Quarkus - Writing Your Own Extension

Quarkus extensions add a new developer focused behavior to the core offering,
and consist of two distinct parts, buildtime augmentation and runtime container.
The augmentation part is responsible for all metadata processing, such as reading
annotations, XML descriptors etc. The output of this augmentation phase is
recorded bytecode which is responsible for directly instantiating the relevant
runtime services.

This means that metadata is only processed once at build time, which both saves on startup time, and
also on memory usage as the classes etc that are used for processing are not loaded (or even present)
in the runtime JVM.

1. Extension philosophy

This section is a work in progress and gathers the philosophy under which extensions should be
designed and written.

1.1. Why an extension framework

Quarkus’s mission is to transform your entire application including the libraries it uses, into an artifact
that uses significantly less resources than traditional approaches. These can then be used to build
native applications using GraalVM. To do this you need to analyze and understand the full "closed
world" of the application. Without the full and complete context, the best that can be achieved is
partial and limited generic support. By using the Quarkus extension approach, we can bring Java
applications in line with memory footprint constrained environments like Kubernetes or cloud
platforms.

The Quarkus extension framework results in significantly improved resource utilization even when
GraalVM is not used (e.q. in HotSpot). Let’s list the actions an extension performs:

* Gather build time metadata and generate code
> This part has nothing to do with GraalVM, it is how Quarkus starts frameworks “at build time”

> The extension framework facilitates reading metadata, scanning classes as well as generating
classes as needed

> A small part of the extension work is executed at runtime via the generated classes, while the
bulk of the work is done at build time (called deployment time)

* Enforce opinionated and sensible defaults based on the close world view of the application (e.g. an
application with no @Ent ity does not need to start Hibernate ORM)

* An extension hosts Substrate VM code substitution so that libraries can run on GraalVM
> Most changes are pushed upstream to help the underlying library run on GraalVM

> Not all changes can be pushed upstream, extensions host Substrate VM substitutions - which
is a form of code patching - so that libraries can run

* Host Substrate VM code substitution to help dead code elimination based on the application needs
> This is application dependant and cannot really be shared in the library itself

> For example, Quarkus optimizes the Hibernate code because it knows it only needs a specific
connection pool and cache provider

* Send metadata to GraalVM for example classes in need of reflection

> This information is not static per library (e.g. Hibernate) but the framework has the semantic
knowledge and knows which classes need to have reflection (for example @Entity classes)

1.2. Favor build time work over runtime work

As much as possible favor doing work at build time (deployment part of the extension) as opposed to
let the framework do work at startup time (runtime). The more is done there, the smaller Quarkus
applications using that extension will be and the faster they will load.

1.3. How to expose configuration

Quarkus simplifies the most common usages. This means that its defaults might be different than the
library it integrates.

To make the simple experience easiest, unify the configuration in application.properties via
MicroProfile Config. Avoid library specific configuration files, or at least make them optional: e.q.
persistence.xml for Hibernate ORM is optional.

Extensions should see the configuration holistically as a Quarkus application instead of focusing on
the library experience. For example quarkus.database.url and friends are shared between
extensions as defining a database access is a shared task (instead of a hibernate. property for
example). The most useful configuration options should be exposed as quarkus. [extension].
instead of the natural namespace of the library. Less common properties can live in the library
namespace.

To fully enable the close world assumptions that Quarkus can optimize best, it is better to consider
configuration options as build time settled vs overridable at runtime. Of course properties like host,
port, password should be overridable at runtime. But many properties like enable caching or setting
the JDBC driver can safely require a rebuild of the application.

1.4. Expose your components via CDI

Since CDI is the central programming model when it comes to component composition, frameworks
and extensions should expose their components as beans that are easily consumable by user
applications. For example, Hibernate ORM exposes EntityManagerFactory and EntityManager
beans, the connection pool exposes DataSource beans etc. Extensions must register these bean
definitions at build time.

1.4.1. Beans backed by classes

An extension can produce an AdditionalBeanBuildItem to instruct the container to read a bean
definition from a class as if it was part of the original application:

cdi-reference.pdf#additional_beans

Bean Class Registered by AdditionalBeanBuildItem

@ApplicationScoped @
public class Echo {

public String echo(String val) {
return val;

@ If a bean registered by an AdditionalBeanBuildItem does not specify a scope then
@Dependent is assumed.

All other beans can inject such a bean:

Bean Injecting a Bean Produced by an AdditionalBeanBuildItem

@Path("/hello")
public class ExampleResource {

@Inject
Echo echo;

@GET

@Produces (MediaType.TEXT_PLAIN)

public String hello(String foo) {
return echo.echo(foo);

And vice versa - the extension bean can inject application beans and beans provided by other
extensions:

Extension Bean Injection Example

@ApplicationScoped
public class Echo {

@Inject
DataSource dataSource; @

@Inject
Instance<List<String>> listsOfStrings; @

/] ..

@ Inject a bean provided by other extension.

@ Inject all beans matching the type List<String>.

1.4.2. Bean initialization

Some components may require additional initialization based on information collected during
augmentation. The most straightforward solution is to obtain a bean instance and call a method
directly from a build step. However, it is illegal to obtain a bean instance during the augmentation
phase. The reason is that the CDI container is not started yet. It’s started during the Static init
bootstrap phase.

(r') BUILD_AND_RUN_TIME_FIXED and RUN_TIME config roots can be injected in any
- bean. RUN_TIME config roots should only be injected after the bootstrap though.

It is possible to invoke a bean method from a recorder method though. If you need to access a bean in
a @Record(STATIC_INIT) build step then is must either depend on the
BeanContainerBuildItem or wrap the logic in a BeanContainerListenerBuildItem. The
reason is simple - we need to make sure the CDI container is fully initialized and started. However, it is
safe to expect that the CDI container is fully initialized and running in a @Record (RUNTIME_INIT)
build step. You can obtain a reference to the container via CDI.current () or Quarkus-specific
Arc.container().

o Don’t forget to make sure the bean state guarantees the visibility, e.g. via the
volatile keyword.

There is one significant drawback of this "late initialization" approach. An

o uninitialized bean may be accessed by other extensions or application components
that are instantiated during bootstrap. We’'ll cover a more robust solution in the
Synthetic beans.

1.4.3. Default beans

A very useful pattern of creating such beans but also giving application code the ability to easily
override some of the beans with custom implementations, is to use the @Defaul tBean that Quarkus
provides. This is best explained with an example.

Let us assume that the Quarkus extension needs to provide a Tracer bean which application code is
meant to inject into its own beans.

@Dependent
public class TracerConfiguration {

@Produces
public Tracer tracer(Reporter reporter, Configuration
configuration) {
return new Tracer(reporter, confiqguration);

}

@Produces

@DefaultBean

public Configuration configuration() {
// create a Configuration

}

@Produces

@DefaultBean

public Reporter reporter()({
// create a Reporter

If for example application code wants to use Tracer, but also needs to use a custom Reporter bean,
such a requirement could easily be done using something like:

@Dependent
public class CustomTracerConfiquration ({

@Produces
public Reporter reporter()({
// create a custom Reporter

1.4.4. How to Override a Bean Defined by a Library/Quarkus Extension that
doesn’t use @DefaultBean

Although @DefaultBean is the recommended approach, it is also possible for application code to
override beans provided by an extension by marking beans as a CDI @Alternative and including
@Priority annotation. Let’s show a simple example. Suppose we work on an imaginary "quarkus-
parser" extension and we have a default bean implementation:

@Dependent
class Parser {

String[] parse(String expression) {
return expression.split("::");

}

And our extension also consumes this parser:

@ApplicationScoped
class ParserService {

@Inject
Parser parser;

//. ..

Now, if a user or even some other extension needs to override the default implementation of the
Parser the simplest solution is to use CDI@Alternative + @Priority:

@Alternative @

@Priority(1) @

@Singleton

class MyParser extends Parser {

String[] parse(String expression) {
// my super impl...
}

M MyParser is an alternative bean.

@ Enables the alternative. The priority could be any number to override the default bean but if there
are multiple alternatives the highest priority wins.

o CDI alternatives are only considered during injection and type-safe resolution. For
example the default implementation would still receive observer notifications.

1.4.5. Synthetic beans

Sometimes it is very useful to be able to register a synthetic bean. Bean attributes of a synthetic bean
are not derived from a java class, method or field. Instead, the attributes are specified by an extension.

Since the CDI container does not control the instantiation of a synthetic bean the

o dependency injection and other services (such as interceptors) are not supported. In
other words, it’'s up to the extension to provide all required services to a synthetic
bean instance.

There are several ways to register a synthetic bean in Quarkus. In this chapter, we will cover a use case
that can be used to initialize extension beans in a safe manner (compared to Bean initialization).

The SyntheticBeanBuildItem can be used to register a synthetic bean:

* whose instance can be easily produced through a recorder,

* to provide a "context" bean that holds all the information collected during augmentation so that

the real components do not need any "late initialization" because they can inject the context bean
directly.

Instance Produced Through Recorder

@BuildStep
@Record (STATIC_INIT)

SyntheticBeanBuildItem syntheticBean(TestRecorder recorder) {
return
SyntheticBeanBuildItem.confiqure(Foo.class).scope(Singleton.class)
.runtimeValue(recorder.createFoo("parameters are
recorder in the bytecode")) @
.done();

@ The string value is recorded in the bytecode and used to initialize the instance of Foo.

"Context" Holder

@BuildStep
@Record (STATIC_INIT)

SyntheticBeanBuildItem syntheticBean(TestRecorder recorder) {
return

SyntheticBeanBuildItem.confiqure(TestContext.class).scope(Singleton
.class)

.runtimeValue(recorder.createContext("parameters
are recorder in the bytecode")) @
.done();

@ The "real" components can inject the TestContext directly.

1.5. Some types of extensions

There exist multiple stereotypes of extension, let’s list a few.

cdi-reference.pdf#synthetic_beans

Bare library running

This is the less sophisticated extension. It consists of a set of patches to make sure a library runs on
GraalVM. If possible, contribute these patches upstream, not in extensions. Second best is to write
Substrate VM substitutions, which are patches applied during native image compilation.

Get a framework running

A framework at runtime typically reads configuration, scan the classpath and classes for metadata
(annotations, getters etc), build a metamodel on top of which it runs, find options via the service
loader pattern, prepare invocation calls (reflection), proxy interfaces, etc.

These operations should be done at build time and the metamodel be passed to the recorder DSL
that will generate classes that will be executed at runtime and boot the framework.

Get a CDI portable extension running

The CDI portable extension model is very flexible. Too flexible to benefit from the build time boot
promoted by Quarkus. Most extension we have seen do not make use of these extreme flexibilities
capabilities. The way to port a CDI extension to Quarkus is to rewrite it as a Quarkus extension
which will define the various beans at build time (deployment time in extension parlance).

2. Technical aspect

2.1. Three Phases of Bootstrap and Quarkus Philosophy
There are three distinct bootstrap phases of a Quarkus app:

Augmentation

This is the first phase, and is done by the Build Step Processors. These processors have access to
Jandex annotation information and can parse any descriptors and read annotations, but should not
attempt to load any application classes. The output of these build steps is some recorded bytecode,
using an extension of the ObjectWeb ASM project called Gizmo(ext/gizmo), that is used to actually
bootstrap the application at runtime. Depending on the
io.quarkus.deployment.annotations.ExecutionTime value of the
@io.quarkus.deployment.annotations.Record annotation associated with the build step,
the step may be run in a different JVM based on the following two modes.

Static Init

If bytecode is recorded with @Record (STATIC_INIT) then it will be executed from a static init
method on the main class. For a native executable build, this code is executed in a normal JVM as
part of the native build process, and any retained objects that are produced in this stage will be
directly serialized into the native executable via an image mapped file. This means that if a
framework can boot in this phase then it will have its booted state directly written to the image, and
so the boot code does not need to be executed when the image is started.

There are some restrictions on what can be done in this stage as the Substrate VM disallows some
objects in the native executable. For example you should not attempt to listen on a port or start
threads in this phase. In addition, it is disallowed to read run time configuration during static
initialization.

In non-native pure JVM mode, there is no real difference between Static and Runtime Init, except
that Static Init is always executed first. This mode benefits from the same build phase
augmentation as native mode as the descriptor parsing and annotation scanning are done at build
time and any associated class/framework dependencies can be removed from the build output jar.
In servers like WildFly, deployment related classes such as XML parsers hang around for the life of
the application, using up valuable memory. Quarkus aims to eliminate this, so that the only classes
loaded at runtime are actually used at runtime.

As an example, the only reason that a Quarkus application should load an XML parser is if the user
is using XML in their application. Any XML parsing of configuration should be done in the
Augmentation phase.

Runtime Init

If bytecode is recorded with @QRecord (RUNTIME_INIT) then it is executed from the application’s
main method. This code will be run on native executable boot. In general as little code as possible
should be executed in this phase, and should be restricted to code that needs to open ports etc.

Pushing as much as possible into the @Record(STATIC_INIT) phase allows for two different
optimizations:

1. In both native executable and pure JVM mode this allows the app to start as fast as possible since
processing was done during build time. This also minimizes the classes/native code needed in the
application to pure runtime related behaviors.

2. Another benefit with native executable mode is that Substrate can more easily eliminate features
that are not used. If features are directly initialized via bytecode, Substrate can detect that a
method is never called and eliminate that method. If config is read at runtime, Substrate cannot
reason about the contents of the config and so needs to keep all features in case they are required.

2.2. Maven setup

Your extension project should be setup as a multi-module project with two submodules:

1. A deployment time submodule that handles the build time processing and bytecode recording.

2. A runtime submodule that contains the runtime behavior that will provide the extension behavior
in the native executable or runtime JVM.

O You may want to use the create-extension mojo of io.quarkus:quarkus-
- maven-plugin to create these Maven modules - see the next section.

Your runtime artifact should depend on io.quarkus:quarkus—core, and possibly the runtime
artifacts of other Quarkus modules if you want to use functionality provided by them. You will also
need to include the io.quarkus:quarkus—-bootstrap—-maven-plugin to generate the Quarkus
extension descriptor included into the runtime artifact, if you are using the Quarkus parent pom it will
automatically inherit the correct configuration. Futhermore, you’ll need to configure the maven-
compiler-plugin to detect the quarkus—-extension-processor annotation processor.

o By convention the deployment time artifact has the —deployment suffix, and the
runtime artifact has no suffix (and is what the end user adds to their project).

<dependencies>
<dependency>
<groupId>io.quarkus</groupId>
<artifactId>quarkus-core</artifactId>
</dependency>
</dependencies>

<build>
<plugins>
<plugin>
<groupId>io.quarkus</groupIld>
<artifactId>quarkus-bootstrap-maven-plugin</artifactId>
<!-- Executions configuration can be inherited from
guarkus-build-parent -->
<executions>
<execution>
<goals>
<goal>extension-descriptor</goal>
</goals>
<configuration>

<deployment>S$S{project.groupId}:S{project.artifactId}-
deployment:S${project.version}</deployment>
</configuration>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<confiquration>
<annotationProcessorPaths>
<path>
<groupId>io.quarkus</groupIld>
<artifactId>quarkus-extension-
processor</artifactId>
</path>
</annotationProcessorPaths>
</configuration>
</plugin>
</plugins>
</build>

o The above maven-compiler—-plugin configuration requires version 3.5+.

Under no circumstances can the runtime module depend on a deployment artifact.
A This would result in pulling all the deployment time code into runtime scope, which
defeats the purpose of having the split.

Your deployment time module should depend on io.quarkus:quarkus-core—-deployment, your
runtime artifact, and possibly the deployment artifacts of other Quarkus modules if you want to use
functionality provided by them. You will also need to configure the maven-compiler-plugin to
detect the quarkus—-extension-processor annotation processor.

<dependencies>
<dependency>
<groupId>io.quarkus</groupIld>
<artifactId>quarkus-core-deployment</artifactId>
</dependency>
</dependencies>

<build>
<plugins>
<plugin>
<groupIld>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<annotationProcessorPaths>
<path>
<groupId>io.quarkus</groupIld>
<artifactId>quarkus-extension-
processor</artifactId>
</path>
</annotationProcessorPaths>
</configuration>
</plugin>
</plugins>
</build>

2.2.1. Create new extension modules using Maven

The create-extension mojo of io.quarkus:quarkus—-maven-plugin can be used to generate
stubs of Maven modules needed for implementing a new Quarkus extension.

This mojo can be currently used only for adding extensions to an established source
A tree hosting multiple extensions in one subdirectory, such as Quarkus or Camel

Quarkus. Creating extension projects from scratch is not supported yet.

As and example, let’s add a new extension called my—ext to the Quarkus source tree:

1

https://github.com/quarkusio/quarkus
https://github.com/apache/camel-quarkus
https://github.com/apache/camel-quarkus

git clone https://github.com/quarkusio/quarkus.qgit

cd quarkus

cd extensions

mvn io.quarkus:quarkus-maven-plugin:1.7.4.Final:create-extension -N

\
-Dquarkus.artifactIdBase=my-ext \
-Dquarkus.artifactIdPrefix=quarkus- \
-Dquarkus.nameBase="My Extension"

The above sequence of commands does the following:

* Creates four new Maven modules:
o quarkus-my-ext-parent inthe extensions/my-ext directory
o quarkus-my-extinthe extensions/my-ext/runtime directory

> quarkus-my-ext-deployment in the extensions/my-ext/deployment directory; a
basic MyExtProcessor class is generated in this module.

o quarkus-my-ext-integration-test in the integration-tests/my-
ext/deployment directory; an empty JAX-RS Resource class and two test classes (for JVM
mode and native mode) are generated in this module.

* Links these three modules where necessary:

° quarkus-my-ext-parent is added to the <modules> of quarkus—-extensions-
parent

o quarkus-my-ext is added to the <dependencyManagement> of the runtime BOM (Bill of
Materials) bom/runtime/pom.xml

° quarkus-my-ext-deployment is added to the <dependencyManagement> of the
deployment BOM (Bill of Materials) bom/deployment/pom.xml

o quarkus-my-ext-integration-test is added to the <modules> of quarkus-
integration-tests-parent

A Maven build performed immediately after generating the modules should fail due to a fail()
assertion in one of the test classes.

There is one step (specific to the Quarkus source tree) that you should do manually when creating a
new extension: create a quarkus—-extension.yaml file that describe your extension inside the
runtime module src/main/resources/META-INF folder.

This is the quarkus—extension.yaml of the quarkus—agroal extension, you can use it as an
example:

name: "Agroal - Database connection pool"
metadata:

keywords:

- "agroal"

- "database-connection-pool"

- "datasource"

- "jdbc"

guide: "https://quarkus.io/quides/datasource"

categories:

- "data"

status: "stable"

Note that the parameters of the mojo that will be constant for all the extensions added to this source
tree are configured in extensions/pom. xml so that they do not need to be passed on the command
line each time a new extension is added:

<plugin>
<groupId>io.quarkus</groupId>
<artifactId>quarkus-maven-plugin</artifactId>
<version>${quarkus.version}</version>
<inherited>false</inherited>
<!-- Settings for stubbing new extensions via
./mvnw quarkus:create-extension -N
-Dquarkus.artifactIdBase=my-ext -Dquarkus.nameBase="My Extension"
-
<configuration>
<namePrefix xml:space="preserve">Quarkus - </namePrefix>
<runtimeBomPath>../bom/runtime/pom.xml</runtimeBomPath>

<deploymentBomPath>../bom/deployment/pom.xml</deploymentBomPath>
<itestParentPath>../integration-
tests/pom.xml</itestParentPath>
</configuration>
</plugin>

The nameBase parameter of the mojo is optional. If you do not specify it on the
(r) command line, the plugin will derive it from artifactIdBase by replacing dashes
- with spaces and uppercasing each token. So you may consider omitting explicit
nameBase in some cases.

Please refer to CreateExtensionMojo JavaDoc for all the available options of the mojo.

2.3. Build Step Processors

Work is done at augmentation time by build steps which produce and consume build items. The build

13

https://github.com/quarkusio/quarkus/blob/1.7.4.Final/devtools/maven/src/main/java/io/quarkus/maven/CreateExtensionMojo.java

steps found in the deployment modules that correspond to the extensions in the project build are
automatically wired together and executed to produce the final build artifact(s).

2.3.1. Build steps

A build step is a method which is annotated with the
@io.quarkus.deployment.annotations.BuildStep annotation. Each build step may
consume items that are produced by earlier stages, and produce items that can be consumed by later
stages. Build steps are normally only run when they produce a build item that is ultimately consumed
by another step.

Build steps are normally placed on plain classes within an extension’s deployment module. The classes
are automatically instantiated during the augment process and utilize injection.

2.3.2. Build items

Build items are concrete, final subclasses of the abstract io.quarkus.builder.item.BuildItem
class. Each build item represents some unit of information that must be passed from one stage to
another. The base BuildItem class may not itself be directly subclassed; rather, there are abstract
subclasses for each of the kinds of build item subclasses that may be created: simple, multi, and
empty.

Think of build items as a way for different extensions to communicate with one another. For example, a
build item can:

* expose the fact that a database configuration exists
* consume that database configuration (e.g. a connection pool extension or an ORM extension)

* ask an extension to do work for another extension: e.g. an extension wanting to define a new CDI
bean and asking the ArC extension to do so

This is a very flexible mechanism.

BuildIteminstances should be immutable, as the producer/consumer model does
o not allow for mutation to be correctly ordered. This is not enforced but failure to
adhere to this rule can result in race conditions.

2.3.2.1. Simple build items

Simple build items are final classes which extend
io.quarkus.builder.item.SimpleBuildItem. Simple build items may only be produced by
one step in a given build; if multiple steps in a build declare that they produce the same simple build
item, an error is raised. Any number of build steps may consume a simple build item. A build step
which consumes a simple build item will always run after the build step which produced that item.

Example of a single build item

VAL
* The build item which represents the Jandex index of the
application,
* and would normally be used by many build steps to find usages
* of annotations.
*/
public final class ApplicationIndexBuildItem extends
SimpleBuildItem {

private final Index index;

public ApplicationIndexBuildItem(Index index) {
this.index = index;

}

public Index getIndex() {
return index;

2.3.2.2. Multi build items

Multiple or "multi" build items are final classes which extend
io.quarkus.builder.item.MultiBuildItem. Any number of multi build items of a given class
may be produced by any number of steps, but any steps which consume multi build items will only run
after every step which can produce them has run.

15

Example of a multiple build item

public final class ServiceWriterBuildItem extends MultiBuildItem {
private final String serviceName;
private final List<String> implementations;

public ServiceWriterBuildItem(String serviceName, String..
implementations) {
this.serviceName = serviceName;
// Make sure it's immutable
this.implementations = Collections.unmodifiablelList(
Arrays.asList(
implementations.clone()

);
}

public String getServiceName() ({
return serviceName;

}

public List<String> getImplementations() {
return implementations;

}

Example of multiple build item usage

VAL
* This build step produces a single multi build item that declares
two
* providers of one configuration-related service.
*/
@BuildStep
public ServiceWriterBuildItem registerOneService() {
return new ServiceWriterBuildItem(
Converter.class.getName(),
MyFirstConfigConverterImpl.class.getName(),
MySecondConfigConverterImpl.class.getName()
)
}

/%%

* This build step produces several multi build items that declare
multiple

* providers of multiple configuration-related services.

*/
@BuildStep

public void registerSeveralServices/(
BuildProducer<ServiceWriterBuildItem> providerProducer
) |
providerProducer.produce(new ServiceWriterBuildItem(
Converter.class.getName(),
MyThirdConfigConverterImpl.class.getName(),
MyFourthConfigConverterImpl.class.getName()
D
providerProducer.produce(new ServiceWriterBuildItem(
ConfigSource.class.getName(),
MyConfigSourcelImpl.class.getName()
));
}

VAL
* This build step aggregates all the produced service providers
* and outputs them as resources.
*/
@BuildStep
public void produceServiceFiles(
List<ServiceWriterBuildItem> items,
BuildProducer<GeneratedResourceBuildItem> resourceProducer
) throws IOException {
// Aggregate all of the providers

Map<String, Set<String>> map = new HashMap<>();
for (ServiceWriterBuildItem item : items) {
String serviceName = item.getName();
for (String implName : item.getImplementations()) {
map.computeIfAbsent(
serviceName,
(k, v) —> new LinkedHashSet<>()
) .add(implName) ;

}

// Now produce the resource(s) for the SPI files
for (Map.Entry<String, Set<String>> entry : map.entrySet()) {
String serviceName = entry.getKey();
try (ByteArrayOutputStream os = new
ByteArrayOutputStream()) {
try (OutputStreamWriter w = new OutputStreamWriter(os,
StandardCharsets.UTF_8)) {
for (String implName : entry.getValue()) {
w.write(implName) ;
w.write(System.lineSeparator());

}
w.flush();

17

resourceProducer.produce(
new GeneratedResourceBuildItem(
"META-INF/services/" + serviceName,
os.toByteArray()

2.3.2.3. Empty build items

Empty build items are final (usually empty) classes which extend
io.quarkus.builder.item.EmptyBuildItem. They represent build items that don’t actually
carry any data, and allow such items to be produced and consumed without having to instantiate
empty classes. They cannot themselves be instantiated.

Example of an empty build item

public final class NativeImageBuildItem extends EmptyBuildItem {
// empty

Empty build items can represent "barriers" which can impose ordering between steps. They can also
be used in the same way that popular build systems use "pseudo-targets", which is to say that the
build item can represent a conceptual goal that does not have a concrete representation.

Example of usage of an empty build item in a "pseudo-target" style

VAL
* Contrived build step that produces the native image on disk.
The main augmentation
* step (which is run by Maven or Gradle) would be declared to
consume this empty item,
* causing this step to be run.
*/
@BuildStep
@Produce(NativeImageBuildItem.class)
void produceNativeImage() {
//
// (produce the native image)

//

Example of usage of an empty build item in a "barrier" style

VAL

* This would always run after {@link #produceNativeImage()}
completes, producing

* an instance of {@code SomeOtherBuildItem}.

*/
@BuildStep
@Consume (NativeImageBuildItem.class)

SomeOtherBuildItem secondBuildStep() {

return new SomeOtherBuildItem("foobar");

2.3.3. Injection

Classes which contain build steps support the following types of injection:
* Constructor parameter injection
* Field injection

* Method parameter injection (for build step methods only)

Build step classes are instantiated and injected for each build step invocation, and are discarded
afterwards. State should only be communicated between build steps by way of build items, even if the
steps are on the same class.

Final fields are not considered for injection, but can be populated by way of
o constructor parameter injection if desired. Static fields are never considered for
injection.

The types of values that can be injected include:

* Build items produced by previous build steps
* Build producers to produce items for subsequent build steps
* Configuration root types

* Template objects for bytecode recording

ﬁ Objects which are injected into a build step method or its class must not be used
outside of that method’s execution.

o Injection is resolved at compile time via an annotation processor, and the resulting
code does not have permission to inject private fields or invoke private methods.

2.3.4. Producing values

A build step may produce values for subsequent steps in several possible ways:

19

* By returning a simple build item or multi build item instance
* ByreturningaList of a multi build item class
* By injectingaBuildProducer of a simple or multi build item class

* By annotating the method with @io.quarkus.deployment.annotations.Produce, giving
the class name of a empty build item

If a simple build item is declared on a build step, it must be produced during that build step, otherwise
an error will result. Build producers which are injected into steps must not be used outside of that step.

Note that a @BuildStep method will only be called if it produces something that another consumer
or the final output requires. If there is no consumer for a particular item then it will not be produced.
What is required will depend on the final target that is being produced. For example, when running in
developer mode the final output will not ask for GraalVM-specific build items such as
ReflectiveClassBuildItem, so methods that only produce these items will not be invoked.

2.3.5. Consuming values

A build step may consume values from previous steps in the following ways:

* By injecting a simple build item
* By injectingan Optional of a simple build item class
* By injectingaList of a multi build item class

* By annotating the method with @io.quarkus.deployment.annotations.Consume, giving
the class name of a empty build item

Normally it is an error for a step which is included to consume a simple build item that is not produced
by any other step. In this way, it is quaranteed that all of the declared values will be present and non-
null when astepis run.

Sometimes a value isn’t necessary for the build to complete, but might inform some behavior of the
build step if it is present. In this case, the value can be optionally injected.

o Multi build values are always considered optional. If not present, an empty list will be
injected.

2.3.5.1. Weak value production

Normally a build step is included whenever it produces any build item which is in turn consumed by
any other build step. In this way, only the steps necessary to produce the final artifact(s) are included,
and steps which pertain to extensions which are not installed or which only produce build items which
are not relevant for the given artifact type are excluded.

For cases where this is not desired behavior,the @io.quarkus.deployment.annotations.Weak
annotation may be used. This annotation indicates that the build step should not automatically be
included solely on the basis of producing the annotated value.

20

Example of producing a build item weakly

VAL
* This build step is only run if something consumes the
ExecutorClassBuildItem.
*/
@BuildStep
void createExecutor(
@Weak BuildProducer<GeneratedClassBuildItem> classConsumer,
BuildProducer<ExecutorClassBuildItem> executorClassConsumer
) {
ClassWriter cw = new ClassWriter(Gizmo.ASM_API_VERSION);
String className = generateClassThatCreatesExecutor(cw); @
classConsumer.produce(new GeneratedClassBuildItem(true,
className, cw.toByteArray()));
executorClassConsumer.produce(new
ExecutorClassBuildItem(className));

}

@ This method (not provided in this example) would generate the class using the ASM API.

Certain types of build items are generally always consumed, such as generated classes or resources.
An extension might produce a build item along with a generated class to facilitate the usage of that
build item. Such a build step would use the @Weak annotation on the generated class build item, while
normally producing the other build item. If the other build item is ultimately consumed by something,
then the step would run and the class would be generated. If nothing consumes the other build item,
the step would not be included in the build process.

In the example above, GeneratedClassBuildItem would only be produced if
ExecutorClassBuildItemis consumed by some other build step.

Note that when using bytecode recording, the implicitly generated class can be declared to be weak by
using the optional attribute of the @io.quarkus.deployment.annotations.Record
annotation.

21

Example of using a bytecode recorder where the generated class is weakly produced

VAL
* This build step is only run if something consumes the
ExecutorBuildItem.
*/
@BuildStep
@Record(value = ExecutionTime.RUNTIME_INIT, optional = true) @
ExecutorBuildItem createExecutor(@
ExecutorTemplate executorTemplate,
ThreadPoolConfig threadPoolConfig

) |
return new ExecutorBuildItem(
setupTemplate.setupRunTime (
shutdownContextBuildItem,
threadPoolConfig,
launchModeBuildItem.getLaunchMode ()
)
IE
}

@ Note the optional attribute.

@ This example is using recorder proxies; see the section on bytecode recording for more
information.

2.3.6. Capabilities

The @BuildStep annotation has a providesCapabilities property that can be used to provide
capability information to other extensions about what is present in the current application.
Capabilities are simply strings that are used to describe an extension. Capabilities should generally be
named after an extensions root package, for example the transactions extension will provide
io.quarkus.transactions.

To check if a capability is present you can inject the io.quarkus.deployment.Capabilities
object and call isCapabilityPresent.

Capabilities should be used when checking for the presence of an extension rather than class path
based checks.

2.3.7. Application Archives

The @BuildStep annotation can also register marker files that determine which archives on the class
path are considered to be 'Application Archives', and will therefore get indexed. This is done via the
applicationArchiveMarkers. For example the ArC extension registers META-INF /beans.xml,
which means that all archives on the class path with a beans . xm1 file will be indexed.

22

BuildStep.applicationArchiveMarkers() is deprecated and will be

o removed at some point post Quarkus 1.1. Extensions are encouraged to use
io.quarkus.deployment.builditem.AdditionalApplicationArchiveM
arkerBuildIteminstead.

2.3.8. Using Thread’s Context Class Loader

The build step will be run with a TCCL that can load user classes from the deployment in a
transformer-safe way. This class loader only lasts for the life of the augmentation, and is discarded
afterwards. The classes will be loaded again in a different class loader at runtime. This means that
loading a class during augmentation does not stop it from being transformed when running in the
development/test mode.

2.3.9. Adding external JARs to the indexer with IndexDependencyBuildltem

The index of scanned classes will not automatically include your external class dependencies. To add
dependencies, create a @BuildStep that produces IndexDependencyBuildItem objects, for a
groupIdandartifactId.

o It is important to specify all the required artifacts to be added to the indexer. No
artifacts are implicitly added transitively.

The Amazon Alexa extension adds dependent libraries from the Alexa SDK that are used in Jackson
JSON transformations, in order for the reflective classes to identified and included at BUILD_TIME.

23

@BuildStep
void addDependencies(BuildProducer<IndexDependencyBuildItem>
indexDependency) {
indexDependency.produce(new

IndexDependencyBuildItem("com.amazon.alexa", "ask-sdk"));

indexDependency.produce(new
IndexDependencyBuildItem("com.amazon.alexa", "ask-sdk-runtime"));

indexDependency.produce(new
IndexDependencyBuildItem("com.amazon.alexa", "ask-sdk-model"));

indexDependency.produce(new
IndexDependencyBuildItem("com.amazon.alexa", "ask-sdk-lambda-
support"));

indexDependency.produce(new
IndexDependencyBuildItem("com.amazon.alexa", "ask-sdk-servlet-
support"));

indexDependency.produce (new
IndexDependencyBuildItem("com.amazon.alexa", "ask-sdk-dynamodb-

persistence-adapter"));
indexDependency.produce(new

IndexDependencyBuildItem("com.amazon.alexa", "ask-sdk-apache-
client"));
indexDependency.produce(new
IndexDependencyBuildItem("com.amazon.alexa", "ask-sdk-model-
runtime"));
}

With the artifacts added to the Jandex indexer, you can now search the index to identify classes
implementing an interface, sub-classes of a specific class, or classes with a target annotation.

For example, the Jackson extension uses code like below to search for annotations used in JSON
deserialization, and add them to the reflective hierarchy for BUILD_TIME analysis.

24

DotName JSON_DESERIALIZE =
DotName.createSimple(JsonDeserialize.class.getName());

IndexView index = combinedIndexBuildItem.getIndex();

// handle the various @JsonDeserialize cases
for (AnnotationInstance deserializelnstance
index.getAnnotations (JSON_DESERIALIZE)) {
AnnotationTarget annotationTarget =
deserializeInstance.target();
if (CLASS.equals(annotationTarget.kind())) {
DotName dotName = annotationTarget.asClass().name();
Type jandexType = Type.create(dotName,
Type.Kind.CLASS);
reflectiveHierarchyClass.produce(new
ReflectiveHierarchyBuildItem(jandexType));
}

2.4. Configuration

Configuration in Quarkus is based on SmallRye Config, an implementation of the MicroProfile Config
specification. All of the standard features of MP-Config are supported; in addition, there are several
extensions which are made available by the SmallRye Config project as well as by Quarkus itself.

The value of these properties is configured in a application.properties file that follows the
MicroProfile config format.

Configuration of Quarkus extensions is injection-based, using annotations.

2.4.1. Configuration Keys

Leaf configuration keys are mapped to non-private fields via the
@io.quarkus.runtime.annotations.ConfigItem annotation.

Though the SmallRye Config project is used for implementation, the standard
o @ConfigProperty annotation does not have the same semantics that are needed
to support configuration within extensions.

Configuration keys are normally derived from the field names that they are tied to. This is done by de-
camel-casing the name and then joining the segments with hyphens (-). Some examples:

* bindAddress becomes bind-address
* keepAliveTime becomes keep—-alive-time

* requestDNSTimeout becomes request-dns—-timeout

25

The name can also be explicitly specified by giving a name attribute to the @ConfigItemannotation.

Though it is possible to override the configuration key name using the name
o attribute of @ConfigItem, normally this should only be done in cases where (for
example) the configuration key name is the same as a Java keyword.

2.4.2. Configuration Value types

The type of the field with the @ConfigItem annotation determines the conversion that is applied to
it. Quarkus extensions may use the full range of configuration types made available by SmallRye
Config, which includes:

* All primitive types and primitive wrapper types

* String

* Any type which has a constructor accepting a single argument of type String or CharSequence
* Any type which has a static method named of which accepts a single argument of type String

* Any type which has a static method named valueOf or parse which accepts a single argument
of type CharSequence or String

* java.time.Duration

* java.util.regex.Pattern

* java.nio.file.Path

* io.quarkus.runtime.confiquration.MemorySize torepresent data sizes

* java.net.InetSocketAddress, java.net.InetAddress and
org.wildfly.common.net.CidrAddress

* AListorOptional of any of the above types
* OptionallInt,OptionallLong,OptionalDouble

In addition, custom converters may be registered by adding their fully qualified class name in file
META-INF/services/org.eclipse.microprofile.config.spi.Converter.

Though these implicit converters use reflection, Quarkus will automatically ensure that they are
loaded at the appropriate time.

2.4.2.1. Optional Values

If the configuration type is one of the optional types, then empty values are allowed for the
configuration key; otherwise, specification of an empty value will result in a configuration error which
prevents the application from starting. This is especially relevant to configuration properties of
inherently emptiable values such as List, Set, and String. Such value types will never be empty; in
the event of an empty value, an empty Optional is always used.

2.4.3. Configuration Default Values

A configuration item can be marked to have a default value. The default value is used when no

26

matching configuration key is specified in the configuration.

Configuration items with a primitive type (such as int or boolean) implicitly use a default value of 0
or false. The sole exception to this rule is the char type which does not have an implicit default
value.

A property with a default value is not implicitly optional. If a non-optional configuration item with a
default value is explicitly specified to have an empty value, the application will report a configuration
error and will not start. If it is desired for a property to have a default value and also be optional, it
must have an Optional type as described above.

2.4.4. Configuration Groups

Configuration values are always collected into grouping classes which are marked with the
@io.quarkus.runtime.annotations.ConfigGroup annotation. These classes contain a field
for each key within its group. In addition, configuration groups can be nested.

2.4.4.1. Optional Configuration Groups

A nested configuration group may be wrapped with an Optional type. In this case, the group is not
populated unless one or more properties within that group are specified in the configuration. If the
group is populated, then any required properties in the group must also be specified otherwise a
configuration error will be reported and the application will not start.

2.4.5. Configuration Maps

A Map can be used for configuration at any position where a configuration group would be allowed.
The key type of such a map must be String, and its value may be either a configuration group class
or a valid leaf type. The configuration key segment following the map’s key segment will be used as
the key for map values.

2.4.6. Configuration Roots

Configuration roots are configuration groups that appear in the root of the configuration tree. A
configuration property’s full name is determined by joining the string quarkus . with the hyphenated
name of the fields that form the path from the root to the leaf field. For example, if | define a
configuration root group called ThreadPool, with a nested group in a field named sizing that in
turn contains a field called minSize, the final configuration property will be called
quarkus.thread-pool.sizing.min-size.

A configuration root’s name can be given with the name property, or it can be inferred from the class
name. If the latter, then the configuration key will be the class name, minus any Config or
Configuration suffix, broken up by camel-case, lowercased, and re-joined using hyphens (-).

A configuration root’s class name can contain an extra suffix segment for the case where there are
configuration roots for multiple Configuration Root Phases. Classes which correspond to the
BUILD_TIME and BUILD_AND_RUN_TIME_FIXED may end with BuildTimeConfig or
BuildTimeConfiguration, and classes which correspond to the RUN_TIME phase may end with
RuntimeConfig,RunTimeConfig,RuntimeConfigurationorRunTimeConfiquration.

Note: The current implementation is still using injection site to determine the root set, so to avoid

27

migration problems, it is recommended that the injection site (field or parameter) have the same name
as the configuration root class until this change is complete.

2.4.6.1. Configuration Root Phases

Configuration roots are strictly bound by configuration phase, and attempting to access a
configuration root from outside of its corresponding phase will result in an error. A configuration root
dictates when its contained keys are read from configuration, and when they are available to
applications. The phases defined by io.quarkus.runtime.annotations.ConfigPhase are as
follows:

Phase name Read Avail Read Re- Notes
& .at durin read
avail. run g durin
at time stati g

build cinit start
time up
(nati
ve
exec
utabl
e)
BUILD_TIME v Appropriate for things which affect build.
BUILD_AND_RUN_ v 4 Appropriate for things which affect build and must be
TIME_FIXED visible for run time code. Not read from config at run
time.
RUN_TIME 4 v v Not available at build, read at start in all modes.

For all cases other than the BUILD_TIME case, the configuration root class and all of the
configuration groups and types contained therein must be located in, or reachable from, the
extension’s run time artifact. Configuration roots of phase BUILD_TIME may be located in or
reachable from either of the extension’s run time or deployment artifacts.

2.4.7. Configuration Example

import io.quarkus.runtime.annotations.ConfigItem;
import io.quarkus.runtime.annotations.ConfigGroup;
import io.quarkus.runtime.annotations.DefaultConverter

import java.io.File;
import java.util.logging.Level,;

@ConfigGroup @
public class FileConfig {

/%%
* Enable logging to a file.
*/

28

@Configltem(defaultValue = "true")
boolean enable;

/%%
* The log format.
*/
@ConfigItem(defaultValue = "%d{yyyy-MM-dd HH:mm:ss,SSS} %h
UN[%1] %—5p [%c{l.}] (%t) %s%e%n")
String format;

VAL
* The level of logs to be written into the file.
*/

@ConfigIltem(defaultValue = "ALL")

Level level;

VAL
* The name of the file in which logs will be written.
*/

@Configltem(defaultValue = "application.log")

File path;

}

VAL

* Logging configuration.

*/
@ConfigRoot (phase = ConfigPhase.RUN_TIME) @
public class LogConfiguration {

//

VAL
% Configuration properties for the logging file handler.
*/
FileConfig file;
}

public class LoggingProcessor {

//

VAL

* Logging configuration.
*/

®

LogConfiquration config;

A configuration property name can be split into segments. For example, a property name like

29

quarkus.log.file.enable can be splitinto the following segments:

* quarkus - a namespace claimed by Quarkus which is a prefix for all @ConfigRoot classes,

* log - a name segment which corresponds to the LogConfiguration class annotated with
@ConfigRoot,

* file - aname segment which corresponds to the file field in this class,

* enabled - a name segment which corresponds to enable field in FileConfig class annotated
with @ConfigGroup.

@ The FileConfig class is annotated with @ConfigGroup to indicate that this is an aggregate
configuration object containing a collection of configurable properties, rather than being a simple
configuration key type.

@ The @ConfigRoot annotation indicates that this object is a configuration root group, in this case
one which corresponds to a 1og segment. A class name is used to link configuration root group
with the segment from a property name. The Configuration part is stripped off from a
LogConfiguration class name and the remaining Log is lowercased to become a 1og. Since all
@ConfigRoot annotated classes uses quarkus as a prefix, this finally becomes quarkus.log
and represents the properties which names begin with quarkus.log. .

® Here the LoggingProcessor injects a LogConfiguration instance automatically by
detecting the @ConfigRoot annotation.

A corresponding application.properties for the above example could be:

quarkus.log.file.enable=true
quarkus.log.file.level=DEBUG
quarkus.log.file.path=/tmp/debug.log

Since format is not defined in these properties, the default value from @ConfigItem will be used
instead.

2.4.8. Enhanced conversion

You can use enhanced conversion of a config item by using the @ConvertWith annotation which
accepts a Converter class object. If the annotation is present on a config item, the implicit or custom
built in converter in use will be overridden by the value provided. To do, see the example below which
converts YES or NO values to boolean.

30

@ConfigRoot
public class SomeConfig {
VAL
* Config item with enhanced converter
*/
@ConvertWith(YesNoConverter.class) @
@ConfigItem(defaultValue = "NO")
Boolean answer;

public static class YesNoConverter implements
Converter<Boolean> {

public YesNoConverter() {}

@Override
public Boolean convert(String s) {
if (s == null || s.isEmpty()) {
return false;

}
switch (s) {
case "YES":
return true;
case "NO":

return false;

}
throw new IllegalArgumentException("Unsupported value "
+ s + " given");
}
}

1. Override the default Boolean converter and use the provided converter which accepts a YES or
NO config values.

The corresponding application.properties will look like.

quarkus.some.answer=YES

31

Enum values (config items) are translated to skewed-case (hyphenated) by default.
The table below illustrates an enum name and their canonical equivalence:

Java enum Canonical equivalent
DISCARD discard
READ_UNCOMMITTED read-uncommitted
SIGUSRI sigusrl
JavaEnum java-enum
MAKING_LifeDifficult making-life-difficult
YeOldeJBoss ye-olde-jboss
camelCaseEnum camel-case-enum
o To use the default behaviour which is based on implicit converter or a custom

defined one add @DefaultConverter annotation to the configuration item

@ConfigRoot
public class SomeLogConfig {
/%%
¥ The level of logs to be written into the file.
*/
@DefaultConverter @
@ConfigItem(defaultValue = "ALL")
Level level;

1. Use the default converter (built in or a custom converter) to convert
Level.class enum.

2.5. Conditional Step Inclusion

It is possible to only include a given @BuildStep under certain conditions. The @BuildStep
annotation has two optional parameters: onlyIf and onlyIfNot. These parameters can be set to
one or more classes which implement BooleanSupplier. The build step will only be included when
the method returns true (foronlyIf)or false (foronlyIfNot).

The condition class can inject configuration roots as long as they belong to a build-time phase. Run
time configuration is not available for condition classes.

The condition class may also inject a value of type io.quarkus.runtime.LaunchMode.
Constructor parameter and field injection is supported.

32

An example of a conditional build step

@BuildStep(onlyIf = IsDevMode.class)
LogCategoryBuildItem enableDebuglLogging() {
return new LogCategoryBuildItem("org.your.quarkus.extension",
Level .DEBUG) ;
}

static class IsDevMode implements BooleanSupplier {
LaunchMode launchMode;

public boolean getAsBoolean() {
return launchMode == LaunchMode.DEVELOPMENT;

2.6. Bytecode Recording

One of the main outputs of the build process is recorded bytecode. This bytecode actually sets up the
runtime environment. For example, in order to start Undertow, the resulting application will have some
bytecode that directly registers all Servlet instances and then starts Undertow.

As writing bytecode directly is complex, this is instead done via bytecode recorders. At deployment
time, invocations are made on recorder objects that contain the actual runtime logic, but instead of
these invocations proceeding as normal they are intercepted and recorded (hence the name). This
recording is then used to generate bytecode that performs the same sequence of invocations at
runtime. This is essentially a form of deferred execution where invocations made at deployment time
get deferred until runtime.

Let’s look at the classic 'Hello World' type example. To do this the Quarkus way we would create a
recorder as follows:

@Recorder
class HelloRecorder {

public void sayHello(String name) {
System.out.println("Hello" + name);

And then create a build step that uses this recorder:

33

@Record (RUNTIME_INIT)

@BuildStep

public void helloBuildStep(HelloRecorder recorder) {
recorder.sayHello("World");

When this build step is run nothing is printed to the console. This is because the Hel1oRecorder that
is injected is actually a proxy that records all invocations. Instead if we run the resulting Quarkus
program we will see 'Hello World' printed to the console.

Methods on a recorder can return a value, which must be proxiable (if you want to return a non-
proxiable item wrap it in io.quarkus.runtime.RuntimeValue). These proxies may not be
invoked directly, however they can be passed into other recorder methods. This can be any recorder
method, including from other @BuildStep methods, so a common pattern is to produce BuildItem
instances that wrap the results of these recorder invocations.

For instance, in order to make arbitrary changes to a Servlet deployment Undertow has a
ServletExtensionBuildItem, whichis a MultiBuildItem that wraps a ServletExtension
instance. | can return a ServletExtension from a recorder in another module, and Undertow will
consume it and pass it into the recorder method that starts Undertow.

At runtime the bytecode will be invoked in the order it is generated. This means that build step
dependencies implicitly control the order that generated bytecode is run. In the example above we
know that the bytecode that produces a ServletExtensionBuildItem will be run before the
bytecode that consumes it.

The following objects can be passed to recorders:

* Primitives

* String

* Class<?> objects

* Objects returned from a previous recorder invocation

* Objects with a no-arg constructor and getter/setters for all properties (or public fields)

* Objects with a constructor annotated with @RecordableConstructor with parameter names
that match field names

* Any arbitrary object via the
io.quarkus.deployment.recording.RecorderContext#fregisterSubstitution(Cl
ass, Class, Class) mechanism

* Arrays, Lists and Maps of the above

2.6.1. RecorderContext

io.quarkus.deployment.recording.RecorderContext provides some convenience methods
to enhance bytecode recording, this includes the ability to register creation functions for classes
without no-arg constructors, to register an object substitution (basically a transformer from a non-

34

serializable object to a serializable one and vice versa), and to create a class proxy. This interface can
be directly injected as a method parameter into any @Record method.

Calling classProxy with a given class name will create a Class that can be passed into recorder
methods, and at runtime will be substituted with the class whose name was passed into classProxy.
This is basically a convenience to avoid the need to explicitly load classes in the recorders.

2.6.2. Printing step execution time

At times, it can be useful to know how the exact time each startup task (which is the result of each
bytecode recording) takes when the application is run. The simplest way to determine this information
is to set the quarkus.debug.print-startup-times property to true when running the
application. The output will look something like:

Build step LoggingResourceProcessor.setupLoggingRuntimeInit
completed in: 42ms

Build step ConfigGenerationBuildStep.checkForBuildTimeConfigChange
completed in: 4ms

Build step SyntheticBeansProcessor.initRuntime completed in: Oms
Build step ConfigBuildStep.validateConfigProperties completed in:
Ims

Build step ResteasyStandaloneBuildStep.boot completed in: 95ms
Build step VertxHttpProcessor.initializeRouter completed in: 1ms
Build step VertxHttpProcessor.finalizeRouter completed in: 4ms
Build step LifecycleEventsBuildStep.startupEvent completed in: 1ms
Build step VertxHttpProcessor.openSocket completed in: 93ms

Build step ShutdownListenerBuildStep.setupShutdown completed in:
Ims

2.7. Contexts and Dependency Injection

2.7.1. Extension Points

As a CDI based runtime, Quarkus extensions often make CDI beans available as part of the extension
behavior. However, Quarkus DI solution does not support CDI Portable Extensions. Instead, Quarkus
extensions can make use of various Build Time Extension Points.

2.8. Extension Health Check

Health checks are provided via the quarkus-smallrye-health extension. It provides both
liveness and readiness checks capabilities.

When writing an extension, it’'s beneficial to provide health checks for the extension, that can be
automatically included without the developer needing to write their own.

In order to provide a health check, you should do the following:

35

cdi-reference

* Import the quarkus—-smallrye-health extension as an optional dependency in your runtime
module so it will not impact the size of the application if health check is not included.

* Create your health check following the Quarkus - MicroProfile Health guide. We advise providing
only readiness check for an extension (liveness check is designed to express the fact that an
application is up and needs to be lightweight).

* Import the quarkus-smallrye-health-spi library in your deployment module.
* Add a build step in your deployment module that produces a HealthBuildItem.

° Add a way to disable the extension health check via a config item
quarkus.<extension>.health.enabled that should be enabled by default.

Following is an example from the Agroal extension that provides a DataSourceHealthCheck to
validate the readiness of a datasource.

@BuildStep
HealthBuildItem addHealthCheck (AgroalBuildTimeConfig
agroalBuildTimeConfig) {
return new
HealthBuildItem("io.quarkus.agroal.runtime.health.DataSourceHealthC
heck",
agroalBuildTimeConfig.healthEnabled);

2.9. Extension Metrics

The quarkus-smallrye-metrics extension (and other 3rd party or experimental extensions)
provide support for collecting metrics. There are two broad patterns that extensions can use to
interact with an optional metrics extension to add their own metrics:

* Consumer pattern: An extension declares a MetricsFactoryConsumerBuildItem and uses
that to provide a bytecode recorder to the metrics extension. When the metrics extension has
initialized, it will iterate over registered consumers to initialize them with a MetricsFactory.
This factory can be used to declare API-agnostic metrics, which can be a good fit for extensions
that provide an instrumentable object for gathering statistics (e.g. Hibernate’s Statistics
class).

* Binder pattern: An extension can opt to use completely different gathering implementations
depending on the metrics system. An Optional<MetricsCapabilityBuildItem>
metricsCapability build step parameter can be used to declare or otherwise initialize API-
specific metrics based on the active metrics extension (e.qg. "smallrye-metrics" or "micrometer").
This pattern can be combined with the consumer pattern by using
MetricsFactory::metricsSystemSupported() to test the active metrics extension within
the recorder.

Remember that support for metrics is optional. Extensions can use an
Optional<MetricsCapabilityBuildItem> metricsCapability parameter in their build
step to test for the presence of an enabled metrics extension. Consider using additional configuration

36

microprofile-health

to control behavior of metrics. Datasource metrics can be expensive, for example, so additional
configuration flags are used enable metrics collection on individual datasources.

When adding metrics for your extension, you may find yourself in one of the following situations:
1. An underlying library used by the extension is using a specific Metrics API directly (either MP
Metrics, micrometer, or some other).

2. An underlying library uses its own mechanism for collecting metrics and makes them available at
runtime using its own API, e.q. Hibernate’s Statistics class,or Vert.x MetricsOptions.

3. An underlying library does not provide metrics (or there is no library at all) and you want to add
instrumentation.

2.9.1. Case 1: The library uses a metrics library directly

If the library directly uses a metrics API, there are two options:

* Use an Optional<MetricsCapabilityBuildItem> metricsCapability parameter to
test which metrics API is supported (e.g. "smallrye-metrics" or "micrometer") in your build step,
and use that to selectively declare or initialize API-specific beans or build items.

* Create a separate build step that consumes a MetricsFactory, and use the
MetricsFactory::metricsSystemSupported() method within the bytecode recorder to
initialize required resources if the desired metrics APl is supported (e.g. "smallrye-metrics" or
"micrometer").

Extensions may need to provide a fallback if there is no active metrics extension or the extension
doesn’t support the API required by the library.

2.9.2. Case 2: The library provides its own metric API

There are two examples of a library providing its own metrics API:

* The extension defines an instrumentable object as Agroal does with
io.agroal.api.AgroalDataSourceMetrics,or

* The extension provides its own abstraction of metrics, as Jaeger does with

io.jaegertracing.spi.MetricsFactory.

2.9.2.1. Observing instrumentable objects

Let’s take the instrumentable object (i0.agroal.api.AgroalDataSourceMetrics) case first. In
this case, you can do the following:

* Define a BuildStep that produces a MetricsFactoryConsumerBuildItem that uses a
RUNTIME_INIT or STATIC_INIT Recorder to define a MetricsFactory consumer. For
example, the following creates a MetricsFactoryConsumerBuildItem if and only if metrics
are enabled both for Agroal generally, and for a datasource specifically:

37

@BuildStep

@Record(ExecutionTime.RUNTIME_INIT)

void registerMetrics(AgroalMetricsRecorder recorder,
DataSourcesBuildTimeConfig dataSourcesBuildTimeConfig,
BuildProducer<MetricsFactoryConsumerBuildItem>

datasourceMetrics,
List<AggregatedDataSourceBuildTimeConfigBuildItem>

aggregatedDataSourceBuildTimeConfigs) {

for (AggregatedDataSourceBuildTimeConfigBuildItem

aggregatedDataSourceBuildTimeConfig
aggregatedDataSourceBuildTimeConfigs) {

// Create a MetricsFactory consumer to register metrics
for a data source

// IFF metrics are enabled globally and for the data
source

// (they are enabled for each data source by default if
they are also enabled globally)

if (dataSourcesBuildTimeConfig.metricsEnabled &&

aggregatedDataSourceBuildTimeConfig.getJdbcConfig() .enableMetric
s.orkElse(true)) {

datasourceMetrics.produce(new
MetricsFactoryConsumerBuildItem(

recorder.registerDataSourceMetrics(aggregatedDataSourceBuildTime
Config.getName())));

}

* The associated recorder should use the provided MetricsFactory to register metrics. For
Agroal, this means using the MetricFactory API to observe
io.agroal.api.AgroalDataSourceMetrics methods. For example:

38

/% RUNTIME_INIT %/
public Consumer<MetricsFactory> registerDataSourceMetrics(String
dataSourceName) {
return new Consumer<MetricsFactory>() {
@0verride
public void accept(MetricsFactory metricsFactory) {
String tagValue =
DataSourceUtil.isDefault(dataSourceName) ? "default"
dataSourceName;
AgroalDataSourceMetrics metrics =
getDataSource(dataSourceName) .getMetrics();

// When using MP Metrics, the builder uses the
VENDOR registry by default.
metricsFactory.builder("agroal.active.count")
.description(
"Number of active connections. These
connections are in use and not available to be acquired.")
.tag("datasource", tagValue)
.buildGauge(metrics::activeCount);

The MetricsFactory provides a fluid builder for registration of metrics, with the final step
constructing gauges or counters based on a Supplier or ToDoubleFunction. Timers can either
wrap Callable, Runnable, or Supplier implementations, or can use a TimeRecorder to
accumulate chunks of time. The underlying metrics extension will create appropriate artifacts to
observe or measure the defined functions.

2.9.2.2. Using a Metrics API-specific implementation

Using metrics-API specific implementations may be preferred in some cases.nJaeger, for example,
defines its own metrics interface, i0. jaegertracing.spi.MetricsFactory, that it uses to
define counters and gauges. A direct mapping from that interface to the metrics system will be the
most efficient. In this case, it is important to isolate these specialized implementations and to avoid
eager classloading to ensure the metrics APl remains an optional, compile-time dependency.

Optional<MetricsCapabilityBuildItem> metricsCapability can be used in the build
step to selectively control initialization of beans or the production of other build items. The Jaeger
extension, for example, can use the following to control initialization of specialized Metrics API
adapters:

+

39

/* RUNTIME_INIT =/

@BuildStep

@Record(ExecutionTime.RUNTIME_INIT)

void setupTracer(JaegerDeploymentRecorder jdr,

JaegerBuildTimeConfig buildTimeConfig, JaegerConfig jaeger,
ApplicationConfig appConfig,

Optional<MetricsCapabilityBuildItem> metricsCapability) {

// Indicates that this extension would like the SSL support to
be enabled

extensionSslNativeSupport.produce(new
ExtensionSs1lNativeSupportBuildItem(Feature.JAEGER.getName()));

if (buildTimeConfig.enabled) {

boolean metricsEnabled = buildTimeConfig.metricsEnabled &&
metricsCapability.isPresent();

if (metricsEnabled &&
metricsCapability.qget().metricsSupported(MetricsFactory.MP_METRICS)
) |

jdr.registerTracerWithMpMetrics(jaeger, appConfiqg);

} else if (metricsEnabled &&
metricsCapability.qget().metricsSupported(MetricsFactory.MICROMETER)
) |

jdr.registerTracerWithMicrometer(jaeger, appConfiqg);
} else {
jdr.registerTracerWithoutMetrics(jaeger, appConfiqg);

A recorder consuming a MetricsFactory can use
MetricsFactory::metricsSystemSupported() can be used to control initialization of metrics
objects during bytecode recording in a similar way.

2.9.3. Case 3: It is necessary to collect metrics within the extension code

To define your own metrics from scratch, you have two basic options: Use the generic
MetricFactory builders, or follow the binder pattern, and create instrumentation specific to the
enabled metrics extension.

To use the extension-agnostic MetricFactory API, your processor can define a BuildStep that
produces a MetricsFactoryConsumerBuildItem that uses a RUNTIME_INIT or STATIC_INIT
Recorder to defineaMetricsFactory consumer.

+

40

@BuildStep
@Record(ExecutionTime.RUNTIME_INIT)
MetricsFactoryConsumerBuildItem registerMetrics(MyExtensionRecorder
recorder) {

return new
MetricsFactoryConsumerBuildItem(recorder.registerMetrics());

}

+ - The associated recorder should use the provided MetricsFactory to register metrics, for
example

+

final LongAdder extensionCounter = new LongAdder();

/% RUNTIME_INIT %/
public Consumer<MetricsFactory> registerMetrics() {
return new Consumer<MetricsFactory>() {
@Override
public void accept(MetricsFactory metricsFactory) {
metricsFactory.builder("my.extension.counter")
.buildGauge(extensionCounter::longValue);

Remember that metrics extensions are optional. Keep metrics-related initialization isolated from
other setup for your extension, and structure your code to avoid eager imports of metrics APIs.

Gathering metrics can be expensive. Consider using additional extension-specific configuration to
control behavior of metrics if the presence/absence of metrics support isn’t sufficient. Datasource
metrics can be expensive, for example, so there are additional flags to selectively enable collection of
metrics on datasources.

2.10. Customizing JSON handling from an extension
Extensions often need to reqgister serializers and/or deserializers for types the extension provides.

For this, both JSON-B and Jackson extension provide a way to register serializer/deserializer from
within an extension deployment module.

Keep in mind that not everybody will need JSON, so you need to make it optional.

If an extension intends to provide JSON related customization, it is strongly advised to provide
customization for both JSON-B and Jackson.

2.10.1. Customizing JSON-B

First, add an optional dependency to quarkus—jsonb on your extension’s runtime module.

41

<dependency>
<groupId>io.quarkus</groupIld>
<artifactId>quarkus-jsonb</artifactId>
<optional>true</optional>
</dependency>

Then create a serializer and/or a deserializer for JSON-B, an example of which can be seen in the
mongodb-panache extension.

public class ObjectIdSerializer implements
JsonbSerializer<ObjectId> ({
@Override
public void serialize(ObjectId obj, JsonGenerator generator,
SerializationContext ctx) {
if (obj != null) {
generator.write(obj.toString());

Add a dependency to quarkus—jsonb-spi on your extension’s deployment module.

<dependency>
<groupId>io.quarkus</groupIld>
<artifactId>quarkus—-jsonb-spi</artifactId>
</dependency>

Add a build step to your processor to register the serializer via the JsonbSerializerBuildItem.

@BuildStep
JsonbSerializerBuildItem registerJsonbSerializer() {

return new
JsonbSerializerBuildItem(io.quarkus.mongodb.panache.jsonb.0ObjectIdS
erializer.class.getName()));

}

The JSON-B extension will then use the produced build item to register your serializer/deserializer
automatically.

If you need more customization capabilities than registering a serializer or a deserializer, you can
produce a CDI bean that implements io.quarkus.jsonb.JsonbConfigCustomizer via an
AdditionalBeanBuildItem. More info about customizing JSON-B can be found on the JSON
guide Configuring JSON support

42

rest-json#configuring-json-support

2.10.2. Customizing Jackson

First, add an optional dependency to quarkus—jackson on your extension’s runtime module.

<dependency>
<groupId>io.quarkus</groupIld>
<artifactId>quarkus-jackson</artifactId>
<optional>true</optional>

</dependency>

Then create a serializer or a deserializer (or both) for Jackson, an example of which can be seen in the
mongodb-panache extension.

public class ObjectIdSerializer extends StdSerializer<ObjectId> {
public ObjectIdSerializer() {
super(ObjectId.class);
}
@Override
public void serialize(ObjectId objectId, JsonGenerator
jsonGenerator, SerializerProvider serializerProvider)
throws IOException ({
if (objectId != null) {
jsonGenerator.writeString(objectId.toString());

Add a dependency to quarkus—jackson-spi on your extension’s deployment module.

<dependency>
<groupId>io.quarkus</groupIld>
<artifactId>quarkus—-jackson-spi</artifactId>
</dependency>

Add a build step to your processor to register a Jackson module via the JacksonModuleBuildItem.
You need to name your module in a unique way across all Jackson modules.

43

@BuildStep
JacksonModuleBuildItem registerJacksonSerDeser() {
return new JacksonModuleBuildItem.Builder("ObjectIdModule")

.add(io.quarkus.mongodb.panache.jackson.ObjectIdSerializer.class.qge
tName (),

io.quarkus.mongodb.panache.jackson.ObjectIdDeserializer.class.getNa
me (),
ObjectId.class.getName())
.build();

The Jackson extension will then use the produced build item to register a module within Jackson
automatically.

If you need more customization capabilities than registering a module, you can produce a CDI bean
that implements io.quarkus.jackson.ObjectMapperCustomizer via an
AdditionalBeanBuildItem. More info about customizing Jackson can be found on the JSON
guide Configuring JSON support

2.11. Testing Extensions

Testing of Quarkus extensions should be done with the io.quarkus.test.QuarkusUnitTest
JUnit 5 extension. This extension allows for Arquillian-style tests that test specific functionalities. It is
not intended for testing user applications, as this should be done \via
io.quarkus.test.junit.QuarkusTest. The main difference is that QuarkusTest simply boots
the application once at the start of the run, while QuarkusUnitTest deploys a custom Quarkus
application for each test class.

These tests should be placed in the deployment module, if additional Quarkus modules are required
for testing their deployment modules should also be added as test scoped dependencies.

Note that QuarkusUnitTest isinthe quarkus—junit5-internal module.

An example test class may look like:

package io.quarkus.health.test;
import static org.junit.jupiter.api.Assertions.assertEquals;

import java.util.Arraylist;
import java.util.List;

import javax.enterprise.inject.Instance;
import javax.inject.Inject,;

import org.eclipse.microprofile.health.Health;

44

rest-json#configuring-json-support

import org.eclipse.microprofile.health.HealthCheck;

import org.eclipse.microprofile.health.HealthCheckResponse;
import io.quarkus.test.QuarkusUnitTest;

import org.jboss.shrinkwrap.api.ShrinkWrap;

import org.jboss.shrinkwrap.api.asset.EmptyAsset;

import org.jboss.shrinkwrap.api.spec.JavaArchive,

import org.junit.jupiter.api.Test;

import org.junit.jupiter.api.extension.RegisterExtension;

import io.restassured.RestAssured;
public class FailingUnitTest {

@RegisterExtension

®
static final QuarkusUnitTest config = new QuarkusUnitTest()
.setArchiveProducer(() ->
ShrinkWrap.create(JavaArchive.class)
@

.addClasses(FailingHealthCheck.class)

.addAsManifestResource(EmptyAsset.INSTANCE, "beans.xml")

)i
@Inject
®
@Health
Instance<HealthCheck> checks;
@Test
public void testHealthServlet() {
RestAssured.when().get("/health").then().statusCode(503);
@
}
@Test
public void testHealthBeans() {
List<HealthCheck> check = new ArraylList<>();
®

for (HealthCheck i : checks) {
check.add(i);
}
assertEquals(l, check.size());
assertEquals(HealthCheckResponse.State.DOWN,
check.get(0).call().getState());
}

M The QuarkusUnitTest extension must be used with a static field. If used with a non-static field,

45

the test application is not started.

@ This producer is used to build the application to be tested. It uses Shrinkwrap to create a
JavaArchive to test

® It is possible to inject beans from our test deployment directly into the test case
@ This method directly invokes the health check Servlet and verifies the response

® This method uses the injected health check bean to verify it is returning the expected result

If you want to test that an extension properly fails at build time, use the setExpectedException
method:

package io.quarkus.hibernate.orm;

import io.quarkus.deployment.configuration.ConfigurationError;
import io.quarkus.test.QuarkusUnitTest;

import org.jboss.shrinkwrap.api.ShrinkWrap;

import org.jboss.shrinkwrap.api.spec.JavaArchive;

import org.junit.jupiter.api.Assertions;

import org.junit.jupiter.api.Test;

import org.junit.jupiter.api.extension.RegisterExtension;

public class PersistenceAndQuarkusConfigTest {

@RegisterExtension
static QuarkusUnitTest runner = new QuarkusUnitTest()
.setExpectedException(ConfigurationError.class)
@
.setArchiveProducer(() ->
ShrinkWrap.create(JavaArchive.class)
.addAsManifestResource("META-INF/some-
persistence.xml", "persistence.xml")
.addAsResource("application.properties"));

@Test
public void testPersistenceAndConfigTest() {
// should not be called, deployment exception should happen
first:
// it's illegal to have Hibernate configuration properties
in both the
// application.properties and in the persistence.xml
Assertions.fail();

@ This tells JUnit that the Quarkus deployment should fail with a specific exception

46

2.12. Testing hot reload

It is also possible to write tests that verify an extension works correctly in development mode and can
correctly handle updates.

For most extensions this will just work 'out of the box', however it is still a good idea to have a smoke
test to verify that this functionality is working as expected. To test this we wuse
QuarkusDevModeTest:

public class ServletChangeTestCase {

@RegisterExtension
final static QuarkusDevModeTest test = new QuarkusDevModeTest ()
.setArchiveProducer(new Supplier<JavaArchive>() {
@Override
public JavaArchive get() {
return ShrinkWrap.create(JavaArchive.class)
@
.addClass(DevServlet.class)
.addAsManifestResource(new
StringAsset("Hello Resource"), "resources/file.txt");
}
});

@Test
public void testServletChange() throws InterruptedException {
RestAssured.when().get("/dev").then()
.statusCode(200)
.body(is("Hello World"));

test.modifySourceFile("DevServlet.java", new
Function<String, String>() { @

@0verride
public String apply(String s) {

return s.replace("Hello World", "Hello Quarkus");
}

});

RestAssured.when().get("/dev").then()
.statusCode (200)
.body(is("Hello Quarkus"));

}

@Test
public void testAddServlet() throws InterruptedException {
RestAssured.when().get("/new").then()
.statusCode (404);

47

test.addSourceFile(NewServlet.class);

RestAssured.when().get("/new").then()
.statusCode(200)
.body(is("A new Servlet"));
}

@Test
public void testResourceChange() throws InterruptedException {
RestAssured.when().get("/file.txt").then()
.statusCode (200)
.body(is("Hello Resource"));

test.modifyResourceFile("META-INF/resources/file.txt", new
Function<String, String>() { @

@Override
public String apply(String s) {
return "A new resource";

});

RestAssured.when().get("file.txt").then()
.statusCode(200)
.body(is("A new resource"));

}

@Test
public void testAddResource() throws InterruptedException {

RestAssured.when().get("/new.txt").then()
.statusCode (404);

test.addResourceFile("META-INF/resources/new.txt", "New
File"); ®

RestAssured.when().get("/new.txt").then()
.statusCode (200)
.body(is("New File"));

@ This starts the deployment, your test can modify it as part of the test suite. Quarkus will be
restarted between each test method so every method starts with a clean deployment.

@ This method allows you to modify the source of a class file. The old source is passed into the
function, and the updated source is returned.

® This method adds a new class file to the deployment. The source that is used will be the original

48

source that is part of the current project.
@ This method modifies a static resource

® This method adds a new static resource

2.13. Native Executable Support

There Quarkus provides a lot of build items that control aspects of the native executable build. This
allows for extensions to programmatically perform tasks such as registering classes for reflection or
adding static resources to the native executable. Some of these build items are listed below:

io.quarkus.deployment.builditem.nativeimage.NativeImageResourceBuildItem

Includes static resources into the native executable.

io.quarkus.deployment.builditem.nativeimage.NativeImageResourceDirectoryBu
ildItem

Includes directory’s static resources into the native executable.

io.quarkus.deployment.builditem.nativeimage.RuntimeReinitializedClassBuild
Item

A class that will be reinitialized at runtime by Substrate. This will result in the static initializer
running twice.

io.quarkus.deployment.builditem.nativeimage.NativeImageSystemPropertyBuild
Item

A system property that will be set at native executable build time.

io.quarkus.deployment.builditem.nativeimage.NativeImageResourceBundleBuild
Item

Includes a resource bundle in the native executable.

io.quarkus.deployment.builditem.nativeimage.ReflectiveClassBuildItem

Regqisters a class for reflection in Substrate. Constructors are always registered, while methods and
fields are optional.

io.quarkus.deployment.builditem.nativeimage.RuntimeInitializedClassBuildIt
em

A class that will be initialized at runtime rather than build time. This will cause the build to fail if the
class is initialized as part of the native executable build process, so care must be taken.

io.quarkus.deployment.builditem.nativeimage.NativeImageConfigBuildItem

A convenience feature that allows you to control most of the above features from a single build
item.

io.quarkus.deployment.builditem.NativeImageEnableAllCharsetsBuildItem

Indicates that all charsets should be enabled in native image.

49

io.quarkus.deployment.builditem.ExtensionSslNativeSupportBuildItem

A convenient way to tell Quarkus that the extension requires SSL and it should be enabled during
native image build. When using this feature, remember to add your extension to the list of
extensions that offer SSL support automatically on the native and ssl quide.

2.14. IDE support tips

2.14.1. Writing Quarkus extensions in Eclipse

The only particular aspect of writing Quarkus extensions in Eclipse is that APT (Annotation Processing
Tool) is required as part of extension builds, which means you need to:

* Installm2e-apt from https://marketplace.eclipse.org/content/m2e-apt

* Define this property in your pom.xml:
<m2e.apt.activation>jdt_apt</m2e.apt.activation>, although if you rely on
io.quarkus:quarkus-build-parent you will get it for free.

* If you have the io.quarkus:quarkus—-extension-processor project open at the same time
in your IDE (for example, if you have the Quarkus sources checked out and open in your IDE) you
will need to close that project. Otherwise, Eclipse will not invoke the APT plugin that it contains.

* If you just closed the extension processor project, be sure to do Maven > Update Project on
the other projects in order for Eclipse to pick up the extension processor from the Maven
repository.

2.15. Troubleshooting / Debugging Tips

2.15.1. Dump the Generated Classes to the File System

During the augmentation phase Quarkus extensions generate new and modify existing classes for
various purposes. Sometimes you need to inspect the generated bytecode to debug or understand an
issue. There are three system properties that allow you to dump the classes to the filesystem:

* quarkus.debug.generated-classes-dir - to dump the generated classes, such as bean
metadata

* quarkus.debug.transformed-classes-dir - to dump the transformed classes, e.q.
Panache entities

* quarkus.debug.generated-sources—-dir - to dump the ZIG files; ZIG file is a textual
representation of the generated code that is referenced in the stack traces

These properties are especially useful in the development mode or when running the tests where the
generated/transformed classes are only held in memory in a class loader.

For example, you can specify the quarkus.debug.generated-classes—-dir system property to
have these classes written out to disk for inspection in the development mode:

50

https://github.com/quarkusio/quarkus/blob/master/docs/src/main/asciidoc/native-and-ssl.adoc
https://marketplace.eclipse.org/content/m2e-apt
https://marketplace.eclipse.org/content/m2e-apt
https://marketplace.eclipse.org/content/m2e-apt
https://marketplace.eclipse.org/content/m2e-apt
https://marketplace.eclipse.org/content/m2e-apt

./mvnw quarkus:dev -Dquarkus.debug.generated-classes—dir=dump
-classes

The property value could be either an absolute path, such as /home/foo/dump on
o a Linux machine, or a path relative to the user working directory, i.e. dump

corresponds to the {user.dir}/target/dump in the dev mode and

{user.dir}/dump when running the tests.

You should see a line in the log for each class written to the directory:

INFO [io.qua.run.boo.StartupActionImpl] (main) Wrote
/path/to/my/app/target/dump-
classes/io/quarkus/arc/impl/ActivateRequestContextInterceptor_Bean.
class

The property is also honored when running tests:

./mvnw clean test -Dquarkus.debug.generated-classes—-dir=target/dump
-generated-classes

Analogously, you can use the quarkus.debug.transformed-classes-dir and
quarkus.debug.transformed-classes—dir properties to dump the relevant output.

2.15.2. Multi-module Maven Projects and the Development Mode

It’s not uncommon to develop an extension in a multi-module Maven project that also contains an
"example" module. However, if you want to run the example in the development mode then the
-DnoDeps system property must be used in order to exclude the local project dependencies.
Otherwise, Quarkus attempts to monitor the extension classes and this may result in weird class
loading issues.

./mvnw compile quarkus:dev -DnoDeps

2.15.3. Indexer does not include your external dependency

Remember to add IndexDependencyBuildItem artifacts to your @BuildStep.

2.16. Sample Test Extension

We have an extension that is used to test for regressions in the extension processing. It is located in
https://qgithub.com/quarkusio/quarkus/tree/master/core/test-extension directory. In this section we
touch on some of the tasks an extension author will typically need to perform using the test-extension
code to illustrate how the task could be done.

51

https://github.com/quarkusio/quarkus/tree/master/core/test-extension
https://github.com/quarkusio/quarkus/tree/master/core/test-extension
https://github.com/quarkusio/quarkus/tree/master/core/test-extension
https://github.com/quarkusio/quarkus/tree/master/core/test-extension
https://github.com/quarkusio/quarkus/tree/master/core/test-extension
https://github.com/quarkusio/quarkus/tree/master/core/test-extension
https://github.com/quarkusio/quarkus/tree/master/core/test-extension
https://github.com/quarkusio/quarkus/tree/master/core/test-extension
https://github.com/quarkusio/quarkus/tree/master/core/test-extension
https://github.com/quarkusio/quarkus/tree/master/core/test-extension
https://github.com/quarkusio/quarkus/tree/master/core/test-extension
https://github.com/quarkusio/quarkus/tree/master/core/test-extension
https://github.com/quarkusio/quarkus/tree/master/core/test-extension

2.16.1. Features and Capabilities

2.16.1.1. Features

A feature represents a functionality provided by an extension. The name of the feature gets displayed
in the log during application bootstrap.

Example Startup Lines

2019-03-22 14:02:37,884 INFO [io.quarkus] (main) Quarkus 999-
SNAPSHOT started in 0.061s.

2019-03-22 14:02:37,884 INFO [io.quarkus] (main) Installed
features: [cdi, test-extension] @

@ A list of features installed in the runtime image
A feature can be registered in a Build Step Processors method that produces a FeatureBuildItem:

TestProcessor#feature()

@BuildStep
FeatureBuildItem feature() {
return new FeatureBuildItem("test-extension");

The name of the feature should only contain lowercase characters, words are separated by dash; e.qg.
security-jpa. An extension should provide at most one feature and the name must be unique. If
multiple extensions register a feature of the same name the build fails.

The feature name should also map to a label in the extension’s
devtools/common/src/main/filtered/extensions. json entry so that the feature name
displayed by the startup line matches a label that one can used to select the extension when creating
a project using the Quarkus maven plugin as shown in this example taken from the Writing JSON REST
Services quide where the resteasy—-jsonb feature is referenced:

mvn io.quarkus:quarkus-maven-plugin:1.7.4.Final:create \
-DprojectGroupId=org.acme \
-DprojectArtifactId=rest-json \
-DclassName="org.acme.rest.json.FruitResource" \
-Dpath="/fruits" \
-Dextensions="resteasy-jsonb"

cd rest-json

2.16.1.2. Capabilities

A capability represents a technical capability that can be queried by other extensions. An extension
may provide multiple capabilities and multiple extensions can provide the same capability. By default,
capabilities are not displayed to users.

52

rest-json
rest-json

Capabilities can be registered in a Build Step Processors method that produces a
CapabilityBuildItem:

TestProcessor#capability()

@BuildStep
void capabilities(BuildProducer<CapabilityBuildItem>
capabilityProducer) {
capabilityProducer.produce(new
CapabilityBuildItem("org.acme.test-transactions"));
capabilityProducer.produce(new
CapabilityBuildItem("org.acme.test-metrics"));

}

Extensions can consume registered capabilities using the Capabilities build item:

TestProcessor#doSomeCoolStuff()

@BuildStep
void doSomeCoolStuff(Capabilities capabilities) {
if (capabilities.isPresent(Capability.TRANSACTIONS)) {
// do something only if JTA transactions are in...

Capabilities should follow the naming conventions of Java packages; e.q.
io.quarkus.security. jpa. Capabilities provided by core extensions should be listed in the
io.quarkus.deployment.Capability enum and their name should always start with the
io.quarkus prefix.

2.16.2. Bean Defining Annotations

The CDI layer processes CDI beans that are either explicitly registered or that it discovers based on
bean defining annotations as defined in 2.5.1. Bean defining annotations. You can expand this set of
annotations to include annotations your extension processes using a
BeanDefiningAnnotationBuildItem as shown in this
TestProcessor#registerBeanDefinningAnnotations example:

53

http://docs.jboss.org/cdi/spec/2.0/cdi-spec.html#bean_defining_annotations

Register a Bean Definining Annotation

import javax.enterprise.context.ApplicationScoped;
import org.jboss.jandex.DotName;
import io.quarkus.extest.runtime.TestAnnotation;

public final class TestProcessor {
static DotName TEST_ANNOTATION =
DotName.createSimple(TestAnnotation.class.getName());
static DotName TEST_ANNOTATION_SCOPE =
DotName.createSimple(ApplicationScoped.class.getName());

@BuildStep
BeanDefiningAnnotationBuildItem registerX() {

@
return new BeanDefiningAnnotationBuildItem(TEST_ANNOTATION,
TEST_ANNOTATION_SCOPE);

}

}

VAL

* Marker annotation for test configuration target beans
*/

@Target ({ TYPE })

@Retention(RUNTIME)

@Documented

@Inherited

public @interface TestAnnotation {

}

VAL
* A sample bean
*/
@TestAnnotation @
public class ConfiguredBean implements IConfigConsumer {

@ Register the annotation class and CDI default scope using the Jandex DotName class.

@ ConfiguredBean will be processed by the CDI layer the same as a bean annotated with the CDI
standard @ApplicationScoped.

2.16.3. Parsing Config to Objects

One of the main things an extension is likely to do is completely separate the configuration phase of
behavior from the runtime phase. Frameworks often do parsing/load of configuration on startup that

54

can be done during build time to both reduce the runtime dependencies on frameworks like xml
parsers as well as reducing the startup time the parsing incurs.

An example of parsing a XML config file using JAXB is shown in the
TestProcessor#parseServiceXmlConfig method: .Parsing an XML Configuration into Runtime
XmlConfig Instance

@BuildStep
@Record (STATIC_INIT)
RuntimeServiceBuildItem parseServiceXmlConfig(TestRecorder
recorder) throws JAXBException {
RuntimeServiceBuildItem serviceBuildItem = null;
JAXBContext context =
JAXBContext.newInstance(XmlConfig.class);
Unmarshaller unmarshaller = context.createUnmarshaller();
InputStream is =
getClass().getResourceAsStream("/config.xml"); @
if (is != null) {
log.info("Have XmlConfig, loading");
XmlConfig config = (XmlConfig)
unmarshaller.unmarshal(is); @

}

return serviceBuildItem;

@ Look for a config.xml classpath resource

@ If found, parse using JAXB context for Xm1Config.class

If there was no /config.xml resource available in the build environment, then a null
o RuntimeServiceBuildItem would be returned and no subsequent logic based
onaRuntimeServiceBuildItem being produced would execute.

Typically one is loading a configuration to create some runtime component/service as
parseServiceXmlConfig is doing. We will come back to the rest of the behavior in
parseServiceXmlConfigin the following Manage Non-CDI Service section.

If for some reason you need to parse the config and use it in other build steps in an extension
processor, you would need to create an XmlConfigBuildItem to pass the parsed XmlConfig
instance around.

If you look at the XmIConfig code you will see that it does carry around the JAXB
(r) annotations. If you don’t want these in the runtime image, you could clone the
- XmlConfig instance into some POJO object graph and then replace XmlConfig with
the POJO class. We will do this in Replacing Classes in the Native Image.

55

2.16.4. Scanning Deployments Using Jandex

If your extension defines annotations or interfaces that mark beans needing to be processed, you can
locate these beans using the Jandex API, a Java annotation indexer and offline reflection library. The
following TestProcessor#scanForBeans method shows how to find the beans annotated with our
@TestAnnotation that alsoimplement the IConfigConsumer interface:

Example Jandex Usage

static DotName TEST_ANNOTATION =
DotName.createSimple(TestAnnotation.class.getName());

@BuildStep
@Record (STATIC_INIT)
void scanForBeans(TestRecorder recorder,
BeanArchiveIndexBuildItem beanArchiveIndex, @
BuildProducer<TestBeanBuildItem> testBeanProducer) {
IndexView indexView = beanArchiveIndex.getIndex(); @
Collection<AnnotationInstance> testBeans =
indexView.getAnnotations (TEST_ANNOTATION); ®
for (AnnotationInstance ann : testBeans) {
ClassInfo beanClassInfo = ann.target().asClass();
try {
boolean isConfigConsumer =
beanClassInfo.interfaceNames()

.stream()

.anyMatch(dotName ->
dotName.equals(DotName.createSimple(IConfigConsumer.class.getName()
))); @

if (isConfigConsumer) {

Class<IConfigConsumer> beanClass =
(Class<IConfigConsumer>)
Class.forName(beanClassInfo.name().toString(), false,
Thread.currentThread().getContextClassLoader());

testBeanProducer.produce(new
TestBeanBuildItem(beanClass)); ®

log.infof("Configured bean: %s", beanClass);

}
} catch (ClassNotFoundException e) {
log.warn("Failed to load bean class", e);

@ Depend on a BeanArchiveIndexBuildItem to have the build step be run after the deployment
has been indexed.

@ Retrieve the index.

56

® Find all beans annotated with @TestAnnotation.
@ Determine which of these beans also has the IConfigConsumer interface.

® Save the bean class in a TestBeanBuildItem for use in a latter RUNTIME_INIT build step that
will interact with the bean instances.

2.16.5. Interacting With Extension Beans

You can use the io.quarkus.arc.runtime.BeanContainer interface to interact with your
extension beans. The following configureBeans methods illustrate interacting with the beans
scanned for in the previous section:

Using CDI BeanContainer Interface

// TestProcessor#configureBeans
@BuildStep
@Record (RUNTIME_INIT)
void configureBeans(TestRecorder recorder,
List<TestBeanBuildItem> testBeans, @
BeanContainerBuildItem beanContainer, @
TestRunTimeConfig runTimeConfig) {

for (TestBeanBuildItem testBeanBuildItem : testBeans) {
Class<IConfigConsumer> beanClass =
testBeanBuildItem.getConfigConsumer();
recorder.configureBeans(beanContainer.getValue(),
beanClass, buildAndRunTimeConfig, runTimeConfig); ®
}
}

// TestRecorder#configureBeans
public void configureBeans(BeanContainer beanContainer,
Class<IConfigConsumer> beanClass,
TestBuildAndRunTimeConfig buildTimeConfig,
TestRunTimeConfig runTimeConfig) {
log.info("Begin BeanContainerListener callback\n");
IConfigConsumer instance =
beanContainer.instance(beanClass); @
instance.loadConfig(buildTimeConfig, runTimeConfig); ®
log.infof("configureBeans, instance=%s\n", instance);

@ Consume the “TestBeanBuildltem's produced from the scanning build step.

@ Consume the BeanContainerBuildItem to order this build step to run after the CDI bean
container has been created.

® Call the runtime recorder to record the bean interactions.

@ Runtime recorder retrieves the bean using its type.

57

® Runtime recorder invokes the IConfigConsumer#loadConfig(..) method passing in the
configuration objects with runtime information.

2.16.6. Manage Non-CDI Service

A common purpose for an extension is to integrate a non-CDI aware service into the CDI based
Quarkus runtime. Step 1 of this task is to load any configuration needed in a STATIC_INIT build step as
we did in Parsing Config to Objects. Now we need to create an instance of the service using the
configuration. Let’s return to the TestProcessor#parseServiceXmlConfig method to see how
this can be done.

58

Creating a Non-CDI Service

// TestProcessor#parseServiceXmlConfig
@BuildStep
@Record (STATIC_INIT)
RuntimeServiceBuildItem parseServiceXmlConfig(TestRecorder
recorder) throws JAXBException {
RuntimeServiceBuildItem serviceBuildItem = null;
JAXBContext context =
JAXBContext.newInstance(XmlConfig.class);
Unmarshaller unmarshaller = context.createUnmarshaller();
InputStream is =
getClass().getResourceAsStream("/config.xml");
if (is != null) {
log.info("Have XmlConfig, loading");
XmlConfig config = (XmlConfig)
unmarshaller.unmarshal(is);
log.info("Loaded XmlConfig, creating service");
RuntimeValue<RuntimeXmlConfigService> service =
recorder.initRuntimeService(config); @
serviceBuildItem = new
RuntimeServiceBuildItem(service); ®
}
return serviceBuildItem;

}

// TestRecorder#initRuntimeService
public RuntimeValue<RuntimeXmlConfigService>
initRuntimeService(XmlConfig config) {
RuntimeXmlConfigService service = new
RuntimeXmlConfigService(config); @
return new RuntimeValue<>(service);

}

// RuntimeServiceBuildItem

final public class RuntimeServiceBuildItem extends
SimpleBuildItem {

private RuntimeValue<RuntimeXmlConfigService> service;

public
RuntimeServiceBuildItem(RuntimeValue<RuntimeXmlConfigService>
service) {
this.service = service;

}

public RuntimeValue<RuntimeXmlConfigService> getService() {
return service;

@ Call into the runtime recorder to record the creation of the service.

@ Using the parsed Xm1Config instance, create an instance of RuntimeXmlConfigService and
wrap it in @ RuntimeValue. Use a RuntimeValue wrapper for non-interface objects that are
non-proxiable.

® Wrap the return service value in a RuntimeServiceBuildItem for use in a RUNTIME_INIT build
step that will start the service.

2.16.6.1. Starting a Service

Now that you have recorded the creation of a service during the build phase, you need to record how
to start the service at runtime during booting. You do this with a RUNTIME_INIT build step as shown in
the TestProcessor#startRuntimeService method.

Starting/Stopping a Non-CDI Service

// TestProcessor#startRuntimeService
@BuildStep
@Record (RUNTIME_INIT)
ServiceStartBuildItem startRuntimeService(TestRecorder
recorder, ShutdownContextBuildItem shutdownContextBuildItem , @
RuntimeServiceBuildItem serviceBuildItem) throws
I0Exception { @
if (serviceBuildItem != null) {
log.info("Registering service start");
recorder.startRuntimeService(shutdownContextBuildItem,
serviceBuildItem.getService()); ®
} else {
log.info("No RuntimeServiceBuildItem seen, check
config.xml");
}
return new
ServiceStartBuildItem("RuntimeXmlConfigService"); @

}

// TestRecorder#startRuntimeService
public void startRuntimeService(ShutdownContext
shutdownContext, RuntimeValue<RuntimeXmlConfigService>
runtimeValue)
throws IOException ({

RuntimeXmlConfigService service = runtimeValue.getValue();

service.startService(); ®

shutdownContext.addShutdownTask(service: :stopService); ®

@ We consume a ShutdownContextBuildltem to register the service shutdown.
@ We consume the previously initialized service captured in RuntimeServiceBuildItem.

® Call the runtime recorder to record the service start invocation.

60

@ Produce a ServiceStartBuildItem to indicate the startup of a service. See Startup and
Shutdown Events for details.

® Runtime recorder retrieves the service instance reference and calls its startService method.

® Runtime recorder registers an invocation of the service instance stopService method with the
Quarkus ShutdownContext.

The code for the RuntimeXmlConfigService can be viewed here: RuntimeXmlConfigService.java

The testcase for validating that the RuntimeXmlConfigService has started can be found in the
testRuntimeXmlConfigService testof ConfiguredBeanTest and NativeImagelIT.

2.16.7. Startup and Shutdown Events

The Quarkus container supports startup and shutdown lifecycle events to notify components of the
container startup and shutdown. There are CDI events fired that components can observe are
illustrated in this example:

Observing Container Startup

import io.quarkus.runtime.ShutdownEvent,
import io.quarkus.runtime.StartupEvent;

puclic class SomeBean {
VAL
* Called when the runtime has started
* @param event
*/
void onStart(@0bserves StartupEvent event) { @
System.out.printf("onStart, event=%s%n", event);

}

VAL
* Called when the runtime is shutting down
* @param event
*/
void onStop(@0Observes ShutdownEvent event) { @
System.out.printf("onStop, event=%s%n", event);

@ Observe a StartupEvent to be notified the runtime has started.

@ Observe a 'ShutdownEvent to be notified when the runtime is going to shutdown.

What is the relevance of startup and shutdown events for extension authors? We have already seen
the use of a ShutdownContext to register a callback to perform shutdown tasks in the Starting a
Service section. These shutdown tasks would be called after a ShutdownEvent had been sent.

A StartupEvent is fired after all

61

https://github.com/quarkusio/quarkus/blob/master/core/test-extension/runtime/src/main/java/io/quarkus/extest/runtime/RuntimeXmlConfigService.java

io.quarkus.deployment.builditem.ServiceStartBuildItem producers have been
consumed. The implication of this is that if an extension has services that application components
would expect to have been started when they observe a StartupEvent, the build steps that invoke
the runtime code to start those services needs to produce a ServiceStartBuildItem to ensure
that the runtime code is run before the StartupEvent is sent. Recall that we saw the production of a
ServiceStartBuildItemin the previous section, and it is repeated here for clarity:

Example of Producing a ServiceStartBuildltem

// TestProcessor#startRuntimeService
@BuildStep
@Record (RUNTIME_INIT)
ServiceStartBuildItem startRuntimeService(TestRecorder
recorder, ShutdownContextBuildItem shutdownContextBuildItem,
RuntimeServiceBuildItem serviceBuildItem) throws
IOException {

return new
ServiceStartBuildItem("RuntimeXmlConfigService"); @
}

@ Produce a ServiceStartBuildItem to indicate that this is a service starting step that needs to
run before the StartupEvent is sent.

2.16.8. Register Resources for Use in Native Image

Not all configuration or resources can be consumed at build time. If you have classpath resources that
the runtime needs to access, you need to inform the build phase that these resources need to be
copied into the native image. This is done by producing one or more
NativeImageResourceBuildItem or NativeImageResourceBundleBuildItem in the case
of resource bundles. Examples of this are shown in this sample registerNativeImageResources
build step:

62

Registering Resources and ResourceBundles

public final class MyExtProcessor {
@Inject
BuildProducer<NativeImageResourceBuildItem> resource;
@Inject
BuildProducer<NativeImageResourceBundleBuildItem>
resourceBundle;

@BuildStep
void registerNativeImageResources() {
resource.produce (new
NativeImageResourceBuildItem("/security/runtime.keys")); @

resource.produce(new NativeImageResourceBuildItem(
"META-INF/my-descriptor.xml")); @

resourceBundle.produce(new
NativeImageResourceBuildItem("javax.xml.bind.Messages")); ®

}

@ Indicate that the /security/runtime.keys classpath resource should be copied into native image.
@ Indicate that the META-INF/my-descriptor.xml resource should be copied into native image

® Indicate that the "javax.xml.bind.Messages" resource bundle should be copied into native image.

2.16.9. Service files

If you are using META-INF/services files you need to register the files as resources so that your
native image can find them, but you also need to register each listed class for reflection so they can be
instantiated or inspected at run-time:

63

public final class MyExtProcessor {

@BuildStep
void
registerNativeImageResources(BuildProducer<ServiceProviderBuildItem
> services) {
String service = "META-INF/services/" +
io.quarkus.SomeService.class.getName();

// find out all the implementation classes listed in the
service files
Set<String> implementations =

ServiceUtil.classNamesNamedIn(Thread.currentThread().getContextClas
sLoader (),
service);

// register every listed implementation class so they can
be instantiated
// in native-image at run-time
services.produce(
new
ServiceProviderBuildItem(io.quarkus.SomeService.class.getName(),

implementations.toArray(new String[0])));

}

ServiceProviderBuildItem takes a list of service implementation classes as

A parameters: if you are not reading them from the service file, make sure that they
correspond to the service file contents because the service file will still be read and
used at run-time. This is not a substitute for writing a service file.

This only registers the implementation classes for instantiation via reflection (you
o will not be able to inspect its fields and methods). If you need to do that, you can do
it this way:

64

public final class MyExtProcessor {

@BuildStep

void
registerNativeImageResources(BuildProducer<NativeImageResourceBuild
Item> resource,

BuildProducer<ReflectiveClassBuildItem> reflectionClasses) {
String service = "META-INF/services/" +
io.quarkus.SomeService.class.getName();

// register the service file so it is visible in native-
image

resource.produce(new
NativeImageResourceBuildItem(service));

// register every listed implementation class so they can
be inspected/instantiated

// in native-image at run-time

Set<String> implementations =

ServiceUtil.classNamesNamedIn(Thread.currentThread().getContextClas
sLoader (),
service);
reflectionClasses.produce(
new ReflectiveClassBuildItem(true, true,
implementations.toArray(new String[0])));

}

While this is the easiest way to get your services running natively, it’s less efficient than scanning the
implementation classes at build time and generating code that registers them at static-init time
instead of relying on reflection.

You can achieve that by adapting the previous build step to use a static-init recorder instead of
registering classes for reflection:

public final class MyExtProcessor {

@BuildStep
@Record(ExecutionTime.STATIC_INIT)
void registerNativeImageResources(RecorderContext
recorderContext,
SomeServiceRecorder recorder)

String service = "META-INF/services/" +
io.quarkus.SomeService.class.getName();

65

// read the implementation classes

Collection<Class<? extends io.quarkus.SomeService>>
implementationClasses = new LinkedHashSet<>();

Set<String> implementations =
ServiceUtil.classNamesNamedIn(Thread.currentThread().getContextClas
sLoader (),

service);
for(String implementation : implementations) {
implementationClasses.add((Class<? extends
io.quarkus.SomeService>)
recorderContext.classProxy(implementation));

}

// produce a static-initializer with those classes
recorder.configure(implementationClasses);

}

@Recorder
public class SomeServiceRecorder {

public void confiqgure(List<Class<? extends
io.quarkus.SomeService>> implementations) {
// configure our service statically
SomeServiceProvider serviceProvider =
SomeServiceProvider.instance();
SomeServiceBuilder builder =
serviceProvider.getSomeServiceBuilder();

List<io.quarkus.SomeService> services = new
ArraylList<>(implementations.size());
// instantiate the service implementations
for (Class<? extends io.quarkus.SomeService>
implementationClass : implementations) ({
try {

services.add(implementationClass.getConstructor().newInstance());
} catch (Exception e) {
throw new IllegalArgumentException("Unable to
instantiate service " + implementationClass, e);
}
}

// build our service

builder.withSomeServices(implementations.toArray(new
io.quarkus.SomeService[0]));

ServiceManager serviceManager = builder.build();

66

// register it
serviceProvider.registerServiceManager(serviceManager,
Thread.currentThread().getContextClassLoader());

}

2.16.10. Object Substitution

Objects created during the build phase that are passed into the runtime need to have a default
constructor in order for them to be created and configured at startup of the runtime from the build
time state. If an object does not have a default constructor you will see an error similar to the following
during generation of the augmented artifacts:

DSAPublicKey Serialization Error

[error]: Build step
io.quarkus.deployment.steps.MainClassBuildStep#build threw an
exception: java.lang.RuntimeException: Unable to serialize objects
of type class sun.security.provider.DSAPublicKeyImpl to bytecode as
it has no default constructor

at io.quarkus.builder.Execution.run(Execution.java:123)

at
io.quarkus.builder.BuildExecutionBuilder.execute(BuildExecutionBuil
der.java:136)

at
io.quarkus.deployment.QuarkusAugmentor.run(QuarkusAugmentor.java:1l1
0)

at io.quarkus.runner.RuntimeRunner.run(RuntimeRunner.java:99)

36 more

There is a io.quarkus.runtime.ObjectSubstitution interface that can be implemented to
tell Quarkus how to handle such classes. An example implementation for the DSAPublicKey is shown
here:

67

DSAPublicKeyObjectSubstitution Example

package io.quarkus.extest.runtime.subst;

import java.security.KeyFactory;

import java.security.NoSuchAlgorithmException;
import java.security.interfaces.DSAPublicKey;
import java.security.spec.InvalidKeySpecException;
import java.security.spec.X509EncodedKeySpec;
import java.util.logging.Logger;

import io.quarkus.runtime.ObjectSubstitution;

public class DSAPublicKeyObjectSubstitution implements
ObjectSubstitution<DSAPublicKey, KeyProxy> ({
private static final Logger log =
Logger.getLogger("DSAPublicKeyObjectSubstitution");
@Override
public KeyProxy serialize(DSAPublicKey obj) { @
log.info("DSAPublicKeyObjectSubstitution.serialize");
byte[] encoded = obj.getEncoded();
KeyProxy proxy = new KeyProxy();
proxy.setContent(encoded) ;
return proxy;

}

@Override
public DSAPublicKey deserialize(KeyProxy obj) { @
log.info("DSAPublicKeyObjectSubstitution.deserialize");
byte[] encoded = obj.getContent();
X509EncodedKeySpec publicKeySpec = new
X509EncodedKeySpec (encoded) ;
DSAPublicKey dsaPublicKey = null;
try {
KeyFactory kf = KeyFactory.getInstance("DSA");
dsaPublicKey = (DSAPublicKey)
kf.generatePublic(publicKeySpec);

} catch (NoSuchAlgorithmException | InvalidKeySpecException

e) {
e.printStackTrace();

}

return dsaPublicKey;

@ The serialize method takes the object without a default constructor and creates a KeyProxy that
contains the information necessary to recreate the DSAPublicKey.

68

@ The deserialize method uses the KeyProxy to recreate the DSAPublicKey from its encoded
form using the key factory.

An extension registers this substitution by producing an ObjectSubstitutionBuildItem as
shown in this TestProcessor#loadDSAPublicKey fragment:

Registering an Object Subtitution

@BuildStep
@Record (STATIC_INIT)
PublicKeyBuildItem loadDSAPublicKey(TestRecorder recorder,
BuildProducer<ObjectSubstitutionBuildItem>
substitutions) throws IOException, GeneralSecurityException {

// Register how to serialize DSAPublicKey

ObjectSubstitutionBuildItem.Holder<DSAPublicKey, KeyProxy>
holder = new ObjectSubstitutionBuildItem.Holder(

DSAPublicKey.class, KeyProxy.class,

DSAPublicKeyObjectSubstitution.class);

ObjectSubstitutionBuildItem keysub = new
ObjectSubstitutionBuildItem(holder);

substitutions.produce(keysub);

log.info("loadDSAPublicKey run");
return new PublicKeyBuildItem(publicKey);

2.16.11. Replacing Classes in the Native Image

The Graal SDK supports substitutions of classes in the native image. An example of how one could
replace the Xm1Config/XmlData classes with versions that have no JAXB annotation dependencies
is shown in these example classes:

Substitution of XmIConfig/XmlIData Classes Example

package io.quarkus.extest.runtime.graal;

import java.util.Date;

import com.oracle.svm.core.annotate.Substitute;
import com.oracle.svm.core.annotate.TargetClass;
import io.quarkus.extest.runtime.config.XmlData;

@TargetClass(XmlConfig.class)
@Substitute
public final class Target_XmlConfig {

@Substitute

private String address;
@Substitute

private int port;

69

70

@Substitute
private ArraylList<XData> datalist;

@Substitute
public String getAddress() {
return address;

}

@Substitute
public int getPort() {
return port;

}

@Substitute
public ArraylList<XData> getDatalList() {
return datalList;

}

@Substitute
@Override
public String toString() {
return "Target_XmlConfig{" +
"address='" + address + '\''
", port=" + port +
", dataList=" + datalList +

I}I;
}

@TargetClass(XmlData.class)
@Substitute
public final class Target_XmlData ({

@Substitute

private String name;
@Substitute

private String model;
@Substitute

private Date date;

@Substitute
public String getName() {
return name;

}

@Substitute
public String getModel() {
return model;

}

+

@Substitute
public Date getDate() {
return date;

}

@Substitute

@0verride

public String toString() {
return "Target_XmlData{" +

Ilname=l n + name + I\l 1 +

", model="" + model + '\'' +
", date="'" + date + "\'' +
I}l ;

3. Configuration reference documentation

The configuration is an important part of each extension and therefore needs to be properly
documented. Each configuration property should have a proper Javadoc comment.

While it is handy to have the documentation available when coding, this configuration documentation
must also be available in the extension guides. The Quarkus build automatically generates the
configuration documentation for you based on the Javadoc comments but you need to explicitly
include it in your quide.

In this section, we will explain everything you need to know about the configuration reference
documentation.

3.1. Writing the documentation

For each configuration property, you need to write some Javadoc explaining its purpose.

(r') Always make the first sentence meaningful and self-contained as it is included in the
- summary table.

You can either use standard Javadoc comments or Asciidoc directly as a Javadoc comment.

We assume you are familiar with writing Javadoc comments so let’s focus on our Asciidoc support.
While standard Javadoc comments are perfectly fine for simple documentation (recommended even),
if you want to include tips, source code extracts, lists... Asciidoc comes in handy.

Here is a typical configuration property commented with Asciidoc:

i

VAL

* Class name of the Hibernate ORM dialect. The complete list of
bundled dialects is available in the

*
https://docs.jboss.org/hibernate/stable/orm/javadocs/org/hibernate/
dialect/package-summary.html[Hibernate ORM JavaDoc].

*

*

[NOTE]
¥ ====
* Not all the dialects are supported in GraalVM native
executables: we currently provide driver extensions for PostgreSQL,
* MariaDB, Microsoft SQL Server and H2.
¥ ====
*
* @asciidoclet
*/
@ConfigItem
public Optional<String> dialect;

This is the simple case: you just have to write Asciidoc and mark the comment with the
@asciidoclet tag. This tag has two purposes: it is used as a marker for our generation tool but it is
also used by the javadoc process for proper Javadoc generation.

Now let’s consider a more complicated example:

72

// @formatter:off
/%%
* Name of the file containing the SQL statements to execute when
Hibernate ORM starts.
* Its default value differs depending on the Quarkus launch mode:
*
* * In dev and test modes, it defaults to “import.sql’.
* Simply add an “import.sql® file in the root of your resources
directory
* and it will be picked up without having to set this property.
* Pass "no-file® to force Hibernate ORM to ignore the SQL import
file.
* % In production mode, it defaults to “no-file’.
* It means Hibernate ORM won't try to execute any SQL import
file by default.
* Pass an explicit value to force Hibernate ORM to execute the
SQL import file.
*
* If you need different SQL statements between dev mode, test
("@QuarkusTest) and in production, use Quarkus
* https://quarkus.io/quides/config#configuration-
profiles[confiqguration profiles facility].
*
[source,property]
.application.properties
%dev.quarkus.hibernate-orm.sql-load-script = import-dev.sql
%test.quarkus.hibernate-orm.sql-load-script import-test.sql
%prod.quarkus.hibernate-orm.sql-load-script no-file

Quarkus supports “.sql® file with SQL statements or comments
read over multiple lines.
Each SQL statement must be terminated by a semicolon.

*
*
*
*
*
*
*
*
* [NOTE]
*
*
sp
*
*
*
*

@asciidoclet
*/
// @formatter:on
@ConfigItem
public Optional<String> sqllLoadScript;

A few comments on this one:

* Every time you will need the indentation to be respected in the Javadoc comment (think list items

73

spread on multiple lines or indented source code), you will need to disable temporarily the
automatic Eclipse formatter (this, even if you don’t use Eclipse as the formatter is included in our
build). To do so,use the // @formatter:o0ff/// @formatter:on markers. Note the fact that
they are separate comments and there is a space after the // marker. This is required.

* As you can see, you can use the full power of Asciidoctor (except for the limitation below)

ﬁ You cannot use open blocks (-=) in your Asciidoctor documentation. All the other
types of blocks (source, admonitions...) are supported.

By default, the doc generator will use the hyphenated field name as the key of a
java.util.Map configuration item. To override this default and have a user
friendly key (independent of implementation details), you may use the
io.quarkus.runtime.annotations.ConfigDocMapKey annotation. See the
following example,

@ConfigRoot
public class SomeConfig {
@, /e
- * Namespace configuration.
*/
@ConfigItem(name = ConfigItem.PARENT)
@ConfigDocMapKey("cache-name") @D
Map<String, CaffeineNamespaceConfig> namespace;

1. This will generate a configuration map key named quarkus.some."cache-
name" instead of quarkus.some. "namespace".

3.2. Writing section documentation

If you wish to generate configuration section of a given @ConfigGroup, Quarkus has got you covered
with the @ConfigDocSection annotation. See the code example below:

VAL

* Config group related confiquration.
* Amazing introduction here

*/

@ConfigItem

@ConfigDocSection @

public ConfigGroupConfig configGroup;

1. This will add a section documentation for the configGroup config item in the generated
documentation. Section’s title and introduction will be derived from the javadoc of the
configuration item. The first sentence from the javadoc is considered as the section title and the
remaining sentences used as section introduction. You can also use the @asciidoclet tag as

74

shown above.

3.3. Generating the documentation

Generating the documentation is easy:

* Running ./mvnw clean install -DskipTests -DskipITs will do.

* You can either do it globally or in a specific extension directory (e.g. extensions/mailer).

The documentation is generated in the global target/asciidoc/generated/config/ located at
the root of the project.

3.4. Including the documentation in the extension guide

Now that you have generated the configuration reference documentation for your extension, you need
toinclude it in your guide (and review it).

This is simple, include the generated documentation in your guide:

include: :{generated-dir}/config/quarkus-your-
extension.adoc[opts=optional, leveloffset=+1]

If you are interested in including the generated documentation for the config group, you can use the
include statement below

include: :{generated-dir}/config/hyphenated-config-group-class—-name-
with-runtime-or-deployment-namespace-replaced-by-config-group-
namespace.adoc[opts=optional, leveloffset=+1]

For example,the io.quarkus.vertx.http.runtime.FormAuthConfig configuration group will
be generated in a file named quarkus-vertx-http-config-group-form-auth-
config.adoc.

A few recommendations:

* opts=optional is mandatory as we don’t want the build to fail if only part of the configuration
documentation has been generated

* The documentation is generated with a title level of 2 (i.e. ==). You usually need to adjust it. It can
be done with leveloffset=+N.

It is not recommended to include the whole configuration documentation in the middle of your quide
as it’s heavy. If you have an application.properties extract with your configuration, just do as
follows.

First, include a tip just below your application.properties extract:

75

[TIP]
For more information about the extension configuration please refer
to the <<confiquration-reference, Configuration Reference>>.

Then, at the end of your documentation, include the extensive documentation:

[[confiquration-reference]]
== Configuration Reference

include::{generated-dir}/config/quarkus-your-
extension.adoc[opts=optional, leveloffset=+1]

Finally, generate the documentation and check it out.

4. Continuous testing of your extension

In order to make it easy for extension authors to test their extensions daily against the latest snapshot
of Quarkus, Quarkus has introduced the notion of Ecosystem Cl. The Ecosystem CI README has all
the details on how to set up a GitHub Actions job to take advantage of this capability, while this video
provides an overview of what the process looks like.

76

https://github.com/quarkusio/quarkus-ecosystem-ci/blob/master/README.adoc
https://www.youtube.com/watch?v=VpbRA1n0hHQ

	Quarkus - Writing Your Own Extension
	1. Extension philosophy
	1.1. Why an extension framework
	1.2. Favor build time work over runtime work
	1.3. How to expose configuration
	1.4. Expose your components via CDI
	1.5. Some types of extensions

	2. Technical aspect
	2.1. Three Phases of Bootstrap and Quarkus Philosophy
	2.2. Maven setup
	2.3. Build Step Processors
	2.4. Configuration
	2.5. Conditional Step Inclusion
	2.6. Bytecode Recording
	2.7. Contexts and Dependency Injection
	2.8. Extension Health Check
	2.9. Extension Metrics
	2.10. Customizing JSON handling from an extension
	2.11. Testing Extensions
	2.12. Testing hot reload
	2.13. Native Executable Support
	2.14. IDE support tips
	2.15. Troubleshooting / Debugging Tips
	2.16. Sample Test Extension

	3. Configuration reference documentation
	3.1. Writing the documentation
	3.2. Writing section documentation
	3.3. Generating the documentation
	3.4. Including the documentation in the extension guide

	4. Continuous testing of your extension

