non-private non-static method of a CDI bean. As a
consequence of being a method of a CDI bean a scheduled method can be annotated with interceptor
bindings, such as @javax.transaction.Transactional and
@org.eclipse.microprofile.metrics.annotation.Counted.

 If there is no CDI scope defined on the declaring class then @Singleton is used.

Furthermore, the annotated method must return void and either declare no parameters or one
parameter of type io.quarkus.scheduler.ScheduledExecution.

 The annotation is repeatable so a single method could be scheduled multiple times.

1.1. Triggers
A trigger is defined either by the @Scheduled#cron() or by the @Scheduled#every() attributes.
If both are specified, the cron expression takes precedence. If none is specified, the build fails with an
IllegalStateException.

1.1.1. CRON

A CRON trigger is defined by a cron-like expression. For example "0 15 10 * * ?" fires at 10:15am
every day.

CRON Trigger Example

@Scheduled(cron = "0 15 10 * * ?")
void fireAt10AmEveryDay() { }

1

The syntax used in CRON expressions is controlled by the quarkus.scheduler.cron-type
property. The values can be cron4j, quartz, unix and spring. quartz is used by default.

If a CRON expression starts with { and ends with } then the scheduler attempts to find a
corresponding config property and use the configured value instead.

CRON Config Property Example

@Scheduled(cron = "{myMethod.cron.expr}")
void myMethod() { }

1.1.2. Intervals

An interval trigger defines a period between invocations. The period expression is based on the ISO-
8601 duration format PnDTnHnMn.nS and the value of @Scheduled#every() is parsed with
java.time.Duration#parse(CharSequence). However, if an expression starts with a digit then
the PT prefix is added automatically. So for example, 15m can be used instead of PT15M and is parsed
as "15 minutes".

Interval Trigger Example

@Scheduled(every = "15m")
void every15Mins() { }

If a value starts with { and ends with } then the scheduler attempts to find a corresponding config
property and use the configured value instead.

Interval Config Property Example

@Scheduled(every = "{myMethod.every.expr}")
void myMethod() { }

1.2. Identity
By default, a unique id is generated for each scheduled method. This id is used in log messages and
during debugging. Sometimes a possibility to specify an explicit id may come in handy.

Identity Example

@Scheduled(identity = "myScheduledMethod")
void myMethod() { }

1.3. Delayed Execution
@Scheduled provides two ways to delay the time a trigger should start firing at.

2

@Scheduled#delay() and @Scheduled#delayUnit() form the initial delay together.

@Scheduled(every = "2s", delay = 2, delayUnit = TimeUnit.HOUR) ①
void everyTwoSeconds() { }

① The trigger fires for the first time two hours after the application start.

 The final value is always rounded to full second.

@Scheduled#delayed() is a text alternative to the properties above. The period expression is
based on the ISO-8601 duration format PnDTnHnMn.nS and the value is parsed with
java.time.Duration#parse(CharSequence). However, if an expression starts with a digit, the
PT prefix is added automatically. So for example, 15s can be used instead of PT15S and is parsed as
"15 seconds".

@Scheduled(every = "2s", delayed = "2h")
void everyTwoSeconds() { }


If @Scheduled#delay() is set to a value greater then zero the value of
@Scheduled#delayed() is ignored.

The main advantage over @Scheduled#delay() is that the value is configurable. If the value starts
with { and ends with } then the scheduler attempts to find a corresponding config property and use
the configured value instead:

@Scheduled(every = "2s", delayed = "{myMethod.delay.expr}") ①
void everyTwoSeconds() { }

① The config property myMethod.delay.expr is used to set the delay.

1.4. Concurrent Execution
By default, a scheduled method can be executed concurrently. Nevertheless, it is possible to specify
the strategy to handle concurrent executions via @Scheduled#concurrentExecution().

import static
io.quarkus.scheduler.Scheduled.ConcurrentExecution.SKIP;

@Scheduled(every = "1s", concurrentExecution = SKIP) ①
void nonConcurrent() {
 // we can be sure that this method is never executed concurrently
}

① Concurrent executions are skipped.

3

2. Scheduler
Quarkus provides a built-in bean of type io.quarkus.scheduler.Scheduler that can be injected
and used to pause/resume the scheduler.

Scheduler Injection Example

import io.quarkus.scheduler.Scheduler;

class MyService {

 @Inject
 Scheduler scheduler;

 void ping() {
 scheduler.pause(); ①
 if (scheduler.isRunning()) {
 throw new IllegalStateException("This should never
happen!");
 }
 scheduler.resume(); ②
 }
}

① Pause all triggers.

② Resume the scheduler.

3. Programmatic Scheduling
If you need to schedule a job programmatically you’ll need to add the Quartz extension and use the
Quartz API direcly.

4

quartz

Programmatic Scheduling with Quartz API

import org.quartz.Scheduler;

class MyJobs {

 void onStart(@Observes StartupEvent event, Scheduler quartz)
throws SchedulerException {
 JobDetail job = JobBuilder.newJob(SomeJob.class)
 .withIdentity("myJob", "myGroup")
 .build();
 Trigger trigger = TriggerBuilder.newTrigger()
 .withIdentity("myTrigger", "myGroup")
 .startNow()

.withSchedule(SimpleScheduleBuilder.simpleSchedule()
 .withIntervalInSeconds(1)
 .repeatForever())
 .build();
 quartz.scheduleJob(job, trigger);
 }
}


By default, the scheduler is not started unless a @Scheduled business method is
found. You may need to force the start of the scheduler for "pure" programmatic
scheduling. See also Quartz Configuration Reference.

4. Scheduled Methods and Testing
It is often desirable to disable the scheduler when running the tests. The scheduler can be disabled
through the runtime config property quarkus.scheduler.enabled. If set to false the scheduler
is not started even though the application contains scheduled methods. You can even disable the
scheduler for particular Test Profiles.

5. Configuration Reference
 Configuration property fixed at build time - All other configuration properties are overridable at
runtime

Configuration property Type Default

 quarkus.scheduler.cron-type

The syntax used in CRON expressions.

cron4j,
quartz,
unix,
spring

quartz

5

quartz.pdf#quartz-configuration-reference
getting-started-testing.pdf#testing_different_profiles
#quarkus-scheduler_configuration
#quarkus-scheduler_quarkus.scheduler.cron-type

quarkus.scheduler.enabled

If schedulers are enabled. boolean true

6

#quarkus-scheduler_quarkus.scheduler.enabled

	Quarkus - Scheduler Reference Guide
	1. Scheduled Methods
	1.1. Triggers
	1.2. Identity
	1.3. Delayed Execution
	1.4. Concurrent Execution

	2. Scheduler
	3. Programmatic Scheduling
	4. Scheduled Methods and Testing
	5. Configuration Reference

