Quarkus - Using Security with JPA

This guide demonstrates how your Quarkus application can use a database to
store your user identities with Hibernate ORM or Hibernate ORM with Panache.

Prerequisites

To complete this guide, you need:

* less than 15 minutes
* anIDE
* JDK 1.8+ installed with JAVA_HOME configured appropriately

* Apache Maven 3.6.3

Architecture

In this example, we build a very simple microservice which offers three endpoints:
* /api/public
* /api/users/me
* /api/admin

The /api/public endpoint can be accessed anonymously. The /api/admin endpoint is protected
with RBAC (Role-Based Access Control) where only users granted with the admin role can access. At
this endpoint, we use the @RolesAllowed annotation to declaratively enforce the access constraint.
The /api/users/me endpoint is also protected with RBAC (Role-Based Access Control) where only
users granted with the user role can access. As a response, it returns a JSON document with details
about the user.

Solution

We recommend that you follow the instructions in the next sections and create the application step by
step. However, you can go right to the completed example.

Clone the Git repository: git clone https://github.com/quarkusio/quarkus-
quickstarts.git, or download an archive.

The solution is located in the security-jpa-quickstart directory.

Creating the Maven Project

First, we need a new project. Create a new project with the following command:

hibernate-orm
hibernate-orm-panache
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts/archive/master.zip
https://github.com/quarkusio/quarkus-quickstarts/tree/master/security-jpa-quickstart

mvn io.quarkus:quarkus-maven-plugin:1.7.2.Final:create \
-DprojectGroupIld=org.acme \
-DprojectArtifactId=security-jpa-quickstart \
-Dextensions="security-jpa, jdbc-postgresql, resteasy,

hibernate-orm-panache"

cd security-jpa-quickstart

o Don’t forget to add the database connector library of choice. Here we are using
PostgreSQL as identity store.

This command generates a Maven project, importing the security-jpa extension which allows you
to map your security source to JPA entities.

If you already have your Quarkus project configured, you can add the security-jpa extension to
your project by running the following command in your project base directory:

./mvnw quarkus:add-extension -Dextensions="security-jpa"

This will add the following to your pom. xm1:

<dependency>
<groupId>io.quarkus</groupIld>
<artifactId>quarkus-security-jpa</artifactId>
</dependency>

Writing the application

Let’s start by implementing the /api/public endpoint. As you can see from the source code below,
it is just a reqular JAX-RS resource:

package org.acme.security.jpa;

import javax.annotation.security.PermitAll,
import javax.ws.rs.GET,;

import javax.ws.rs.Path;

import javax.ws.rs.Produces;

import javax.ws.rs.core.MediaType;

@Path("/api/public")
public class PublicResource {

@GET

@PermitAll

@Produces (MediaType.TEXT_PLAIN)

public String publicResource() {
return "public";

The source code for the /api/admin endpoint is also very simple. The main difference here is that we
are using a @QRolesAllowed annotation to make sure that only users granted with the admin role
can access the endpoint:

package org.acme.security.jpa;

import javax.annotation.security.RolesAllowed;
import javax.ws.rs.GET,;

import javax.ws.rs.Path;

import javax.ws.rs.Produces;

import javax.ws.rs.core.MediaType;

@Path("/api/admin")
public class AdminResource ({

@GET

@RolesAllowed("admin")

@Produces (MediaType.TEXT_PLAIN)

public String adminResource() {
return "admin";

Finally, let’s consider the /api/users/me endpoint. As you can see from the source code below, we
are trusting only users with the user role. We are using SecurityContext to get access to the
current authenticated Principal and we return the user’s name. This information is loaded from the
database.

package org.acme.security.jpa;

import javax.annotation.security.RolesAllowed;
import javax.inject.Inject,;

import javax.ws.rs.GET,;

import javax.ws.rs.Path;

import javax.ws.rs.Produces;

import javax.ws.rs.core.Context;

import javax.ws.rs.core.MediaType;

import javax.ws.rs.core.SecurityContext;

@Path("/api/users")
public class UserResource {

@GET

@RolesAllowed("user")

@Path("/me")

@Produces(MediaType.APPLICATION_JSON)

public String me(@Context SecurityContext securityContext) {
return securityContext.getUserPrincipal().getName();

Defining our user entity

We can now describe how our security information is stored in our model by adding a few annotations
to our User entity:

package org.acme.security.jpa;

import javax.persistence.Entity;
import javax.persistence.Table;

import io.quarkus.hibernate.orm.panache.PanacheEntity;
import io.quarkus.security.common.BcryptUtil;

import io.quarkus.security.jpa.Password,;

import io.quarkus.security.jpa.Roles;

import io.quarkus.security.jpa.UserDefinition;

import io.quarkus.security.jpa.Username;

@Entity
@Table(name = "test_user")
@UserDefinition @
public class User extends PanacheEntity ({
@Username @
public String username;
@Password ®
public String password;
@Roles @
public String role;

VAL
* Adds a new user in the database
* @param username the user name
* @param password the unencrypted password (it will be
encrypted with bcrypt)
* @param role the comma-separated roles
*/
public static void add(String username, String password, String
role) { ®
User user = new User();
user.username = username;
user.password = BcryptUtil.bcryptHash(password);
user.role = role;
user.persist();

The security-jpa extension is only initialized if there is a single entity annotated with
@UserDefinition.

@ This annotation must be present on a single entity. It can be a reqular Hibernate ORM entity or a
Hibernate ORM with Panache entity as in this example.
@ This indicates the field used for the user name.

® This indicates the field used for the password. This defaults to using bcrypt hashed passwords, but

you can also configure it for clear text passwords.

@ This indicates the comma-separated list of roles added to the target Principal representation
attributes.

® This method allows us to add users while hashing the password with the proper bcrypt hash.

Configuring the Application

The security-jpa extension requires at least one datasource to access to your database.

quarkus.datasource.db-kind=postgresql
guarkus.datasource.username=quarkus
quarkus.datasource.password=quarkus

quarkus.datasource. jdbc.url=jdbc:postgresql:security_jpa

quarkus.hibernate-orm.database.generation=drop-and-create

In our context, we are using PostgreSQL as identity store. The database schema is created by
Hibernate ORM automatically on startup (change this in production) and we initialize the database
with users and roles in the Startup class:

package org.acme.security.jpa;

import javax.enterprise.event.Observes;
import javax.inject.Singleton;
import javax.transaction.Transactional;

import io.quarkus.runtime.StartupEvent;

@Singleton
public class Startup {
@Transactional
public void loadUsers(@0bserves StartupEvent evt) {
// reset and load all test users
User.deleteAll();
User.add("admin", "admin", "admin");
User.add("user", "user", "user");

It is probably useless but we kindly remind you that you must not store clear-text
o passwords in production environments ;-). As a result, the security-jpa defaults
to using bcrypt-hashed passwords.

Testing the Application

The application is now protected and the identities are provided by our database. The very first thing
to check is to ensure the anonymous access works.

S curl -i -X GET http://localhost:8080/api/public
HTTP/1.1 200 OK

Content-Length: 6

Content-Type: text/plain;charset=UTF-8

public%
Now, let’s try a to hit a protected resource anonymously.

S curl -i -X GET http://localhost:8080/api/admin
HTTP/1.1 401 Unauthorized

Content-Length: 14

Content-Type: text/html;charset=UTF-8

Not authorized%

So far so good, now let’s try with an allowed user.

S curl -i -X GET -u admin:admin http://localhost:8080/api/admin
HTTP/1.1 200 OK

Content-Length: 5

Content-Type: text/plain;charset=UTF-8

admin%
By providing the admin:admin credentials, the extension authenticated the user and loaded their
roles. The admin user is authorized to access to the protected resources.

The user admin should be forbidden to access a resource protected with @RolesAllowed ("user")
because it doesn’t have this role.

S curl -i -X GET -u admin:admin http://localhost:8080/api/users/me
HTTP/1.1 403 Forbidden

Content-Length: 34

Content-Type: text/html;charset=UTF-8

Forbidden%

Finally, using the user user works and the security context contains the principal details (username

for instance).

curl -i -X GET -u user:user http://localhost:8080/api/users/me
HTTP/1.1 200 0K

Content-Length: 4

Content-Type: text/plain;charset=UTF-8

user%

Supported model types

* The@UserDefinition class must be a JPA entity (with Panache or not).
* The @Username and @Password field types must be of type Strina.

* The @Roles field must either be of type String or Collection<String> or alternately a
Collection<X> where X is an entity class with one String field annotated with the
@RolesValue annotation.

* Each String role element type will be parsed as a comma-separated list of roles.

Storing roles in another entity

You can also store roles in another entity:

@UserDefinition

@Table(name = "test_user")

@Entity

public class User extends PanacheEntity ({
@Username

public String name;

@Password
public String pass;

@ManyToMany

@Roles

public List<Role> roles = new ArraylList<>();
}
@Entity

public class Role extends PanacheEntity {

@ManyToMany (mappedBy = "roles")
public List<ExternalRolesUserEntity> users;

@RolesValue
public String role;

Password storage and hashing

By default, we consider passwords to be stored hashed with bcrypt under the Modular Crypt Format
(MCF).

When you need to create such a hashed password we provide the convenient String

BcryptUtil.bcryptHash(String password) function, which defaults to creating a random salt
and hashing in 10 iterations (though you can specify the iterations and salt too).

0 with MCF you don’t need dedicated columns to store the hashing algorithm, the
iterations count or the salt because they’re all stored in the hashed value.

WARN: you can also store passwords in clear text with @Password (PasswordType.CLEAR) but we
strongly recommend against it in production.

References

* Quarkus Security

https://en.wikipedia.org/wiki/Bcrypt
https://en.wikipedia.org/wiki/Crypt_©
security

	Quarkus - Using Security with JPA
	Prerequisites
	Architecture
	Solution
	Creating the Maven Project
	Writing the application
	Defining our user entity
	Configuring the Application

	Testing the Application
	Supported model types
	Storing roles in another entity
	Password storage and hashing
	References

