
Quarkus - Building a Native
Executable

This guide covers:

• Compiling the application to a native executable

• Packaging the native executable in a container

• Debugging native executable

This guide takes as input the application developed in the Getting Started Guide.

GraalVM
Building a native executable requires using a distribution of GraalVM. There are three distributions:
Oracle GraalVM Community Edition (CE), Oracle GraalVM Enterprise Edition (EE) and Mandrel. The
differences between the Oracle and Mandrel distributions are as follows:

• Mandrel is a downstream distribution of the Oracle GraalVM CE. Mandrel’s main goal is to provide a
way to build native executables specifically designed to support Quarkus.

• Mandrel releases are built from a code base derived from the upstream Oracle GraalVM CE code
base, with only minor changes but some significant exclusions that are not necessary for Quarkus
native apps. They support the same capabilities to build native executables as Oracle GraalVM CE,
with no significant changes to functionality. Notably, they do not include support for polyglot
programming. The reason for these exclusions is to provide a better level of support for the
majority of Quarkus users. These exclusions also mean Mandrel offers a considerable reduction in
its distribution size when compared with Oracle GraalVM CE/EE.

• Mandrel is built slightly differently to Oracle GraalVM CE, using the standard OpenJDK project.
This means that it does not profit from a few small enhancements that Oracle have added to the
version of OpenJDK used to build their own GraalVM downloads. This enhancements are omitted
because upstream OpenJDK does not manage them, and cannot vouch for. This is particularly
important when it comes to conformance and security.

• Mandrel is only available for projects that can be compiled with Java 11. If you are using Java 8, you
should consider using Oracle GraalVM instead. The reason for not using Java 8 is because it’s a
legacy release, which most Quarkus users are unlikely to need.

• Mandrel is currently only recommended for building native executables that target Linux
containerized environments. This means that Mandrel users should use containers to build their
native executables. If you are building native executables for macOS or Windows target platforms,
you should consider using Oracle GraalVM instead, because Mandrel does not currently target
these platforms. Building native executables directly on bare metal Linux is possible, with details
available in the Mandrel README and Mandrel releases.

The prerequisites vary slightly depending on whether you are using Oracle GraalVM CE/EE or Mandrel.

1

getting-started
https://github.com/graalvm/mandrel/blob/master/README-Mandrel.md
https://github.com/graalvm/mandrel/releases

Prerequisites for Mandrel
To complete this guide using Mandrel, you need:

• less than 15 minutes

• an IDE

• JDK 11 installed with JAVA_HOME configured appropriately

• A working container runtime (Docker, podman)

• The code of the application developed in the Getting Started Guide.

Skip to this section to continue with the guide for Mandrel, and follow the Mandrel-specific
instructions in that section.

Prerequisites for Oracle GraalVM CE/EE
To complete this guide, you need:

• less than 15 minutes

• an IDE

• JDK 11 installed with JAVA_HOME configured appropriately

• A working C development environment

• GraalVM version 20.1.0 installed and configured appropriately

• A working container runtime (Docker, podman)

• The code of the application developed in the Getting Started Guide.

2

getting-started
getting-started



Supporting native compilation in C

What does having a working C developer environment mean?

• On Linux, you will need GCC, and the glibc and zlib headers. Examples for
common distributions:

dnf (rpm-based)
sudo dnf install gcc glibc-devel zlib-devel
libstdc++-static
Debian-based distributions:
sudo apt-get install build-essential libz-dev
zlib1g-dev

• XCode provides the required dependencies on macOS:

xcode-select --install

• On Windows, you will need to install the Visual Studio 2017 Visual C++ Build
Tools

Configuring GraalVM


If you cannot install GraalVM, you can use a multi-stage Docker build to run Maven
inside a Docker container that embeds GraalVM. There is an explanation of how to
do this at the end of this guide.

Version 20.1.0 is required. Using the community edition is enough.

1. Install GraalVM if you haven’t already. You have a few options for this:

◦ Use platform-specific install tools like homebrew, sdkman, or scoop.

◦ Download the appropriate Community Edition archive from https://github.com/graalvm/
graalvm-ce-builds/releases, and unpack it like you would any other JDK.

2. Configure the runtime environment. Set GRAALVM_HOME environment variable to the GraalVM
installation directory, for example:

export GRAALVM_HOME=$HOME/Development/graalvm/

On macOS, point the variable to the Home sub-directory:

export GRAALVM_HOME=$HOME/Development/graalvm/Contents/Home/

On Windows, you will have to go through the Control Panel to set your environment variables.

3

https://aka.ms/vs/15/release/vs_buildtools.exe
https://aka.ms/vs/15/release/vs_buildtools.exe
https://github.com/graalvm/homebrew-tap
https://sdkman.io/jdks#Oracle
https://github.com/ScoopInstaller/Java
https://github.com/graalvm/graalvm-ce-builds/releases
https://github.com/graalvm/graalvm-ce-builds/releases
https://github.com/graalvm/graalvm-ce-builds/releases
https://github.com/graalvm/graalvm-ce-builds/releases
https://github.com/graalvm/graalvm-ce-builds/releases
https://github.com/graalvm/graalvm-ce-builds/releases
https://github.com/graalvm/graalvm-ce-builds/releases

 Installing via scoop will do this for you.

3. Install the native-image tool using gu install:

${GRAALVM_HOME}/bin/gu install native-image

Some previous releases of GraalVM included the native-image tool by default. This is no longer
the case; it must be installed as a second step after GraalVM itself is installed. Note: there is an
outstanding issue using GraalVM with macOS Catalina.

4. (Optional) Set the JAVA_HOME environment variable to the GraalVM installation directory.

export JAVA_HOME=${GRAALVM_HOME}

5. (Optional) Add the GraalVM bin directory to the path

export PATH=${GRAALVM_HOME}/bin:$PATH



Issues using GraalVM with macOS Catalina

GraalVM binaries are not (yet) notarized for macOS Catalina as reported in this
GraalVM issue. This means that you may see the following error when using gu:

“gu” cannot be opened because the developer cannot be
verified

Use the following command to recursively delete the com.apple.quarantine
extended attribute on the GraalVM install directory as a workaround:

xattr -r -d com.apple.quarantine ${GRAALVM_HOME}/../..

Solution
We recommend that you follow the instructions in the next sections and package the application step
by step. However, you can go right to the completed example.

Clone the Git repository: git clone https://github.com/quarkusio/quarkus-
quickstarts.git, or download an archive.

The solution is located in the getting-started directory.

4

https://github.com/oracle/graal/issues/1724
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts/archive/master.zip

Producing a native executable
The native executable for our application will contain the application code, required libraries, Java
APIs, and a reduced version of a VM. The smaller VM base improves the startup time of the application
and produces a minimal disk footprint.

If you have generated the application from the previous tutorial, you can find in the pom.xml the
following profile:

<profiles>
 <profile>
 <id>native</id>
 <properties>
 <quarkus.package.type>native</quarkus.package.type>
 </properties>
 </profile>
</profiles>



You can provide custom options for the native-image command using the
<quarkus.native.additional-build-args> property. Multiple options may
be separated by a comma.

Another possibility is to include the quarkus.native.additional-build-
args configuration property in your application.properties.

You can find more information about how to configure the native image building
process in the Configuring the Native Executable section below.

We use a profile because, you will see very soon, packaging the native executable takes a few minutes.

5

You could just pass -Dquarkus.package.type=native as a property on the command line, however it is
better to use a profile as this allows native image tests to also be run.

Create a native executable using: ./mvnw package -Pnative.



Issues with packaging on Windows

The Microsoft Native Tools for Visual Studio must first be initialized before
packaging. You can do this by starting the x64 Native Tools Command
Prompt that was installed with the Visual Studio Build Tools. At x64 Native
Tools Command Prompt you can navigate to your project folder and run mvnw
package -Pnative.

Another solution is to write a script to do this for you:

cmd /c 'call "C:\Program Files (x86)\Microsoft Visual
Studio\2017\BuildTools\VC\Auxiliary\Build\vcvars64.bat"
&& mvn package -Pnative'

In addition to the regular files, the build also produces target/getting-started-1.0-
SNAPSHOT-runner. You can run it using: ./target/getting-started-1.0-SNAPSHOT-
runner.

Testing the native executable
Producing a native executable can lead to a few issues, and so it’s also a good idea to run some tests
against the application running in the native file.

In the pom.xml file, the native profile contains:

6

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-failsafe-plugin</artifactId>
 <version>${surefire-plugin.version}</version>
 <executions>
 <execution>
 <goals>
 <goal>integration-test</goal>
 <goal>verify</goal>
 </goals>
 <configuration>
 <systemPropertyVariables>

<native.image.path>${project.build.directory}/${project.build.final
Name}-runner</native.image.path>

<java.util.logging.manager>org.jboss.logmanager.LogManager</java.ut
il.logging.manager>
 <maven.home>${maven.home}</maven.home>
 </systemPropertyVariables>
 </configuration>
 </execution>
 </executions>
</plugin>

This instructs the failsafe-maven-plugin to run integration-test and indicates the location of the
produced native executable.

Then, open the
src/test/java/org/acme/quickstart/NativeGreetingResourceIT.java. It contains:

package org.acme.quickstart;

import io.quarkus.test.junit.NativeImageTest;

@NativeImageTest ①
public class NativeGreetingResourceIT extends GreetingResourceTest
{ ②

 // Run the same tests

}

① Use another test runner that starts the application from the native file before the tests. The
executable is retrieved using the native.image.path system property configured in the
Failsafe Maven Plugin.

7

② We extend our previous tests, but you can also implement your tests

To see the NativeGreetingResourceIT run against the native executable, use ./mvnw verify
-Pnative:

./mvnw verify -Pnative

...
[getting-started-1.0-SNAPSHOT-runner:18820] universe:
587.26 ms
[getting-started-1.0-SNAPSHOT-runner:18820] (parse):
2,247.59 ms
[getting-started-1.0-SNAPSHOT-runner:18820] (inline):
1,985.70 ms
[getting-started-1.0-SNAPSHOT-runner:18820] (compile):
14,922.77 ms
[getting-started-1.0-SNAPSHOT-runner:18820] compile:
20,361.28 ms
[getting-started-1.0-SNAPSHOT-runner:18820] image:
2,228.30 ms
[getting-started-1.0-SNAPSHOT-runner:18820] write:
364.35 ms
[getting-started-1.0-SNAPSHOT-runner:18820] [total]:
52,777.76 ms
[INFO]
[INFO] --- maven-failsafe-plugin:2.22.1:integration-test (default)
@ getting-started ---
[INFO]
[INFO] ---
[INFO] T E S T S
[INFO] ---
[INFO] Running org.acme.quickstart.NativeGreetingResourceIT
Executing [/data/home/gsmet/git/quarkus-quickstarts/getting-
started/target/getting-started-1.0-SNAPSHOT-runner,
-Dquarkus.http.port=8081, -Dtest.url=http://localhost:8081,
-Dquarkus.log.file.path=build/quarkus.log]
2019-04-15 11:33:20,348 INFO [io.quarkus] (main) Quarkus 999-
SNAPSHOT started in 0.002s. Listening on: http://[::]:8081
2019-04-15 11:33:20,348 INFO [io.quarkus] (main) Installed
features: [cdi, resteasy]
[INFO] Tests run: 2, Failures: 0, Errors: 0, Skipped: 0, Time
elapsed: 1.387 s - in org.acme.quickstart.NativeGreetingResourceIT
...

8



By default, Quarkus waits for 60 seconds for the native image to start before
automatically failing the native tests. This duration can be changed using the
quarkus.test.native-image-wait-time system property. For example, to
increase the duration to 300 seconds, use: ./mvnw verify -Pnative
-Dquarkus.test.native-image-wait-time=300.

By default, native tests runs using the prod profile. This can be overridden using the
quarkus.test.native-image-profile property. For example, in your
application.properties file, add: quarkus.test.native-image-profile=test.
Alternatively, you can run your tests with: ./mvnw verify -Pnative
-Dquarkus.test.native-image-profile=test. However, don’t forget that when the native
executable is built the prod profile is enabled. So, the profile you enable this way must be compatible
with the produced executable.

Excluding tests when running as a native executable
When running tests this way, the only things that actually run natively are you application endpoints,
which you can only test via HTTP calls. Your test code does not actually run natively, so if you are
testing code that does not call your HTTP endpoints, it’s probably not a good idea to run them as part
of native tests.

If you share your test class between JVM and native executions like we advise above, you can mark
certain tests with the @DisabledOnNativeImage annotation in order to only run them on the JVM.

Testing an existing native executable
It is also possible to re-run the tests against a native executable that has already been built. To do this
run ./mvnw test-compile failsafe:integration-test. This will discover the existing
native image and run the tests against it using failsafe.

If the process cannot find the native image for some reason, or you want to test a native image that is
no longer in the target directory you can specify the executable with the -Dnative.image.path=
system property.

Creating a Linux executable without GraalVM
installed


Before going further, be sure to have a working container runtime (Docker, podman)
environment. If you use Docker on Windows you should share your project’s drive at
Docker Desktop file share settings and restart Docker Desktop.

Quite often one only needs to create a native Linux executable for their Quarkus application (for
example in order to run in a containerized environment) and would like to avoid the trouble of
installing the proper GraalVM version in order to accomplish this task (for example, in CI environments
it’s common practice to install as little software as possible).

To this end, Quarkus provides a very convenient way of creating a native Linux executable by

9

leveraging a container runtime such as Docker or podman. The easiest way of accomplishing this task
is to execute:

./mvnw package -Pnative -Dquarkus.native.container-build=true



You can also select the container runtime to use with:

Docker
./mvnw package -Pnative -Dquarkus.native.container
-runtime=docker
Podman
./mvnw package -Pnative -Dquarkus.native.container
-runtime=podman

These are normal Quarkus config properties, so if you always want to build in a
container it is recommended you add these to your application.properties in
order to avoid specifying them every time.



Building with Mandrel requires a custom builder image parameter to be passed
additionally:

./mvnw package -Pnative -Dquarkus.native.container
-build=true -Dquarkus.native.builder
-image=quay.io/quarkus/ubi-quarkus-mandrel:{mandrel
-flavor}

Please note that the above command points to a floating tag. It is highly
recommended to use the floating tag, so that your builder image remains up-to-date
and secure. If you absolutely must, you may hard-code to a specific tag (see here for
available tags), but be aware that you won’t get security updates that way and it’s
unsupported.

Creating a container

Using the container-image extensions
By far the easiest way to create a container-image from your Quarkus application is to leverage one of
the container-image extensions.

If one of those extensions is present, then creating a container image for the native executable is
essentially a matter of executing a single command:

10

https://quay.io/repository/quarkus/ubi-quarkus-mandrel?tab=tags

./mvnw package -Pnative -Dquarkus.native.container-build=true
-Dquarkus.container-image.build=true

• quarkus.native.container-build=true allows for creating a Linux executable without
GraalVM being installed (and is only necessary if you don’t have GraalVM installed locally or your
local operating system is not Linux)

• quarkus.container-image.build=true instructs Quarkus to create a container-image
using the final application artifact (which is the native executable in this case)

See the Container Image guide for more details.

Manually
You can run the application in a container using the JAR produced by the Quarkus Maven Plugin.
However, in this section we focus on creating a container image using the produced native executable.

When using a local GraalVM installation, the native executable targets your local operating system
(Linux, macOS, Windows etc). However, as a container may not use the same executable format as the
one produced by your operating system, we will instruct the Maven build to produce an executable by
leveraging a container runtime (as described in this section):

The produced executable will be a 64 bit Linux executable, so depending on your operating system it
may no longer be runnable. However, it’s not an issue as we are going to copy it to a container. The
project generation has provided a Dockerfile.native in the src/main/docker directory with
the following content:

FROM registry.access.redhat.com/ubi8/ubi-minimal
WORKDIR /work/
COPY target/*-runner /work/application
RUN chmod 775 /work
EXPOSE 8080
CMD ["./application", "-Dquarkus.http.host=0.0.0.0"]

11

container-image



Ubi?

The provided Dockerfiles use UBI (Universal Base Image) as parent image. This
base image has been tailored to work perfectly in containers. The Dockerfiles
use the minimal version of the base image to reduce the size of the produced image.

You can read more about UBI on:

• the UBI image page

• the UBI-minimal image page

• the list of UBI-minimal tags

Then, if you didn’t delete the generated native executable, you can build the docker image with:

docker build -f src/main/docker/Dockerfile.native -t quarkus-
quickstart/getting-started .

And finally, run it with:

docker run -i --rm -p 8080:8080 quarkus-quickstart/getting-started

 If you are interested in tiny Docker images, check the distroless version.

Using a multi-stage Docker build
The previous section showed you how to build a native executable using Maven, but implicitly required
that the proper GraalVM version be installed on the building machine (be it your local machine or your
CI/CD infrastructure).

In cases where the GraalVM requirement cannot be met, you can use Docker to perform the Maven
build by using a multi-stage Docker build. A multi-stage Docker build is like two Dockerfile files
combined in one, the first is used to build the artifact used by the second.

In this guide we will use the first stage to generate the native executable using Maven and the second
stage to create our runtime image.

12

https://access.redhat.com/containers/?tab=overview#/registry.access.redhat.com/ubi8/ubi
https://access.redhat.com/containers/#/registry.access.redhat.com/ubi8/ubi-minimal
https://access.redhat.com/containers/#/registry.access.redhat.com/ubi8/ubi-minimal
https://access.redhat.com/containers/?tab=overview#/registry.access.redhat.com/ubi8/ubi
https://access.redhat.com/containers/#/registry.access.redhat.com/ubi8/ubi-minimal
https://access.redhat.com/containers/#/registry.access.redhat.com/ubi8/ubi-minimal
https://access.redhat.com/containers/#/registry.access.redhat.com/ubi8/ubi-minimal
https://access.redhat.com/containers/?tab=tags#/registry.access.redhat.com/ubi8/ubi-minimal
https://access.redhat.com/containers/?tab=tags#/registry.access.redhat.com/ubi8/ubi-minimal
https://access.redhat.com/containers/?tab=tags#/registry.access.redhat.com/ubi8/ubi-minimal
https://github.com/quarkusio/quarkus-images/tree/master/distroless

Stage 1 : build with maven builder image with native
capabilities
FROM quay.io/quarkus/centos-quarkus-maven:20.1.0-java11 AS build
COPY pom.xml /usr/src/app/
RUN mvn -f /usr/src/app/pom.xml -B de.qaware.maven:go-offline-
maven-plugin:1.2.5:resolve-dependencies
COPY src /usr/src/app/src
USER root
RUN chown -R quarkus /usr/src/app
USER quarkus
RUN mvn -f /usr/src/app/pom.xml -Pnative clean package

Stage 2 : create the docker final image
FROM registry.access.redhat.com/ubi8/ubi-minimal
WORKDIR /work/
COPY --from=build /usr/src/app/target/*-runner /work/application

set up permissions for user `1001`
RUN chmod 775 /work /work/application \
 && chown -R 1001 /work \
 && chmod -R "g+rwX" /work \
 && chown -R 1001:root /work

EXPOSE 8080
USER 1001

CMD ["./application", "-Dquarkus.http.host=0.0.0.0"]

Save this file in src/main/docker/Dockerfile.multistage as it is not included in the getting
started quickstart.



Before launching our Docker build, we need to update the default .dockerignore
file as it filters everything except the target directory and as we plan to build
inside a container we need to be able to copy the src directory. So edit your
.dockerignore and remove or comment its content.

docker build -f src/main/docker/Dockerfile.multistage -t quarkus-
quickstart/getting-started .

And finally, run it with:

docker run -i --rm -p 8080:8080 quarkus-quickstart/getting-started

13



If you need SSL support in your native executable, you can easily include the
necessary libraries in your Docker image.

Please see our Using SSL With Native Executables guide for more information.

Debugging native executable
Starting with Oracle GraalVM 20.2 or Mandrel 20.1, debug symbols for native executables can be
generated for Linux environments (Windows support is still under development). These symbols can
be used to debug native executables with tools such as gdb.

To generate debug symbols, add -Dquarkus.native.debug.enabled=true flag when
generating the native executable. You will find the debug symbols for the native executable in a
.debug file next to the native executable.

Aside from debug symbols, setting -Dquarkus.native.debug.enabled=true flag generates a
cache of source files for any JDK runtime classes, GraalVM classes and application classes resolved
during native executable generation. This source cache is useful for native debugging tools, to
establish the link between the symbols and matching source code. It provides a convenient way of
making just the necessary sources available to the debugger/IDE when debugging a native
executable.

Sources for third party jar dependencies, including Quarkus source code, are not added to the source
cache by default. To include those, make sure you invoke mvn dependency:sources first. This step
is required in order to pull the sources for these dependencies, and get them included in the source
cache.

The location of source cache is target/{project.name}-{project.version}-native-
image-source-jar/sources folder.

Configuring the Native Executable
There are a lot of different configuration options that can affect how the native executable is
generated. These are provided in application.properties the same as any other config
property.

The properties are shown below:

 Configuration property fixed at build time - All other configuration properties are overridable at
runtime

Configuration property Type Default

 quarkus.native.additional-build-args

Additional arguments to pass to the build process
list of
string

14

native-and-ssl#working-with-containers
#quarkus-native-pkg-native-config_configuration
#quarkus-native-pkg-native-config_quarkus.native.additional-build-args

 quarkus.native.enable-http-url-handler

If the HTTP url handler should be enabled, allowing you to do
URL.openConnection() for HTTP URLs

boolean true

 quarkus.native.enable-https-url-handler

If the HTTPS url handler should be enabled, allowing you to do
URL.openConnection() for HTTPS URLs

boolean false

 quarkus.native.enable-all-security-services

If all security services should be added to the native image boolean false

 quarkus.native.add-all-charsets

If all character sets should be added to the native image. This increases image
size

boolean false

 quarkus.native.graalvm-home

The location of the Graal distribution string
${GRAA
LVM_HO
ME:}

 quarkus.native.java-home

The location of the JDK File
${java
.home}

 quarkus.native.native-image-xmx

The maximum Java heap to be used during the native image generation string

 quarkus.native.debug-build-process

If the native image build should wait for a debugger to be attached before
running. This is an advanced option and is generally only intended for those
familiar with GraalVM internals

boolean false

 quarkus.native.publish-debug-build-process-port

If the debug port should be published when building with docker and debug-
build-process is true

boolean true

 quarkus.native.cleanup-server

If the native image server should be restarted boolean false

15

#quarkus-native-pkg-native-config_quarkus.native.enable-http-url-handler
#quarkus-native-pkg-native-config_quarkus.native.enable-https-url-handler
#quarkus-native-pkg-native-config_quarkus.native.enable-all-security-services
#quarkus-native-pkg-native-config_quarkus.native.add-all-charsets
#quarkus-native-pkg-native-config_quarkus.native.graalvm-home
#quarkus-native-pkg-native-config_quarkus.native.java-home
https://docs.oracle.com/javase/8/docs/api/java/io/File.html
#quarkus-native-pkg-native-config_quarkus.native.native-image-xmx
#quarkus-native-pkg-native-config_quarkus.native.debug-build-process
#quarkus-native-pkg-native-config_quarkus.native.publish-debug-build-process-port
#quarkus-native-pkg-native-config_quarkus.native.cleanup-server

 quarkus.native.enable-isolates

If isolates should be enabled boolean true

 quarkus.native.enable-fallback-images

If a JVM based 'fallback image' should be created if native image fails. This is not
recommended, as this is functionally the same as just running the application in
a JVM

boolean false

 quarkus.native.enable-server

If the native image server should be used. This can speed up compilation but can
result in changes not always being picked up due to cache invalidation not
working 100%

boolean false

 quarkus.native.auto-service-loader-registration

If all META-INF/services entries should be automatically registered boolean false

 quarkus.native.dump-proxies

If the bytecode of all proxies should be dumped for inspection boolean false

 quarkus.native.container-build

If this build should be done using a container runtime. If this is set docker will be
used by default, unless container-runtime is also set.

boolean false

 quarkus.native.builder-image

The docker image to use to do the image build

string

quay.i
o/quar
kus/ub
i-
quarku
s-
native
-image
:20.1.
0-
java11

 quarkus.native.container-runtime

The container runtime (e.g. docker) that is used to do an image based build. If
this is set then a container build is always done.

string

16

#quarkus-native-pkg-native-config_quarkus.native.enable-isolates
#quarkus-native-pkg-native-config_quarkus.native.enable-fallback-images
#quarkus-native-pkg-native-config_quarkus.native.enable-server
#quarkus-native-pkg-native-config_quarkus.native.auto-service-loader-registration
#quarkus-native-pkg-native-config_quarkus.native.dump-proxies
#quarkus-native-pkg-native-config_quarkus.native.container-build
#quarkus-native-pkg-native-config_quarkus.native.builder-image
#quarkus-native-pkg-native-config_quarkus.native.container-runtime

 quarkus.native.container-runtime-options

Options to pass to the container runtime
list of
string

 quarkus.native.enable-vm-inspection

If the resulting image should allow VM introspection boolean false

 quarkus.native.full-stack-traces

If full stack traces are enabled in the resulting image boolean true

 quarkus.native.enable-reports

If the reports on call paths and included packages/classes/methods should be
generated

boolean false

 quarkus.native.report-exception-stack-traces

If exceptions should be reported with a full stack trace boolean true

 quarkus.native.report-errors-at-runtime

If errors should be reported at runtime. This is a more relaxed setting, however it
is not recommended as it means your application may fail at runtime if an
unsupported feature is used by accident.

boolean false

17

#quarkus-native-pkg-native-config_quarkus.native.container-runtime-options
#quarkus-native-pkg-native-config_quarkus.native.enable-vm-inspection
#quarkus-native-pkg-native-config_quarkus.native.full-stack-traces
#quarkus-native-pkg-native-config_quarkus.native.enable-reports
#quarkus-native-pkg-native-config_quarkus.native.report-exception-stack-traces
#quarkus-native-pkg-native-config_quarkus.native.report-errors-at-runtime

 quarkus.native.resources.includes

A comma separated list of globs to match resource paths that should be added
to the native image. Use slash (/) as a path separator on all platforms. Globs
must not start with slash. By default, no resources are included. Example: Given
that you have src/main/resources/ignored.png and
src/main/resources/foo/selected.png in your source tree and one of
your dependency JARs contains bar/some.txt file, with the following
configuration quarkus.native.resources.includes = foo/**,bar/**/*.txt the files
src/main/resources/foo/selected.png and bar/some.txt will be
included in the native image, while src/main/resources/ignored.png will
not be included. Supported glob features Feature Description * Matches a
(possibly empty) sequence of characters that does not contain slash (/) **
Matches a (possibly empty) sequence of characters that may contain slash (/) ?
Matches one character, but not slash [abc] Matches one character given in the
bracket, but not slash [a-z] Matches one character from the range given in the
bracket, but not slash [!abc] Matches one character not named in the bracket;
does not match slash [a-z] Matches one character outside the range given in
the bracket; does not match slash {one,two,three} Matches any of the
alternating tokens separated by comma; the tokens may contain wildcards,
nested alternations and ranges \ The escape character Note that there are three
levels of escaping when passing this option via application.properties: .
application.properties parser - MicroProfile Config list converter that
splits the comma separated list - Glob parser All three levels use backslash (\)
as the escaping character. So you need to use an appropriate number of
backslashes depending on which level you want to escape. Note that Quarkus
extensions typically include the resources they require by themselves. This
option is useful in situations when the built-in functionality is not sufficient.

list of
string

 quarkus.native.debug.enabled

If debug is enabled and debug symbols are generated. The symbols will be
generated in a separate .debug file.

boolean false

What’s next?
This guide covered the creation of a native (binary) executable for your application. It provides an
application exhibiting a swift startup time and consuming less memory. However, there is much more.

We recommend continuing the journey with the deployment to Kubernetes and OpenShift.

18

#quarkus-native-pkg-native-config_quarkus.native.resources.includes
#quarkus-native-pkg-native-config_quarkus.native.debug.enabled
deploying-to-kubernetes

	Quarkus - Building a Native Executable
	GraalVM
	Prerequisites for Mandrel
	Prerequisites for Oracle GraalVM CE/EE
	Configuring GraalVM

	Solution
	Producing a native executable
	Testing the native executable
	Excluding tests when running as a native executable
	Testing an existing native executable

	Creating a Linux executable without GraalVM installed
	Creating a container
	Using the container-image extensions
	Manually
	Using a multi-stage Docker build

	Debugging native executable
	Configuring the Native Executable
	What’s next?

