
Quarkus - Using the Cassandra Client
Apache Cassandra® is a free and open-source, distributed, wide column store,
NoSQL database management system designed to handle large amounts of data
across many commodity servers, providing high availability with no single point of
failure.

In this guide, we will see how you can get your REST services to use a Cassandra database.

 This extension is developed by a third party and is part of the Quarkus Platform.

Prerequisites
To complete this guide, you need:

• an IDE

• JDK 1.8+ installed with JAVA_HOME configured appropriately

• GraalVM installed with GRAALVM_HOME configured appropriately if you want to use the native
mode.

• Apache Maven 3.6.3

• Cassandra or Docker installed

Architecture
The application built in this guide is quite simple: the user can add elements in a list using a form, and
the items list is updated.

All the information between the browser and the server is formatted as JSON.

The elements are stored in the Cassandra database.

Solution
We recommend that you follow the instructions in the next sections and create the application step by
step. However, you can go right to the completed example.

The solution is located in the quickstart directory.

Creating the Maven project
First, create a new Maven project and copy the pom.xml file that is present in the quickstart
directory.

1

https://github.com/datastax/cassandra-quarkus/tree/master/quickstart

The pom.xml is importing the RESTEasy/JAX-RS, JSON-B, Context Propagation and Cassandra
Client extensions.

We will be building a REST application using the DataStax Object Mapper to simplify the Data Access
Layer code.

The most important part of the pom.xml is adding the cassandra-quarkus extension:

<dependency>
 <groupId>com.datastax.oss.quarkus</groupId>
 <artifactId>cassandra-quarkus-client</artifactId>
 <version>${quarkus.version}</version>
</dependency>

Creating JSON REST service
In this example, we will create an application to manage a list of fruits.

First, let’s create the Fruit bean as follows:

@Entity
public class Fruit {

 @PartitionKey private String storeId;
 @ClusteringColumn private String name;
 private String description;

 public Fruit() {}

 public Fruit(String storeId, String name, String description) {
 this.storeId = storeId;
 this.name = name;
 this.description = description;
 }

 // getters, setters, hashCode and equals omitted for brevity
}

We are using DataStax Java driver Object Mapper, which is why this class is annotated with an
@Entity. Also, the storeId field represents a Cassandra partition key and name represents a
clustering column, and so we are using the corresponding annotations from the Object Mapper library.
It will allow the Mapper to generate proper CQL queries underneath.

 Entity classes are required to have a default no-args constructor.

To leverage the Mapper logic in this app we need to create a DAO:

2

https://docs.datastax.com/en/developer/java-driver/latest/manual/mapper

@Dao
public interface FruitDao {
 @Update
 void update(Fruit fruit);

 @Select
 PagingIterable<Fruit> findById(String id);
}

This class exposes operations that will be used in the REST service.

Finally, the Mapper itself:

@Mapper
public interface FruitMapper {
 @DaoFactory
 FruitDao fruitDao();
}

The mapper is responsible for constructing instances of FruitDao. In the example above, the
FruitDao instance will be connected to the same keyspace as the underlying session. More on that
below.


It is also possible to create DAO instances for different keyspaces. To learn how, see
DAO parameterization in the driver docs.

Next, we need a component to create our DAO instances: FruitDaoProducer. Indeed, Mapper and
Dao instances are stateful objects, and should be created only once, as application-scoped singletons.
This component will do exactly that, leveraging Quarkus Dependency Injection container:

3

https://docs.datastax.com/en/developer/java-driver/4.7/manual/mapper/mapper/#dao-parameterization

import com.datastax.oss.driver.api.core.CqlIdentifier;
import
com.datastax.oss.quarkus.runtime.api.config.CassandraClientConfig;
import
com.datastax.oss.quarkus.runtime.api.session.QuarkusCqlSession;
import javax.enterprise.context.ApplicationScoped;
import javax.enterprise.inject.Produces;
import javax.inject.Inject;

public class FruitDaoProducer {

 private final FruitDao fruitDao;
 private final FruitDaoReactive fruitDaoReactive;

 @Inject
 public FruitDaoProducer(QuarkusCqlSession session) {
 // create a mapper
 FruitMapper mapper = new FruitMapperBuilder(session).build();
 // instantiate our Daos
 fruitDao = mapper.fruitDao();
 fruitDaoReactive = mapper.fruitDaoReactive();
 }

 @Produces
 @ApplicationScoped
 FruitDao produceFruitDao() {
 return fruitDao;
 }

 @Produces
 @ApplicationScoped
 FruitDaoReactive produceFruitDaoReactive() {
 return fruitDaoReactive;
 }
}

Note how the QuarkusCqlSession instance is injected automatically by the cassandra-quarkus
extension in the FruitDaoProducer constructor.

Now create a FruitService that will be the business layer of our application and store/load the
fruits from the Cassandra database.

4

@ApplicationScoped
public class FruitService {

 private final FruitDao dao;

 @Inject
 public FruitService(FruitDao dao) {
 this.dao = dao;
 }

 public void save(Fruit fruit) {
 dao.update(fruit);
 }

 public List<Fruit> get(String id) {
 return dao.findById(id).all();
 }
}

Note how the service receives a FruitDao instance in the constructor. This DAO instance is provided
by FruitDaoProducer and injected automatically.

The last missing piece is the REST API that will expose GET and POST methods:

5

@Path("/fruits")
@Produces(MediaType.APPLICATION_JSON)
@Consumes(MediaType.APPLICATION_JSON)
public class FruitResource {

 private static final String STORE_NAME = "acme";

 @Inject FruitService fruitService;

 @GET
 public List<FruitDto> list() {
 return fruitService.get(STORE_NAME).stream()
 .map(fruit -> new FruitDto(fruit.getName(),
fruit.getDescription()))
 .collect(Collectors.toList());
 }

 @POST
 public void add(FruitDto fruit) {
 fruitService.save(covertFromDto(fruit));
 }

 private Fruit covertFromDto(FruitDto fruitDto) {
 return new Fruit(fruitDto.getName(), fruitDto.getDescription(),
STORE_NAME);
 }
}

The list and add operations are executed for the storeId "acme". This is the partition key of our
data model. We can easily retrieve all rows from cassandra using that partition key. They will be sorted
by the clustering column. FruitResource is using FruitService which encapsulates the data
access logic.

When creating the REST API we should not share the same entity object between REST API and data
access layers. They should not be coupled to allow the API to evolve independently of the storage
layer. This is the reason why the API is using a FruitDto class. This class will be used by Quarkus to
convert JSON to java objects for client requests and java objects to JSON for the responses. The
translation is done by quarkus-resteasy extension.

6

public class FruitDto {

 private String name;
 private String description;

 public FruitDto() {}

 public FruitDto(String name, String description) {
 this.name = name;
 this.description = description;
 }
 // getters and setters omitted for brevity
}


DTO classes used by the JSON serialization layer are required to have a default no-
arg constructor.

Configuring the Cassandra database

Connecting to Apache Cassandra or DataStax Enterprise
(DSE)
The main properties to configure are: contact-points, to access the Cassandra database, local-
datacenter, which is required by the driver, and – optionally – the keyspace to bind to.

A sample configuration should look like this:

quarkus.cassandra.contact-points={cassandra_ip}:9042
quarkus.cassandra.local-datacenter={dc_name}
quarkus.cassandra.keyspace={keyspace}

In this example, we are using a single instance running on localhost, and the keyspace containing our
data is k1:

quarkus.cassandra.contact-points=127.0.0.1:9042
quarkus.cassandra.local-datacenter=datacenter1
quarkus.cassandra.keyspace=k1

If your cluster requires plain text authentication, you can also provide two more settings: username
and password.

7

quarkus.cassandra.auth.username=john
quarkus.cassandra.auth.password=s3cr3t

Connecting to a cloud DataStax Astra database
When connecting to Astra, instead of providing a contact point and a datacenter, you should provide
secure-connect-bundle, which should point to a valid path to an Astra secure connect bundle, as
well as username and`password`, since authentication is always required on Astra clusters.

A sample configuration for DataStax Astra should look like this:

quarkus.cassandra.cloud.secure-connect-bundle=/path/to/secure-
connect-bundle.zip
quarkus.cassandra.auth.username=john
quarkus.cassandra.auth.password=s3cr3t
quarkus.cassandra.keyspace=k1

Advanced driver configuration
You can configure other Java driver settings using application.conf or application.json
files. They need to be located in the classpath of your application. All settings will be passed
automatically to the underlying driver configuration mechanism. Settings defined in
application.properties with the quarkus.cassandra prefix will have priority over settings
defined in application.conf or application.json.

To see the full list of settings, please refer to the driver settings reference.

Running a Cassandra Database
By default, CassandraClient is configured to access a local Cassandra database on port 9042 (the
default Cassandra port).


Make sure that the setting quarkus.cassandra.local-datacenter matches
the datacenter of your Cassandra cluster.


If you don’t know the name of your local datacenter, this value can be found by
running the following CQL query: SELECT data_center FROM system.local.

If you want to use Docker to run a Cassandra database, you can use the following command to launch
one:

8

https://docs.datastax.com/en/developer/java-driver/latest/manual/core/configuration/reference/

docker run \
 --name local-cassandra-instance \
 -p 7000:7000 \
 -p 7001:7001 \
 -p 7199:7199 \
 -p 9042:9042 \
 -p 9160:9160 \
 -p 9404:9404 \
 -d \
 launcher.gcr.io/google/cassandra3

Note that only the 9042 port is required. All others all optional but provide enhanced features like
JMX monitoring of the Cassandra instance.

Next you need to create the keyspace and table that will be used by your application. If you are using
Docker, run the following commands:

docker exec -it local-cassandra-instance cqlsh -e "CREATE KEYSPACE
IF NOT EXISTS k1 WITH replication = {'class':'SimpleStrategy',
'replication_factor':1}"
docker exec -it local-cassandra-instance cqlsh -e "CREATE TABLE IF
NOT EXISTS k1.fruit(id text, name text, description text, PRIMARY
KEY((id), name))"

If you’re running Cassandra locally you can execute the cqlsh commands directly:

cqlsh -e "CREATE KEYSPACE IF NOT EXISTS k1 WITH replication =
{'class':'SimpleStrategy', 'replication_factor':1}
cqlsh -e "CREATE TABLE IF NOT EXISTS k1.fruit(id text, name text,
description text, PRIMARY KEY((id), name))

Creating a frontend
Now let’s add a simple web page to interact with our FruitResource.

Quarkus automatically serves static resources located under the META-INF/resources directory. In
the src/main/resources/META-INF/resources directory, add a fruits.html file with the
content from this fruits.html file in it.

You can now interact with your REST service:

• start Quarkus with mvn clean quarkus:dev

• open a browser to http://localhost:8080/fruits.html

• add new fruits to the list via the form

9

https://github.com/datastax/cassandra-quarkus/tree/master/quickstart/src/main/resources/META-INF/resources/fruits.html
http://localhost:8080/fruits.html
http://localhost:8080/fruits.html
http://localhost:8080/fruits.html

Reactive Cassandra Client
When using QuarkusCqlSession you have access to reactive variant of methods that integrate with
Quarkus and Mutiny.

 If you’re not familiar with Mutiny, read the Getting Started with Reactive guide first.

Let’s rewrite the previous example using reactive programming with Mutiny.

Firstly, we need to implement the @Dao that works in a reactive way:

@Dao
public interface FruitDaoReactive {

 @Update
 Uni<Void> updateAsync(Fruit fruitDao);

 @Select
 MutinyMappedReactiveResultSet<Fruit> findByIdAsync(String id);
}

Please note the usage of MutinyMappedReactiveResultSet - it is a specialized Mutiny type
converted from the original Publisher returned by the driver, which also exposes a few extra
methods, e.g. to obtain the query execution info. If you don’t need anything in that interface, you can
also simply declare your method to return Multi: Multi<Fruit> findByIdAsync(String id),

Similarly, the method updateAsync returns a Uni - it is automatically converted from the original
result set returned by the driver.



The Cassandra driver uses the Reactive Streams Publisher API for reactive calls.
The Quarkus framework however uses Mutiny. Because of that, the
CqlQuarkusSession interface transparently converts the Publisher instances
returned by the driver into the reactive type Multi. CqlQuarkusSession is also
capable of converting a Publisher into a Uni – in this case, the publisher is
expected to emit at most one row, then complete. This is suitable for write queries
(they return no rows), or for read queries guaranteed to return one row at most
(count queries, for example).

Next, we need to adapt the FruitMapper to construct a FruitDaoReactive instance:

10

https://quarkus.io/guides/getting-started-reactive

@Mapper
public interface FruitMapper {
 // the existing method omitted

 @DaoFactory
 FruitDaoReactive fruitDaoReactive();
}

Now, we can create a FruitReactiveService that leverages the reactive @Dao:

@ApplicationScoped
public class FruitReactiveService {

 private final FruitDaoReactive fruitDao;

 @Inject
 public FruitReactiveService(FruitDaoReactive fruitDao) {
 this.fruitDao = fruitDao;
 }

 public Uni<Void> add(Fruit fruit) {
 return fruitDao.update(fruit);
 }

 public Multi<Fruit> get(String id) {
 return fruitDao.findById(id);
 }
}


The get() method above returns Multi, and the add() method returns Uni;
these types are compatible with the Quarkus reactive REST API.

To integrate the reactive logic with REST API, you need to have a dependency to quarkus-
resteasy-mutiny:

<dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-resteasy-mutiny</artifactId>
</dependency>

It provides an integration layer between Multi, Uni and the REST API.

Finally, we can create a FruitReactiveResource:

11

@Path("/reactive-fruits")
@Produces(MediaType.APPLICATION_JSON)
@Consumes(MediaType.APPLICATION_JSON)
public class FruitReactiveResource {
 private static final String STORE_NAME = "acme";
 @Inject FruitReactiveService service;

 @GET
 public Multi<FruitDto> getAll() {
 return service
 .get(STORE_NAME)
 .map(fruit -> new FruitDto(fruit.getName(),
fruit.getDescription()));
 }

 @POST
 public Multi<FruitDto> add(FruitDto fruitDto) {
 Fruit fruit = covertFromDto(fruitDto);
 return service.add(fruit).then(ignored -> getAll());
 }

 private Fruit covertFromDto(FruitDto fruitDto) {
 return new Fruit(fruitDto.getName(), fruitDto.getDescription(),
STORE_NAME);
 }
}


All methods exposed via REST interface are returning reactive types from the
Mutiny API.

Creating a reactive frontend
Now let’s add a simple web page to interact with our FruitReactiveResource. In the
src/main/resources/META-INF/resources directory, add a reactive-fruits.html file
with the content from this reactive-fruits.html file in it.

You can now interact with your reactive REST service:

• start Quarkus with mvn clean quarkus:dev

• open a browser to http://localhost:8080/reactive-fruits.html

• add new fruits to the list via the form

Connection Health Check
If you are using the quarkus-smallrye-health extension, cassandra-quarkus will

12

https://github.com/datastax/cassandra-quarkus/tree/master/quickstart/src/main/resources/META-INF/resources/reactive-fruits.html
http://localhost:8080/reactive-fruits.html
http://localhost:8080/reactive-fruits.html
http://localhost:8080/reactive-fruits.html

automatically add a readiness health check to validate the connection to the cluster.

So when you access the /health/ready endpoint of your application you will have information
about the connection validation status.


This behavior can be disabled by setting the
quarkus.cassandra.health.enabled property to false in your
application.properties.

Metrics
If you are using the quarkus-smallrye-metrics extension, cassandra-quarkus can provide
metrics about QuarkusCqlSession and Cassandra nodes.


This behavior must first be enabled by setting the
quarkus.cassandra.metrics.enabled property to true in your
application.properties.

The next step that you need to do is set explicitly which metrics should be enabled.

The quarkus.cassandra.metrics.session-enabled and
quarkus.cassandra.metrics.node-enabled properties should be used for enabling metrics;
the former should contain a list of session-level metrics to enable, while the latter should contain a list
of node-level metrics to enable. Both properties accept a comma-separated list of valid metric names.

For example, to enable session.connected-nodes, session.bytes-sent, and
node.pool.open-connections you should add the following settings to your
application.properties:

quarkus.cassandra.metrics.enabled=true
quarkus.cassandra.metrics.session-enabled=connected-nodes,bytes-
sent
quarkus.cassandra.metrics.node-enabled=pool.open-connections

For the full list of available metrics, please refer to the driver settings reference and the
advanced.metrics section.

When metrics are properly enabled and when you access the /metrics endpoint of your application,
you will see metric reports for all enabled metrics.

Building a native executable
You can use the Cassandra client in a native executable.

You can build a native executable with the mvn clean package -Dnative command.

Running it is as simple as executing ./target/quickstart-1.0.0-SNAPSHOT-runner.

13

https://docs.datastax.com/en/developer/java-driver/latest/manual/core/configuration/reference/

You can then point your browser to http://localhost:8080/fruits.html and use your
application.

Conclusion
Accessing a Cassandra database from a client application is easy with Quarkus and the Cassandra
extension, which provides configuration and native support for the DataStax Java driver for Apache
Cassandra.

14

http://localhost:8080/fruits.html
http://localhost:8080/fruits.html
http://localhost:8080/fruits.html

	Quarkus - Using the Cassandra Client
	Prerequisites
	Architecture
	Solution
	Creating the Maven project
	Creating JSON REST service
	Configuring the Cassandra database
	Connecting to Apache Cassandra or DataStax Enterprise (DSE)
	Connecting to a cloud DataStax Astra database
	Advanced driver configuration

	Running a Cassandra Database
	Creating a frontend
	Reactive Cassandra Client
	Creating a reactive frontend
	Connection Health Check
	Metrics
	Building a native executable
	Conclusion

