Quarkus - Using Hibernate ORM and
JPA

Hibernate ORM is the de facto standard JPA implementation and offers you the
full breadth of an Object Relational Mapper. It works beautifully in Quarkus.

Setting up and configuring Hibernate ORM

When using Hibernate ORM in Quarkus, you don’t need to have a persistence.xml resource to
configure it.

Using such a classic configuration file is an option, but unnecessary unless you have specific advanced
needs; so we’ll see first how Hibernate ORM can be configured without a persistence.xml
resource.

In Quarkus, you just need to:

* add your configuration settingsin application.properties

* annotate your entities with @Entity and any other mapping annotation as usual

Other configuration needs have been automated: Quarkus will make some opinionated choices and
educated guesses.

Add the following dependencies to your project:

* the Hibernate ORM extension: io.quarkus:quarkus—hibernate-orm
* your JDBC driver extension; the following options are available:

> quarkus-jdbc-db2 for IBM DB2

o quarkus—-jdbc-derby for Apache Derby

° quarkus-jdbc-h2 for H2

o quarkus—-jdbc-mariadb for MariaDB

o quarkus—-jdbc-mssql for Microsoft SQL Server

> quarkus-jdbc-mysqgl for MySQL

o quarkus—-jdbc-postgresql for PostgreSQL

https://www.ibm.com/products/db2-database
https://db.apache.org/derby/
https://www.h2database.com/html/main.html
https://mariadb.com/
https://www.microsoft.com/en-gb/sql-server/
https://www.mysql.com/
https://www.postgresql.org/

Example dependencies using Maven

<dependencies>
<!-- Hibernate ORM specific dependencies -->
<dependency>
<groupIld>io.quarkus</groupId>
<artifactId>quarkus-hibernate-orm</artifactId>
</dependency>

<!-- JUDBC driver dependencies —-->
<dependency>
<groupId>io.quarkus</groupId>
<artifactId>quarkus-jdbc-postgresql</artifactId>
</dependency>
</dependencies>

Annotate your persistent objects with @Entity, then add the relevant configuration properties in
application.properties.

Example application.properties

datasource configuration
quarkus.datasource.db-kind = postgresql
quarkus.datasource.username hibernate
quarkus.datasource.password hibernate
guarkus.datasource. jdbc.url =
jdbc:postgresqgl://localhost:5432/hibernate_db

drop and create the database at startup (use “update ™ to only
update the schema)
quarkus.hibernate-orm.database.generation=drop-and-create

Note that these configuration properties are not the same ones as in your typical Hibernate ORM
configuration file: these drive Quarkus configuration properties, which often will map to Hibernate
configuration properties but could have different names and don’t necessarily map 1:1 to each other.

Also, Quarkus will set many Hibernate configuration settings automatically, and will often use more
modern defaults.

Please see below section Hibernate ORM configuration properties for the list of properties you can set
inapplication.properties.

An EntityManagerFactory will be created based on the Quarkus datasource configuration as
long as the Hibernate ORM extension is listed among your project dependencies.

The dialect will be selected based on the JDBC driver - unless you set one explicitly.

You can then happily inject your EntityManager:

Example application bean using Hibernate

@ApplicationScoped

public class SantaClausService ({
@Inject
EntityManager em; @

@Transactional @

public void createGift(String giftDescription) {
Gift gift = new Gift();
gift.setName(giftDescription);
em.persist(qgift);

@ Inject your entity manager and have fun

@ Mark your CDI bean method as @Transactional and the EntityManager will enlist and flush
at commit.

Example Entity

@Entity

public class Gift ({
private Long id;
private String name;

@Id @GeneratedValue(strategy = GenerationType.SEQUENCE,
generator="giftSeq")
public Long getId() {
return id;

}

public void setId(Long id) {
this.id = id;
}

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

To load some SQL statements when Hibernate ORM starts, add an import.sql in the root of your
resources directory. Such a script can contain any SQL DML statements; make sure to terminate each
statement with a semicolon. This is useful to have a data set ready for your tests or demos.

A

Make sure to wrap methods modifying your database (e.g. entity.persist())
within a transaction. Marking a CDI bean method @Transactional will do that for
you and make that method a transaction boundary. We recommend doing so at your
application entry point boundaries like your REST endpoint controllers.

Hibernate ORM configuration properties

There are various optional properties useful to refine your EntityManagerFactory or gquide
guesses of Quarkus.

There are no required properties, as long as a default datasource is configured.

When no property is set, Quarkus can typically infer everything it needs to setup Hibernate ORM and
will have it use the default datasource.

The configuration properties listed here allow you to override such defaults, and customize and tune
various aspects.

& Configuration property fixed at build time - All other configuration properties are overridable at

runtime

Configuration property

Type Default

& quarkus.hibernate-orm.dialect

Class name of the Hibernate ORM dialect. The complete list of bundled dialects
is available in the Hibernate ORM JavaDoc.

string
o Not all the dialects are supported in GraalVM native
executables: we currently provide driver extensions for
PostgreSQL, MariaDB, Microsoft SQL Server and H2.
& quarkus.hibernate-orm.dialect.storage-engine
The storage engine to use when the dialect supports multiple storage engines. string

E.g. MyISAM or InnoDB for MySQL.

#quarkus-hibernate-orm_configuration
#quarkus-hibernate-orm_quarkus.hibernate-orm.dialect
https://docs.jboss.org/hibernate/stable/orm/javadocs/org/hibernate/dialect/package-summary.html
#quarkus-hibernate-orm_quarkus.hibernate-orm.dialect.storage-engine

& quarkus.hibernate-orm.sql-load-script

Name of the file containing the SQL statements to execute when Hibernate ORM
starts. Its default value differs depending on the Quarkus launch mode:

* In dev and test modes, it defaults to import.sqgl. Simply add an
import.sql file in the root of your resources directory and it will be picked
up without having to set this property. Pass no-file to force Hibernate
ORM to ignore the SQL import file.

* In production mode, it defaults to no-file. It means Hibernate ORM won’t
try to execute any SQL import file by default. Pass an explicit value to force

import
Hibernate ORM to execute the SQL import file. sql
If you need different SQL statements between dev mode, test (@QuarkusTest) I;EV
and in production, use Quarkus configuration profiles facility. string TES% ;
application.properties no-
file
%dev.quarkus.hibernate-orm.sql-load-script = import- gtherw
dev.sql ise
%test.quarkus.hibernate-orm.sql-load-script =
import-test.sql
%prod.quarkus.hibernate-orm.sqgl-load-script = no-
file
o Quarkus supports . sql file with SQL statements or comments
spread over multiple lines. Each SQL statement must be
terminated by a semicolon.
& quarkus.hibernate-orm.batch-fetch-size
The size of the batches used when loading entities and collections. int 1

-1 means batch loading is disabled. This is the default.

& gquarkus.hibernate-orm.physical-naming-strategy

Pluggable strategy contract for applying physical naming rules for database
object names. Class name of the Hibernate PhysicalNamingStrategy
implementation

string

& gquarkus.hibernate-orm.implicit-naming-strategy

Pluggable strategy for applying implicit naming rules when an explicit name is string
not given. Class name of the Hibernate ImplicitNamingStrategy implementation

#quarkus-hibernate-orm_quarkus.hibernate-orm.sql-load-script
https://quarkus.io/guides/config#configuration-profiles
#quarkus-hibernate-orm_quarkus.hibernate-orm.batch-fetch-size
#quarkus-hibernate-orm_quarkus.hibernate-orm.physical-naming-strategy
#quarkus-hibernate-orm_quarkus.hibernate-orm.implicit-naming-strategy

& quarkus.hibernate-orm.multitenant

Defines the method for multi-tenancy (DATABASE, NONE, SCHEMA). The
complete list of allowed values is available in the Hibernate ORM JavaDoc. The
type DISCRIMINATOR is currently not supported. The default value is NONE (no
multi-tenancy).

& gquarkus.hibernate-orm.multitenant-schema-datasource

Defines the name of the data source to use in case of SCHEMA approach. The
default data source will be used if not set.

& quarkus.hibernate-orm.statistics

Whether statistics collection is enabled. If 'metrics.enabled' is true, then the
default here is considered true, otherwise the default is false.

& quarkus.hibernate-orm.metrics.enabled

Whether or not metrics are published if a metrics extension is enabled.

& quarkus.hibernate-orm.second-level-caching-enabled

The default in Quarkus is for 2nd level caching to be enabled, and a good
implementation is already integrated for you. Just cherry-pick which entities
should be using the cache. Set this to false to disable all 2nd level caches.

Query related configuration

& quarkus.hibernate-orm.query.query-plan-cache-max-size

The maximum size of the query plan cache.

& quarkus.hibernate-orm.query.default-null-ordering
Default precedence of null values in ORDER BY clauses.

Valid values are: none, first, last.

Database related configuration

& quarkus.hibernate-orm.database.generation

Select whether the database schema is generated or not. drop—-and-create is
awesome in development mode. Accepted values: none, create, drop—-and-
create,drop, update.

string

string

boolean

boolean

boolean

Type

string

string

Type

string

false

true

Default

Default

none

#quarkus-hibernate-orm_quarkus.hibernate-orm.multitenant
https://docs.jboss.org/hibernate/stable/orm/javadocs/org/hibernate/MultiTenancyStrategy.html
#quarkus-hibernate-orm_quarkus.hibernate-orm.multitenant-schema-datasource
#quarkus-hibernate-orm_quarkus.hibernate-orm.statistics
#quarkus-hibernate-orm_quarkus.hibernate-orm.metrics.enabled
#quarkus-hibernate-orm_quarkus.hibernate-orm.second-level-caching-enabled
#quarkus-hibernate-orm_quarkus.hibernate-orm.query
#quarkus-hibernate-orm_quarkus.hibernate-orm.query.query-plan-cache-max-size
#quarkus-hibernate-orm_quarkus.hibernate-orm.query.default-null-ordering
#quarkus-hibernate-orm_quarkus.hibernate-orm.database
#quarkus-hibernate-orm_quarkus.hibernate-orm.database.generation

& quarkus.hibernate-orm.database.generation.halt-on-error

Whether we should stop on the first error when applying the schema.

@ quarkus.hibernate-orm.database.default-catalog

The default catalog to use for the database objects.

& quarkus.hibernate-orm.database.default-schema

The default schema to use for the database objects.

& quarkus.hibernate-orm.database.charset

The charset of the database. Used for DDL generation and also for the SQL
import scripts.

a8 quarkus.hibernate-orm.database.globally-quoted-
identifiers

Whether Hibernate should quote all identifiers.

JDBC related configuration

& quarkus.hibernate-orm. jdbc.timezone

The time zone pushed to the JDBC driver.

& quarkus.hibernate-orm. jdbc.statement-fetch-size

How many rows are fetched at a time by the JDBC driver.

& quarkus.hibernate-orm.jdbc.statement-batch-size

The number of updates (inserts, updates and deletes) that are sent by the JDBC
driver at one time for execution.

Logging configuration
& guarkus.hibernate-orm.log.sql

Show SQL logs and format them nicely. Setting it to true is obviously not
recommended in production.

& quarkus.hibernate-orm.log.bind-param

Logs SQL bind parameter. Setting it to true is obviously not recommended in
production.

boolean

string

string

Charset

boolean

Type

string

int

int

Type

boolean

boolean

false

UTF-8

false

Default

Default

false

false

#quarkus-hibernate-orm_quarkus.hibernate-orm.database.generation.halt-on-error
#quarkus-hibernate-orm_quarkus.hibernate-orm.database.default-catalog
#quarkus-hibernate-orm_quarkus.hibernate-orm.database.default-schema
#quarkus-hibernate-orm_quarkus.hibernate-orm.database.charset
https://docs.oracle.com/javase/8/docs/api/java/nio/charset/Charset.html
#quarkus-hibernate-orm_quarkus.hibernate-orm.database.globally-quoted-identifiers
#quarkus-hibernate-orm_quarkus.hibernate-orm.database.globally-quoted-identifiers
#quarkus-hibernate-orm_quarkus.hibernate-orm.jdbc
#quarkus-hibernate-orm_quarkus.hibernate-orm.jdbc.timezone
#quarkus-hibernate-orm_quarkus.hibernate-orm.jdbc.statement-fetch-size
#quarkus-hibernate-orm_quarkus.hibernate-orm.jdbc.statement-batch-size
#quarkus-hibernate-orm_quarkus.hibernate-orm.log
#quarkus-hibernate-orm_quarkus.hibernate-orm.log.sql
#quarkus-hibernate-orm_quarkus.hibernate-orm.log.bind-param

& quarkus.hibernate-orm.log.jdbc-warnings depend

s on
Whether JDBC warnings should be collected and logged. boolean . 1.
t

Caching configuration Type Default
& quarkus.hibernate-orm.cache."cache".expiration.max-idle

Duration
The maximum time before an object of the cache is considered expired. (2]
& quarkus.hibernate-orm.cache."cache".memory.object-count

long

The maximum number of objects kept in memory in the cache.

About the Duration format

The format for durations uses the standard java.time.Duration format. You
can learn more about it in the Duration#parse() javadoc.

o You can also provide duration values starting with a number. In this case, if the value
consists only of a number, the converter treats the value as seconds. Otherwise, PT
is implicitly prepended to the value to obtain a standard java.time.Duration
format.

Do not mix persistence.xml and quarkus.hibernate-orm.* properties in
o application.properties. Quarkus will raise an exception. Make up your mind
on which approach you want to use.

Want to start a PostgreSQL server on the side with Docker?

docker run --ulimit memlock=-1:-1 -it --rm=true
——-memory-swappiness=0 \
--name postgres—quarkus—-hibernate -e
(;) POSTGRES_USER=hibernate \
-e POSTGRES_PASSWORD=hibernate -e
POSTGRES_DB=hibernate_db \
-p 5432:5432 postgres:10.5

This will start a non-durable empty database: ideal for a quick experiment!

Setting up and configuring Hibernate ORM with
apersistence.xml

Alternatively, you can use a META-INF/persistence.xml to setup Hibernate ORM. This is useful
for:

#quarkus-hibernate-orm_quarkus.hibernate-orm.log.jdbc-warnings
#quarkus-hibernate-orm_quarkus.hibernate-orm.cache
#quarkus-hibernate-orm_quarkus.hibernate-orm.cache.-cache-.expiration.max-idle
https://docs.oracle.com/javase/8/docs/api/java/time/Duration.html
#duration-note-anchor
#quarkus-hibernate-orm_quarkus.hibernate-orm.cache.-cache-.memory.object-count
https://docs.oracle.com/javase/8/docs/api/java/time/Duration.html#parse-java.lang.CharSequence-

* migrating existing code
* when you have relatively complex settings requiring the full flexibility of the configuration

* orif you like it the good old way

If you have a persistence.xml, then you cannot use the quarkus.hibernate-
o orm. * properties and only persistence units defined in persistence.xml will be
taken into account.

Your pom. xml dependencies as well as your Java code would be identical to the precedent example.
The only difference is that you would specify your Hibernate ORM configuration in META-
INF/persistence.xml:

Example persistence.xml resource

<persistence xmlns="http://xmlns.jcp.org/xml/ns/persistence"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/persistence

http://xmlns.jcp.org/xml/ns/persistence/persistence_2_1.xsd"
version="2.1">

<persistence-unit name="CustomerPU" transaction-type="JTA">
<description>My customer entities</description>

<properties>
<!-- Connection specific -->
<property name="hibernate.dialect"
value="org.hibernate.dialect.PostgreSQL95Dialect" />

<property name="hibernate.show_sql" value="true"/>
<property name="hibernate.format_sql" value="true"/>

<!l-——
Optimistically create the tables;
will cause background errors being logged if they
already exist,
but is practical to retain existing data across
runs (or create as needed) -->
<property name="javax.persistence.schema-
generation.database.action" value="drop-and-create"/>

<property name="javax.persistence.validation.mode"
value="NONE" />
</properties>

</persistence-unit>
</persistence>
When using the persistence.xml configuration you are configuring Hibernate ORM directly, so in

this case the appropriate reference is the documentation on hibernate.org.

Please remember these are not the same property names as the ones used in the Quarkus
application.properties, nor will the same defaults be applied.

Defining entities in external projects or jars

Hibernate ORM in Quarkus relies on compile-time bytecode enhancements to your entities. If you
define your entities in the same project where you build your Quarkus application, everything will work

https://docs.jboss.org/hibernate/orm/5.4/userguide/html_single/Hibernate_User_Guide.html#configurations

fine.

If the entities come from external projects or jars, you can make sure that your jar is treated like a
Quarkus application library by adding an empty META-INF/beans . xml file.

This will allow Quarkus to index and enhance your entities as if they were inside the current project.

Hibernate ORM in development mode

Quarkus development mode is really useful for applications that mix front end or services and
database access.

There are a few common approaches to make the best of it.

The first choice is to use quarkus.hibernate-orm.database.generation=drop-and-
create in conjunction with import.sql.

That way for every change to your app and in particular to your entities, the database schema will be
properly recreated and your data fixture (stored in import.sql) will be used to repopulate it from
scratch. This is best to perfectly control your environment and works magic with Quarkus live reload
mode: your entity changes or any change to your import.sql is immediately picked up and the
schema updated without restarting the application!

By default in dev and test modes, Hibernate ORM, upon boot, will read and
O execute the SQL statements in the /import.sql file (if present). You can change
- the file name by changing the property quarkus.hibernate-orm.sqgl-load-

scriptinapplication.properties.

The second approach is to use quarkus.hibernate-orm.database.generation=update. This
approach is best when you do many entity changes but still need to work on a copy of the production
data or if you want to reproduce a bug that is based on specific database entries. update is a best
effort from Hibernate ORM and will fail in specific situations including altering your database structure
which could lead to data loss. For example if you change structures which violate a foreign key
constraint, Hibernate ORM might have to bail out. But for development, these limitations are
acceptable.

The third approach is to use quarkus.hibernate-orm.database.generation=none. This
approach is best when you are working on a copy of the production data but want to fully control the
schema evolution. Or if you use a database schema migration tool like Flyway.

With this approach when making changes to an entity, make sure to adapt the database schema
accordingly; you could also use validate to have Hibernate verify the schema matches its
expectations.

ﬁ Do not use quarkus.hibernate-orm.database.generation drop-and-
create and update in your production environment.

These approaches become really powerful when combined with Quarkus configuration profiles. You
can define different configuration profiles to select different behaviors depending on your
environment. This is great because you can define different combinations of Hibernate ORM

1

https://quarkus.io/guides/flyway
https://quarkus.io/guides/config#configuration-profiles

properties matching the development style you currently need.

application.properties

%dev.quarkus.hibernate-orm.database.generation = drop-and-create
%dev.quarkus.hibernate-orm.sql-load-script = import-dev.sql

%dev-with-data.quarkus.hibernate-orm.database.generation = update
%dev-with-data.quarkus.hibernate-orm.sql-load-script = no-file

%prod.quarkus.hibernate-orm.database.generation = none

%prod.quarkus.hibernate-orm.sql-load-script = no-file

Start "dev mode" using a custom profile via Maven

./mvnw compile quarkus:dev -Dquarkus.profile=dev-with-data

Hibernate ORM in production mode

Quarkus comes with default profiles (dev, test and prod). And you can add your own custom profiles
to describe various environments (staging, prod-us, etc).

The Hibernate ORM Quarkus extension sets some default configurations differently in dev and test
modes than in other environments.

* quarkus.hibernate-orm.sqgl-load-script is set to no—-file for all profiles except the
dev and test ones.

You can override it in your application.properties explicitly (e.q.
%prod.quarkus.hibernate-orm.sqgl-load-script = import.sqgl) but we wanted you to
avoid overriding your database by accident in prod :)

Speaking of, make sure to not drop your database schema in production! Add the following in your
properties file.

application.properties

%prod.quarkus.hibernate-orm.database.generation = none
%prod.quarkus.hibernate-orm.sql-load-script = no-file

Caching

Applications that frequently read the same entities can see their performance improved when the
Hibernate ORM second-level cache is enabled.

Caching of entities

To enable second-level cache, mark the entities that you want cached with
@javax.persistence.Cacheable:

@Entity

@Cacheable

public class Country {
int dialInCode;

//

When an entity is annotated with @Cacheable, all its field values are cached except for collections
and relations to other entities.

This means the entity can be loaded without querying the database, but be careful as it implies the
loaded entity might not reflect recent changes in the database.

Caching of collections and relations

Collections and relations need to be individually annotated to be cached; in this case the Hibernate
specific @org.hibernate.annotations.Cache should be used, which requires also to specify the
CacheConcurrencyStrateqy:

package org.acme;

@Entity
@Cacheable
public class Country {

//

@0OneToMany
@Cache(usage = CacheConcurrencyStrategy.READ_ONLY)
List<City> cities;

//

Caching of queries

Queries can also benefit from second-level caching. Cached query results can be returned
immediately to the caller, avoiding to run the query on the database.

Be careful as this implies the results might not reflect recent changes.

To cache a query, mark it as cacheable on the Query instance:

13

Query query =
qguery.setHint("org.hibernate.cacheable", Boolean.TRUE);

If you have a NamedQuery then you can enable caching directly on its definition, which will usually be
on an entity:

@Entity
@NamedQuery(name = "Fruits.findAll",
query = "SELECT f FROM Fruit f ORDER BY f.name",
hints = @QueryHint(name = "org.hibernate.cacheable", value =
"true"))
public class Fruit {

That’s all! Caching technology is already integrated and enabled by default in Quarkus, so it’s enough
to set which ones are safe to be cached.

Tuning of Cache Regions

Caches store the data in separate regions to isolate different portions of data; such regions are
assigned a name, which is useful for configuring each region independently, or to monitor their
statistics.

By default entities are cached in regions named after their fully qualified name, e.q.
org.acme.Country.

Collections are cached in regions named after the fully qualified name of their owner entity and
collection field name, separated by # character, e.g. org.acme.Country#cities.

All cached queries are by default kept in a single region dedicated to them called default-query-
results-region.

All regions are bounded by size and time by default. The defaults are 10000 max entries, and 100
seconds as maximum idle time.

The size of each region <can be customized via the quarkus.hibernate-
orm.cache."<region_name>".memory.object-count property (Replace <region_name> with
the actual region name).

To set the maximum idle time, provide the duration (see note on duration’s format below) via the
quarkus.hibernate-orm.cache."<region_name>".expiration.max-idle property
(Replace <region_name> with the actual region name).

The double quotes are mandatory if your region name contains a dot. For instance:

o quarkus.hibernate-

orm.cache."org.acme.MyEntity" .memory.object-count=1000

The format for durations uses the standard java.time.Duration format. You
can learn more about it in the Duration#parse() javadoc.

o You can also provide duration values starting with a number. In this case, if the value
consists only of a number, the converter treats the value as seconds. Otherwise, PT
is implicitly prepended to the value to obtain a standard java.time.Duration
format.

Limitations of Caching
The caching technology provided within Quarkus is currently quite rudimentary and limited.

The team thought it was better to have some caching capability to start with, than having nothing; you
can expect better caching solution to be integrated in future releases, and any help and feedback in
this areais very welcome.

15

https://docs.oracle.com/javase/8/docs/api/java/time/Duration.html#parse-java.lang.CharSequence-

These caches are kept locally, so they are not invalidated or updated when changes
are made to the persistent store by other applications.

Also, when running multiple copies of the same application (in a cluster, for example
on Kubernetes/OpenShift), caches in separate copies of the application aren’t
synchronized.

For these reasons, enabling caching is only suitable when certain assumptions can
be made: we strongly recommend that only entities, collections and queries which
never change are cached. Or at most, that when indeed such an entity is mutated
and allowed to be read out of date (stale) this has no impact on the expectations of
the application.

o Following this advice guarantees applications get the best performance out of the
second-level cache and yet avoid unexpected behaviour.

On top of immutable data, in certain contexts it might be acceptable to enable
caching also on mutable data; this could be a necessary tradeoff on selected entities
which are read frequently and for which some degree of staleness is acceptable; this
"acceptable degree of staleness" can be tuned by setting eviction properties. This is
however not recommended and should be done with extreme care, as it might
produce unexpected and unforeseen effects on the data.

Rather than enabling caching on mutable data, ideally a better solution would be to
use a clustered cache; however at this time Quarkus doesn’t provide any such
implementation: feel free to get in touch and let this need known so that the team
can take this into account.

Finally, the second-level cache can be disabled globally by setting
hibernate.cache.use_second_level_cache to false; this is a setting that needs to be
specified in the persistence. xml configuration file.

When second-level cache is disabled, all cache annotations are ignored and all queries are run ignoring
caches; this is generally useful only to diagnose issues.

Hibernate Envers

The Envers extension to Hibernate ORM aims to provide an easy auditing / versioning solution for
entity classes.

In Quarkus, Envers has a dedicated Quarkus Extension io.quarkus:quarkus-hibernate-
envers;you just need to add this to your project to start using it.

Additional dependency to enable Hibernate Envers

<!-- Add the Hibernate Envers extension -->
<dependency>
<groupId>io.quarkus</groupIld>
<artifactId>quarkus-hibernate-envers</artifactId>
</dependency>

At this point the extension does not expose additional configuration properties.

For more information about Hibernate Envers, see hibernate.org/orm/envers/.

Metrics

The SmallRye Metrics extension is capable of exposing metrics that Hibernate ORM collects at
runtime. To enable exposure of Hibernate metrics on the /metrics endpoint, make sure your project
depends on the quarkus-smallrye-metrics artifact and set the configuration property
quarkus.hibernate-orm.metrics.enabled to true. Metrics will then be available under the
vendor scope.

Limitations and other things you should know

Quarkus does not modify the libraries it uses; this rule applies to Hibernate ORM as well: when using
this extension you will mostly have the same experience as using the original library.

But while they share the same code, Quarkus does configure some components automatically and
injects custom implementations for some extension points; this should be transparent and useful but if
you’re an expert of Hibernate you might want to know what is being done.

Automatic build time enhancement

Hibernate ORM can use build time enhanced entities; normally this is not mandatory but it’s useful and
will have your applications perform better.

Typically you would need to adapt your build scripts to include the Hibernate Enhancement plugins;in
Quarkus this is not necessary as the enhancement step is integrated in the build and analysis of the
Quarkus application.

Automatic integration

Transaction Manager integration

You don’t need to set this up, Quarkus automatically injects the reference to the Narayana
Transaction Manager. The dependency is included automatically as a transitive dependency of the
Hibernate ORM extension. All configuration is optional; for more details see Using Transactions in
Quarkus.

17

https://hibernate.org/orm/envers/
transaction
transaction

Connection pool

Don’t need to choose one either. Quarkus automatically includes the Agroal connection pool; just
configure your datasource as in the above examples and it will setup Hibernate ORM to use Agroal.
More details about this connection pool can be found in Quarkus - Datasources.

Second Level Cache

as explained above in section Caching, you don’t need to pick an implementation. A suitable
implementation based on technologies from Infinispan and Caffeine is included as a transitive
dependency of the Hibernate ORM extension, and automatically integrated during the build.

Limitations

XML mapping

Hibernate ORM allows to map entities using XML files; this capability isn’t enabled in Quarkus: use
annotations instead as Quarkus can handle them very efficiently. This limitation could be lifted in
the future, if there’s a compelling need for it and if someone contributes it.

JMX

Management beans are not working in GraalVM native images; therefore Hibernate’s capability to
register statistics and management operations with the JMX bean is disabled when compiling into a
native image. This limitation is likely permanent, as it’s not a goal for native images to implement
support for JMX. All such metrics can be accessed in other ways.

JACC Integration

Hibernate ORM’s capability to integrate with JACC is disabled when building GraalVM native
images, as JACC is not available - nor useful - in native mode.

Binding the Session to ThreadLocal context

Essentially using the ThreadlLocalSessionContext helper of Hibernate ORM is not
implemented. The team believes this isn’t a big deal as it’s trivial to inject the Session via CDI
instead, or handling the binding into a ThreadLocal yourself, making this a legacy feature. This
limitation might be resolved in the future, if someone opens a ticket for it and provides a
reasonable use case to justify the need.

JPA Callbacks

Annotations allowing for application callbacks on entity lifecycle events defined by JPA such as
@javax.persistence.PostUpdate, @javax.persistence.PostlLoad,
@javax.persistence.PostPersist, etc... are currently not processed. This limitation could
be resolved in a future version, depending on user demand.

Single instance

It is currently not possible to configure more than one instance of Hibernate ORM. This is a
temporary limitation, the team is working on it - please be patient!

datasource
https://infinispan.org/
https://github.com/ben-manes/caffeine

Other notable differences

Format of import.sql

When importing a import.sqgl to setup your database, keep in mind that Quarkus reconfigures
Hibernate ORM so to require a semicolon (') to terminate each statement. The default in Hibernate
is to have a statement per line, without requiring a terminator other than newline: remember to
convert your scripts to use the ;' terminator character if you’re reusing existing scripts. This is
useful so to allow multi-line statements and human friendly formatting.

Simplifying Hibernate ORM with Panache

The Hibernate ORM with Panache extension facilitates the usage of Hibernate ORM by providing
active record style entities (and repositories) and focuses on making your entities trivial and fun to
write in Quarkus.

Configure your datasource

Datasource configuration is extremely simple, but is covered in a different guide as technically it’s
implemented by the Agroal connection pool extension for Quarkus.

Jump over to Quarkus - Datasources for all details.

Multitenancy

"The term multitenancy, in general, is applied to software development to indicate an architecture in
which a single running instance of an application simultaneously serves multiple clients (tenants). This
is highly common in Saa$S solutions. Isolating information (data, customizations, etc.) pertaining to the
various tenants is a particular challenge in these systems. This includes the data owned by each tenant
stored in the database" (Hibernate User Guide).

Quarkus currently supports the separate database and the separate schema approach.

Writing the application

Let’s start by implementing the /{tenant} endpoint. As you can see from the source code below it is
just a reqular JAX-RS resource:

19

hibernate-orm-panache
datasource
https://docs.jboss.org/hibernate/orm/5.4/userguide/html_single/Hibernate_User_Guide.html#multitenacy
https://docs.jboss.org/hibernate/orm/5.4/userguide/html_single/Hibernate_User_Guide.html#multitenacy-separate-database
https://docs.jboss.org/hibernate/orm/5.4/userguide/html_single/Hibernate_User_Guide.html#multitenacy-separate-schema

import javax.enterprise.context.ApplicationScoped;
import javax.inject.Inject;

import javax.persistence.EntityManager;

import javax.ws.rs.Consumes;

import javax.ws.rs.GET;

import javax.ws.rs.Path;

import javax.ws.rs.Produces;

@ApplicationScoped
@Produces("application/json")
@Consumes ("application/json")
@Path("/{tenant}")
public class FruitResource {

@Inject
EntityManager entityManager;

@GET
@Path("fruits")
public Fruit[] getFruits() {
return entityManager.createNamedQuery("Fruits.findAll",
Fruit.class)
.getResultList().toArray(new Fruit[0]);

In order to resolve the tenant from incoming requests and map it to a specific tenant configuration,
you need to create an implementation for the
io.quarkus.hibernate.orm.runtime.tenant.TenantResolver interface.

20

import javax.enterprise.context.ApplicationScoped;

import io.quarkus.arc.Arc,;

import io.quarkus.arc.Unremovable;

import io.quarkus.hibernate.orm.runtime.tenant.TenantResolver;
import io.vertx.ext.web.RoutingContext;

@RequestScoped
@Unremovable
public class CustomTenantResolver implements TenantResolver {

@Inject
RoutingContext context;

@0verride
public String getDefaultTenantId() {
return "base";

}

@0verride

public String resolveTenantId() {
String path = context.request().path();
String[] parts = path.split("/");

if (parts.length == 0) {
// resolve to default tenant config
return getDefaultTenantId();

}

return parts[1l];

From the implementation above, tenants are resolved from the request path so that in case no tenant
could be inferred, the default tenant identifier is returned.

Configuring the application

In general it is not possible to use the Hibernate ORM database generation feature in conjunction with
a multitenancy setup. Therefore you have to disable it and you need to make sure that the tables are
created per schema. The following setup will use the Flyway extension to achieve this goal.

SCHEMA approach

The same data source will be used for all tenants and a schema has to be created for every tenant
inside that data source. CAUTION: Some databases like MariaDB/MySQL do not support database
schemas. In these cases you have to use the DATABASE approach below.

21

https://quarkus.io/guides/flyway

Disable generation
guarkus.hibernate-orm.database.generation=none

Enable SCHEMA approach and use default datasource
quarkus.hibernate-orm.multitenant=SCHEMA

You could use a non-default datasource by using the following
setting

quarkus.hibernate-orm.multitenant-schema-datasource=other

The default data source used for all tenant schemas
quarkus.datasource.db-kind=postgresql
quarkus.datasource.username=quarkus_test
quarkus.datasource.password=quarkus_test

guarkus.datasource. jdbc.url=jdbc:postgresql://localhost:5432/quarku
s_test

Enable Flyway confiquration to create schemas
quarkus.flyway.schemas=base,mycompany
quarkus.flyway.locations=classpath:schema
quarkus.flyway.migrate-at-start=true

Here is an example of the Flyway SQL (V1.0.0__create_fruits.sql) to be created in the

co

22

nfigured folder src/main/resources/schema.

CREATE SEQUENCE base.known_fruits_id_seq;
SELECT setval('base."known_fruits_id_seq"',6 3);
CREATE TABLE base.known_fruits
(
id INT,
name VARCHAR (40)
e
INSERT INTO base.known_fruits(id, name) VALUES (1, 'Cherry');
INSERT INTO base.known_fruits(id, name) VALUES (2, 'Apple');
INSERT INTO base.known_fruits(id, name) VALUES (3, 'Banana');

CREATE SEQUENCE mycompany.known_fruits_id_seq;
SELECT setval('mycompany."known_fruits_id_seq"', 3);
CREATE TABLE mycompany.known_fruits
(

id INT,

name VARCHAR (40)
)5
INSERT INTO mycompany.known_fruits(id, name) VALUES (1, 'Avocado');
INSERT INTO mycompany.known_fruits(id, name) VALUES (2,
"Apricots');
INSERT INTO mycompany.known_fruits(id, name) VALUES (3,
'Blackberries');

DATABASE approach

For every tenant you need to create a named data source with the same identifier that is returned by
the TenantResolver.

23

Disable generation
guarkus.hibernate-orm.database.generation=none

Enable DATABASE approach
quarkus.hibernate-orm.multitenant=DATABASE

Default tenant 'base'
quarkus.datasource.base.db-kind=postgresql
quarkus.datasource.base.username=quarkus_test
quarkus.datasource.base.password=quarkus_test

quarkus.datasource
uarkus _

test

Tenant 'mycompany'

quarkus.datasource
quarkus.datasource
quarkus.datasource
quarkus.datasource

433/mycompany

.base.jdbc.url=jdbc:postgresqgl://localhost:5432/q

.mycompany.db-kind=postgresql
.mycompany.username=mycompany
.mycompany.password=mycompany
.mycompany. jdbc.url=jdbc:postgresql://localhost:5

Flyway configuration for the default datasource
quarkus.flyway.locations=classpath:database/default
quarkus.flyway.migrate-at-start=true

Flyway configuration for the mycompany datasource
guarkus.flyway.mycompany.locations=classpath:database/mycompany
quarkus.flyway.mycompany.migrate-at-start=true

Following are examples of the Flyway SQL files to be created in the configured folder
src/main/resources/database.

Default schema (src/main/resources/database/default/V1.0.0__create_fruits.sql):

CREATE
SELECT
CREATE
(

id

name
)
INSERT
INSERT
INSERT

Mycompany

SEQUENCE known_fruits_id_seq;
setval('known_fruits_id_seq', 3);
TABLE known_fruits

INT,
VARCHAR (40)

INTO known_fruits(id, name) VALUES (1,
INTO known_fruits(id, name) VALUES (2,
INTO known_fruits(id, name) VALUES (3,

'Cherry');
"Apple’);
'Banana');

schema

(src/main/resources/database/mycompany/V1.0.0__create_fruits.sql):

24

CREATE SEQUENCE known_fruits_id_seq;
SELECT setval('known_fruits_id_seq', 3);
CREATE TABLE known_fruits
(
id INT,
name VARCHAR (40)
e
INSERT INTO known_fruits(id, name) VALUES (1, 'Avocado');
INSERT INTO known_fruits(id, name) VALUES (2, 'Apricots');
INSERT INTO known_fruits(id, name) VALUES (3, 'Blackberries');

Programmatically Resolving Tenants Connections

If you need a more dynamic configuration for the different tenants you want to support and don’t want
to end up with multiple entries in your configuration file, you <can wuse the
io.quarkus.hibernate.orm.runtime.tenant.TenantConnectionResolver interface to
implement your own logic for retrieving a connection. Creating an application scoped bean that
implements this interface will replace the current Quarkus default implementation
io.quarkus.hibernate.orm.runtime.tenant.DataSourceTenantConnectionResolver
. Your custom connection resolver would allow for example to read tenant information from a
database and create a connection per tenant at runtime based on it.

25

	Quarkus - Using Hibernate ORM and JPA
	Setting up and configuring Hibernate ORM
	Hibernate ORM configuration properties

	Setting up and configuring Hibernate ORM with a persistence.xml
	Defining entities in external projects or jars
	Hibernate ORM in development mode
	Hibernate ORM in production mode
	Caching
	Caching of entities
	Caching of collections and relations
	Caching of queries
	Tuning of Cache Regions
	Limitations of Caching

	Hibernate Envers
	Metrics
	Limitations and other things you should know
	Automatic build time enhancement
	Automatic integration
	Limitations
	Other notable differences

	Simplifying Hibernate ORM with Panache
	Configure your datasource
	Multitenancy
	Writing the application
	Configuring the application
	Programmatically Resolving Tenants Connections

