
Quarkus - MicroProfile Metrics
This guide demonstrates how your Quarkus application can utilize the MicroProfile
Metrics specification through the SmallRye Metrics extension.

MicroProfile Metrics allows applications to gather various metrics and statistics that provide insights
into what is happening inside the application.

The metrics can be read remotely using JSON format or the OpenMetrics format, so that they can be
processed by additional tools such as Prometheus, and stored for analysis and visualisation.

Apart from application-specific metrics, which are described in this guide, you may also utilize built-in
metrics exposed by various Quarkus extensions. These are described in the guide for each particular
extension that supports built-in metrics.

Prerequisites
To complete this guide, you need:

• less than 15 minutes

• an IDE

• JDK 1.8+ installed with JAVA_HOME configured appropriately

• Apache Maven 3.6.3

Architecture
In this example, we build a very simple microservice which offers one REST endpoint and that endpoint
serves for determining whether a number is prime. The implementation class is annotated with some
metric annotations so that while responding to user’s requests, some metrics are gathered. The
meaning of each metric will be explained later.

Solution
We recommend that you follow the instructions in the next sections and create the application step by
step. However, you can go right to the completed example.

Clone the Git repository: git clone https://github.com/quarkusio/quarkus-
quickstarts.git, or download an archive.

The solution is located in the microprofile-metrics-quickstart directory.

Creating the Maven Project
First, we need a new project. Create a new project with the following command:

1

https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts/archive/master.zip
https://github.com/quarkusio/quarkus-quickstarts/tree/master/microprofile-metrics-quickstart

mvn io.quarkus:quarkus-maven-plugin:1.7.3.Final:create \
 -DprojectGroupId=org.acme \
 -DprojectArtifactId=microprofile-metrics-quickstart \
 -Dextensions="smallrye-metrics"
cd microprofile-metrics-quickstart

This command generates a Maven project, importing the smallrye-metrics extension which is an
implementation of the MicroProfile Metrics specification used in Quarkus.

If you already have your Quarkus project configured, you can add the smallrye-metrics extension
to your project by running the following command in your project base directory:

./mvnw quarkus:add-extension -Dextensions="smallrye-metrics"

This will add the following to your pom.xml:

<dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-smallrye-metrics</artifactId>
</dependency>

Writing the application
The application consists of a single class that implements an algorithm for checking whether a number
is prime. This algorithm is exposed over a REST interface. Additionally, we need a few annotations to
make sure that our desired metrics are calculated over time and can be exported for manual analysis
or processing by additional tooling.

The metrics that we will gather are these:

• performedChecks: A counter which is increased by one each time the user asks about a number.

• highestPrimeNumberSoFar: This is a gauge that stores the highest number that was asked
about by the user and which was determined to be prime.

• checksTimer: This is a timer, therefore a compound metric that benchmarks how much time the
primality tests take. We will explain that one in more details later.

The full source code looks like this:

package org.acme.microprofile.metrics;

import org.eclipse.microprofile.metrics.MetricUnits;
import org.eclipse.microprofile.metrics.annotation.Counted;
import org.eclipse.microprofile.metrics.annotation.Gauge;

2

import org.eclipse.microprofile.metrics.annotation.Timed;
import org.jboss.resteasy.annotations.jaxrs.PathParam;

import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.Produces;

@Path("/")
public class PrimeNumberChecker {

 private long highestPrimeNumberSoFar = 2;

 @GET
 @Path("/{number}")
 @Produces("text/plain")
 @Counted(name = "performedChecks", description = "How many
primality checks have been performed.")
 @Timed(name = "checksTimer", description = "A measure of how
long it takes to perform the primality test.", unit =
MetricUnits.MILLISECONDS)
 public String checkIfPrime(@PathParam long number) {
 if (number < 1) {
 return "Only natural numbers can be prime numbers.";
 }
 if (number == 1) {
 return "1 is not prime.";
 }
 if (number == 2) {
 return "2 is prime.";
 }
 if (number % 2 == 0) {
 return number + " is not prime, it is divisible by 2.";
 }
 for (int i = 3; i < Math.floor(Math.sqrt(number)) + 1; i =
i + 2) {
 if (number % i == 0) {
 return number + " is not prime, is divisible by " +
i + ".";
 }
 }
 if (number > highestPrimeNumberSoFar) {
 highestPrimeNumberSoFar = number;
 }
 return number + " is prime.";
 }

 @Gauge(name = "highestPrimeNumberSoFar", unit =
MetricUnits.NONE, description = "Highest prime number so far.")
 public Long highestPrimeNumberSoFar() {

3

 return highestPrimeNumberSoFar;
 }

}

Running and using the application
To run the microservice in dev mode, use ./mvnw clean compile quarkus:dev

Generate some values for the metrics
First, ask the endpoint whether some numbers are prime numbers.

curl localhost:8080/350

The application will respond that 350 is not a prime number because it can be divided by 2.

Now for some large prime number so that the test takes a bit more time:

curl localhost:8080/629521085409773

The application will respond that 629521085409773 is a prime number. If you want, try some more
calls with numbers of your choice.

Review the generated metrics
To view the metrics, execute curl -H"Accept: application/json"
localhost:8080/metrics/application You will receive a response such as:

4

{
 "org.acme.microprofile.metrics.PrimeNumberChecker.checksTimer" :
{
 "p50": 217.231273,
 "p75": 217.231273,
 "p95": 217.231273,
 "p98": 217.231273,
 "p99": 217.231273,
 "p999": 217.231273,
 "min": 0.58961,
 "mean": 112.15909190834819,
 "max": 217.231273,
 "stddev": 108.2721053982776,
 "count": 2,
 "meanRate": 0.04943519091742238,
 "oneMinRate": 0.2232140583080189,
 "fiveMinRate": 0.3559527083952095,
 "fifteenMinRate": 0.38474303050928976
 },

"org.acme.microprofile.metrics.PrimeNumberChecker.performedChecks"
: 2,

"org.acme.microprofile.metrics.PrimeNumberChecker.highestPrimeNumbe
rSoFar" : 629521085409773
}

Let’s explain the meaning of each metric:

• performedChecks: A counter which is increased by one each time the user asks about a number.

• highestPrimeNumberSoFar: This is a gauge that stores the highest number that was asked
about by the user and which was determined to be prime.

• checksTimer: This is a timer, therefore a compound metric that benchmarks how much time the
primality tests take. All durations are measured in milliseconds. It consists of these values:

◦ min: The shortest duration it took to perform a primality test, probably it was performed for a
small number.

◦ max: The longest duration, probably it was with a large prime number.

◦ mean: The mean value of the measured durations.

◦ stddev: The standard deviation.

◦ count: The number of observations (so it will be the same value as performedChecks).

◦ p50, p75, p95, p99, p999: Percentiles of the durations. For example the value in p95
means that 95 % of the measurements were faster than this duration.

◦ meanRate, oneMinRate, fiveMinRate, fifteenMinRate: Mean throughput and

5

one-, five-, and fifteen-minute exponentially-weighted moving average throughput.

If you prefer an OpenMetrics export rather than the JSON format, remove the -H"Accept:
application/json" argument from your command line.

Configuration Reference
 Configuration property fixed at build time - All other configuration properties are overridable at
runtime

Configuration property Type Default

 quarkus.smallrye-metrics.path

The path to the metrics handler. string
/metri
cs

 quarkus.smallrye-metrics.extensions.enabled

Whether or not metrics published by Quarkus extensions should be enabled. boolean true

 quarkus.smallrye-metrics.micrometer.compatibility

Apply Micrometer compatibility mode, where instead of regular 'base' and
'vendor' metrics, Quarkus exposes the same 'jvm' metrics that Micrometer does.
Application metrics are unaffected by this mode. The use case is to facilitate
migration from Micrometer-based metrics, because original dashboards for JVM
metrics will continue working without having to rewrite them.

boolean false

6

#quarkus-smallrye-metrics_configuration
#quarkus-smallrye-metrics_quarkus.smallrye-metrics.path
#quarkus-smallrye-metrics_quarkus.smallrye-metrics.extensions.enabled
#quarkus-smallrye-metrics_quarkus.smallrye-metrics.micrometer.compatibility

	Quarkus - MicroProfile Metrics
	Prerequisites
	Architecture
	Solution
	Creating the Maven Project
	Writing the application
	Running and using the application
	Generate some values for the metrics
	Review the generated metrics

	Configuration Reference

