Quarkus - Security Testing

This document describes how to test Quarkus Security.

Configuring User Information

You can use quarkus-elytron-security-properties-file for testing security. This supports both
embedding user infoin application.properties and standalone properties files.

For example, the following configuration will allow for configuring the users in both the production
where OAuth2 is required and development modes using Configuration Profiles.

Confiqure embedded authentication
%dev.quarkus.security.users.embedded.enabled=true
%dev.quarkus.security.users.embedded.plain-text=true
%dev.quarkus.security.users.embedded.users.scott=reader
%dev.quarkus.security.users.embedded.users.stuart=writer
%dev.quarkus.security.users.embedded.roles.scott=READER
%dev.quarkus.security.users.embedded.roles.stuart=READER,WRITER

Configure OAuth2

quarkus.oauth2.enabled=true
%dev.quarkus.oauth2.enabled=false
quarkus.oauth2.client-id=client-id
quarkus.oauth2.client-secret=client-secret
quarkus.oauth2.introspection-url=http://host:port/introspect

Test Security Extension

Quarkus provides explicit support for testing with different users, and with the security subsystem
disabled. To use this you must include the quarkus-test-security artifact:

<dependency>
<groupId>io.quarkus</groupId>
<artifactId>quarkus-test-security</artifactId>
<scope>test</scope>

</dependency>

This artifact provides the io.quarkus.test.security.TestSecurity annotation, that can be
applied to test methods and test classes to control the security context that the test is run with. This
allows you to do two things, you can disable authorization so tests can access secured endpoints
without needing to be authenticated, and you can specify the identity that you want the tests to run
under.

security-properties
https://quarkus.io/guides/config#configuration-profiles

A test that runs with authorization disabled can just set the enabled property to false:

@Test
@TestSecurity(authorizationEnabled = false)
void someTestMethod() (

This will disable all access checks, which allows the test to access secured endpoints without needing
to authenticate.

You can also use this to configure the current user that the test will run as:
@Test

@TestSecurity(user = "testUser", roles = {"admin", "user"})
void someTestMethod() (

This will run the test with an identity with the given username and roles. Note that these can be
combined, so you can disable authorization while also providing an identity to run the test under,
which can be useful if the endpoint expects an identity to be present.

ﬁ The feature is only available for @QuarkusTest and will not work on a
@NativeImageTest.

Mixing security tests

If it becomes necessary to test security features using both @TestSecurity and Basic Auth (which is

the fallback auth mechanism when none is defined), then Basic Auth needs to be enabled explicitly, for

example by setting quarkus.http.auth.basic=true or
%test.quarkus.http.auth.basic=true.

Use Wiremock for Integration Testing

You can also use Wiremock to mock the authorization OAuth2 and OIDC services: See OAuth2
Integration testing for more details.

References

* Quarkus Security

security-oauth#integration-testing
security-oauth#integration-testing
security

	Quarkus - Security Testing
	Configuring User Information
	Test Security Extension
	Mixing security tests

	Use Wiremock for Integration Testing
	References

