
Quarkus - Fault Tolerance
One of the challenges brought by the distributed nature of microservices is that
communication with external systems is inherently unreliable. This increases
demand on resiliency of applications. To simplify making more resilient
applications, Quarkus contains an implementation of the MicroProfile Fault
Tolerance specification.

In this guide, we demonstrate usage of MicroProfile Fault Tolerance annotations such as @Timeout,
@Fallback, @Retry and @CircuitBreaker.

Prerequisites
To complete this guide, you need:

• less than 15 minutes

• an IDE

• JDK 1.8+ installed with JAVA_HOME configured appropriately

• Apache Maven 3.6.3

The Scenario
The application built in this guide simulates a simple backend for a gourmet coffee e-shop. It
implements a REST endpoint providing information about coffee samples we have on store.

Let’s imagine, although it’s not implemented as such, that some of the methods in our endpoint
require communication to external services like a database or an external microservice, which
introduces a factor of unreliability.

Solution
We recommend that you follow the instructions in the next sections and create the application step by
step. However, you can go right to the completed example.

Clone the Git repository: git clone https://github.com/quarkusio/quarkus-
quickstarts.git, or download an archive.

The solution is located in the microprofile-fault-tolerance-quickstart directory.

Creating the Maven Project
First, we need a new project. Create a new project with the following command:

1

https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts/archive/master.zip
https://github.com/quarkusio/quarkus-quickstarts/tree/master/microprofile-fault-tolerance-quickstart

mvn io.quarkus:quarkus-maven-plugin:1.8.1.Final:create \
 -DprojectGroupId=org.acme \
 -DprojectArtifactId=microprofile-fault-tolerance-quickstart \

-DclassName="org.acme.microprofile.faulttolerance.CoffeeResource" \
 -Dpath="/coffee" \
 -Dextensions="smallrye-fault-tolerance, resteasy-jsonb"
cd microprofile-fault-tolerance-quickstart

This command generates a Maven structure, importing the extensions for RESTEasy/JAX-RS and
SmallRye Fault Tolerance, which is an implementation of the MicroProfile Fault Tolerance spec that
Quarkus uses.

If you already have your Quarkus project configured, you can add the smallrye-fault-
tolerance extension to your project by running the following command in your project base
directory:

./mvnw quarkus:add-extension -Dextensions="smallrye-fault
-tolerance"

This will add the following to your pom.xml:

<dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-smallrye-fault-tolerance</artifactId>
</dependency>

Preparing an Application: REST Endpoint and
CDI Bean
In this section we create a skeleton of our application, so that we have something that we can extend
and to which we can add fault tolerance features later on.

First, create a simple entity representing a coffee sample in our store:

2

package org.acme.microprofile.faulttolerance;

public class Coffee {

 public Integer id;
 public String name;
 public String countryOfOrigin;
 public Integer price;

 public Coffee() {
 }

 public Coffee(Integer id, String name, String countryOfOrigin,
Integer price) {
 this.id = id;
 this.name = name;
 this.countryOfOrigin = countryOfOrigin;
 this.price = price;
 }
}

Let’s continue with a simple CDI bean, that would work as a repository of our coffee samples.

3

package org.acme.microprofile.faulttolerance;

import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.stream.Collectors;
import javax.enterprise.context.ApplicationScoped;

@ApplicationScoped
public class CoffeeRepositoryService {

 private Map<Integer, Coffee> coffeeList = new HashMap<>();

 public CoffeeRepositoryService() {
 coffeeList.put(1, new Coffee(1, "Fernandez Espresso",
"Colombia", 23));
 coffeeList.put(2, new Coffee(2, "La Scala Whole Beans",
"Bolivia", 18));
 coffeeList.put(3, new Coffee(3, "Dak Lak Filter",
"Vietnam", 25));
 }

 public List<Coffee> getAllCoffees() {
 return new ArrayList<>(coffeeList.values());
 }

 public Coffee getCoffeeById(Integer id) {
 return coffeeList.get(id);
 }

 public List<Coffee> getRecommendations(Integer id) {
 if (id == null) {
 return Collections.emptyList();
 }
 return coffeeList.values().stream()
 .filter(coffee -> !id.equals(coffee.id))
 .limit(2)
 .collect(Collectors.toList());
 }
}

Finally, edit the org.acme.microprofile.faulttolerance.CoffeeResource class as
follows:

4

package org.acme.microprofile.faulttolerance;

import java.util.List;
import java.util.Random;
import java.util.concurrent.atomic.AtomicLong;
import javax.inject.Inject;
import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.Produces;
import javax.ws.rs.core.MediaType;

import org.jboss.logging.Logger;

@Path("/coffee")
@Produces(MediaType.APPLICATION_JSON)
public class CoffeeResource {

 private static final Logger LOGGER =
Logger.getLogger(CoffeeResource.class);

 @Inject
 private CoffeeRepositoryService coffeeRepository;

 private AtomicLong counter = new AtomicLong(0);

 @GET
 public List<Coffee> coffees() {
 final Long invocationNumber = counter.getAndIncrement();

 maybeFail(String.format("CoffeeResource#coffees()
invocation #%d failed", invocationNumber));

 LOGGER.infof("CoffeeResource#coffees() invocation #%d
returning successfully", invocationNumber);
 return coffeeRepository.getAllCoffees();
 }

 private void maybeFail(String failureLogMessage) {
 if (new Random().nextBoolean()) {
 LOGGER.error(failureLogMessage);
 throw new RuntimeException("Resource failure.");
 }
 }
}

At this point, we expose a single REST method that will show a list of coffee samples in a JSON format.
Note that we introduced some fault making code in our CoffeeResource#maybeFail() method,
which is going to cause failures in the CoffeeResource#coffees() endpoint method in about 50

5

% of requests.

Why not check that our application works? Run the Quarkus development server with:

./mvnw compile quarkus:dev

and open http://localhost:8080/coffee in your browser. Make couple of requests (remember,
some of them we expect to fail). At least some of the requests should show us the list of our coffee
samples in JSON, the rest will fail with a RuntimeException thrown in
CoffeeResource#maybeFail().

Congratulations, you’ve just made a working (although somewhat unreliable) Quarkus application!

Adding Resiliency: Retries
Let the Quarkus development server running and in your IDE add the @Retry annotation to the
CoffeeResource#coffees() method as follows and save the file:

import org.eclipse.microprofile.faulttolerance.Retry;
...

public class CoffeeResource {
 ...
 @GET
 @Retry(maxRetries = 4)
 public List<Coffee> coffees() {
 ...
 }
 ...
}

Hit refresh in your browser. The Quarkus development server will automatically detect the changes
and recompile the app for you, so there’s no need to restart it.

You can hit refresh couple more times. Practically all requests should now be succeeding. The
CoffeeResource#coffees() method is still in fact failing in about 50 % of time, but every time it
happens, the platform will automatically retry the call!

To see that that the failures still happen, check the output of the development server. The log
messages should be similar to these:

6

http://localhost:8080/coffee
http://localhost:8080/coffee
http://localhost:8080/coffee

2019-03-06 12:17:41,725 INFO [org.acm.fau.CoffeeResource] (XNIO-1
task-1) CoffeeResource#coffees() invocation #5 returning
successfully
2019-03-06 12:17:44,187 INFO [org.acm.fau.CoffeeResource] (XNIO-1
task-1) CoffeeResource#coffees() invocation #6 returning
successfully
2019-03-06 12:17:45,166 ERROR [org.acm.fau.CoffeeResource] (XNIO-1
task-1) CoffeeResource#coffees() invocation #7 failed
2019-03-06 12:17:45,172 ERROR [org.acm.fau.CoffeeResource] (XNIO-1
task-1) CoffeeResource#coffees() invocation #8 failed
2019-03-06 12:17:45,176 INFO [org.acm.fau.CoffeeResource] (XNIO-1
task-1) CoffeeResource#coffees() invocation #9 returning
successfully

You can see that every time an invocation fails, it’s immediately followed by another invocation, until
one succeeds. Since we allowed 4 retries, it would require 5 invocations to fail in a row, in order for the
user to be actually exposed to a failure. Which is fairly unlikely to happen.

Adding Resiliency: Timeouts
So what else have we got in MicroProfile Fault Tolerance? Let’s look into timeouts.

Add following two methods to our CoffeeResource endpoint. Again, no need to restart the server,
just paste the code and save the file.

7

import org.jboss.resteasy.annotations.jaxrs.PathParam;
import org.eclipse.microprofile.faulttolerance.Timeout;
...
public class CoffeeResource {
 ...
 @GET
 @Path("/{id}/recommendations")
 @Timeout(250)
 public List<Coffee> recommendations(@PathParam int id) {
 long started = System.currentTimeMillis();
 final long invocationNumber = counter.getAndIncrement();

 try {
 randomDelay();
 LOGGER.infof("CoffeeResource#recommendations()
invocation #%d returning successfully", invocationNumber);
 return coffeeRepository.getRecommendations(id);
 } catch (InterruptedException e) {
 LOGGER.errorf("CoffeeResource#recommendations()
invocation #%d timed out after %d ms",
 invocationNumber, System.currentTimeMillis() -
started);
 return null;
 }
 }

 private void randomDelay() throws InterruptedException {
 Thread.sleep(new Random().nextInt(500));
 }
}

We added some new functionality. We want to be able to recommend some related coffees based on a
coffee that a user is currently looking at. It’s not a critical functionality, it’s a nice-to-have. When the
system is overloaded and the logic behind obtaining recommendations takes too long to execute, we
would rather time out and render the UI without recommendations.

Note that the timeout was configured to 250 ms, and a random artificial delay between 0 to 500 ms
was introduced into the CoffeeResource#recommendations() method.

In your browser, go to http://localhost:8080/coffee/2/recommendations and hit refresh
a couple of times.

You should see some requests time out with
org.eclipse.microprofile.faulttolerance.exceptions.TimeoutException.
Requests that do not time out should show two recommended coffee samples in JSON.

8

http://localhost:8080/coffee/2/recommendations
http://localhost:8080/coffee/2/recommendations
http://localhost:8080/coffee/2/recommendations
http://localhost:8080/coffee/2/recommendations
http://localhost:8080/coffee/2/recommendations
http://localhost:8080/coffee/2/recommendations
http://localhost:8080/coffee/2/recommendations

Adding Resiliency: Fallbacks
Let’s make our recommendations feature even better by providing a fallback (and presumably faster)
way of getting related coffees.

Add a fallback method to CoffeeResource and a @Fallback annotation to
CoffeeResource#recommendations() method as follows:

import java.util.Collections;
import org.eclipse.microprofile.faulttolerance.Fallback;
...
public class CoffeeResource {
 ...
 @Fallback(fallbackMethod = "fallbackRecommendations")
 public List<Coffee> recommendations(@PathParam int id) {
 ...
 }

 public List<Coffee> fallbackRecommendations(int id) {
 LOGGER.info("Falling back to
RecommendationResource#fallbackRecommendations()");
 // safe bet, return something that everybody likes
 return
Collections.singletonList(coffeeRepository.getCoffeeById(1));
 }
 ...
}

Hit refresh several times on http://localhost:8080/coffee/2/recommendations. The
TimeoutException should not appear anymore. Instead, in case of a timeout, the page will display a
single recommendation that we hardcoded in our fallback method fallbackRecommendations(),
rather than two recommendations returned by the original method.

Check the server output to see that fallback is really happening:

2020-01-09 13:21:34,250 INFO [org.acm.fau.CoffeeResource]
(executor-thread-1) CoffeeResource#recommendations() invocation #1
returning successfully
2020-01-09 13:21:36,354 ERROR [org.acm.fau.CoffeeResource]
(executor-thread-1) CoffeeResource#recommendations() invocation #2
timed out after 250 ms
2020-01-09 13:21:36,355 INFO [org.acm.fau.CoffeeResource]
(executor-thread-1) Falling back to
RecommendationResource#fallbackRecommendations()

9

http://localhost:8080/coffee/2/recommendations
http://localhost:8080/coffee/2/recommendations
http://localhost:8080/coffee/2/recommendations
http://localhost:8080/coffee/2/recommendations
http://localhost:8080/coffee/2/recommendations
http://localhost:8080/coffee/2/recommendations
http://localhost:8080/coffee/2/recommendations


The fallback method is required to have the same parameters as the original
method.

Adding Resiliency: Circuit Breaker
A circuit breaker is useful for limiting number of failures happening in the system, when part of the
system becomes temporarily unstable. The circuit breaker records successful and failed invocations of
a method, and when the ratio of failed invocations reaches the specified threshold, the circuit breaker
opens and blocks all further invocations of that method for a given time.

Add the following code into the CoffeeRepositoryService bean, so that we can demonstrate a
circuit breaker in action:

import java.util.concurrent.atomic.AtomicLong;
import org.eclipse.microprofile.faulttolerance.CircuitBreaker;
...

public class CoffeeRepositoryService {
 ...

 private AtomicLong counter = new AtomicLong(0);

 @CircuitBreaker(requestVolumeThreshold = 4)
 public Integer getAvailability(Coffee coffee) {
 maybeFail();
 return new Random().nextInt(30);
 }

 private void maybeFail() {
 // introduce some artificial failures
 final Long invocationNumber = counter.getAndIncrement();
 if (invocationNumber % 4 > 1) { // alternate 2 successful
and 2 failing invocations
 throw new RuntimeException("Service failed.");
 }
 }
}

And inject the code below into the CoffeeResource endpoint:

10

public class CoffeeResource {
 ...
 @Path("/{id}/availability")
 @GET
 public Response availability(@PathParam int id) {
 final Long invocationNumber = counter.getAndIncrement();

 Coffee coffee = coffeeRepository.getCoffeeById(id);
 // check that coffee with given id exists, return 404 if
not
 if (coffee == null) {
 return
Response.status(Response.Status.NOT_FOUND).build();
 }

 try {
 Integer availability =
coffeeRepository.getAvailability(coffee);
 LOGGER.infof("CoffeeResource#availability() invocation
#%d returning successfully", invocationNumber);
 return Response.ok(availability).build();
 } catch (RuntimeException e) {
 String message = e.getClass().getSimpleName() + ": " +
e.getMessage();
 LOGGER.errorf("CoffeeResource#availability() invocation
#%d failed: %s", invocationNumber, message);
 return
Response.status(Response.Status.INTERNAL_SERVER_ERROR)
 .entity(message)
 .type(MediaType.TEXT_PLAIN_TYPE)
 .build();
 }
 }
 ...
}

We added another functionality - the application can return the amount of remaining packages of
given coffee on our store (just a random number).

This time an artificial failure was introduced in the CDI bean: the
CoffeeRepositoryService#getAvailability() method is going to alternate between two
successful and two failed invocations.

We also added a @CircuitBreaker annotation with requestVolumeThreshold = 4.
CircuitBreaker.failureRatio is by default 0.5, and CircuitBreaker.delay is by default 5
seconds. That means that a circuit breaker will open when 2 of the last 4 invocations failed and it will
stay open for 5 seconds.

11

To test this out, do the following:

1. Go to http://localhost:8080/coffee/2/availability in your browser. You should see
a number being returned.

2. Hit refresh, this second request should again be successful and return a number.

3. Refresh two more times. Both times you should see text "RuntimeException: Service failed.", which
is the exception thrown by CoffeeRepositoryService#getAvailability().

4. Refresh a couple more times. Unless you waited too long, you should again see exception, but this
time it’s "CircuitBreakerOpenException: getAvailability". This exception indicates that the circuit
breaker opened and the CoffeeRepositoryService#getAvailability() method is not
being called anymore.

5. Give it 5 seconds during which circuit breaker should close and you should be able to make two
successful requests again.

Conclusion
MicroProfile Fault Tolerance allows to improve resiliency of your application, without having an impact
on the complexity of our business logic.

All that is needed to enable the fault tolerance features in Quarkus is:

• adding the smallrye-fault-tolerance Quarkus extension to your project using the
quarkus-maven-plugin:

./mvnw quarkus:add-extension -Dextensions="smallrye-fault
-tolerance"

• or simply adding the following Maven dependency:

<dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-smallrye-fault-tolerance</artifactId>
</dependency>

12

http://localhost:8080/coffee/2/availability
http://localhost:8080/coffee/2/availability
http://localhost:8080/coffee/2/availability
http://localhost:8080/coffee/2/availability
http://localhost:8080/coffee/2/availability
http://localhost:8080/coffee/2/availability
http://localhost:8080/coffee/2/availability

	Quarkus - Fault Tolerance
	Prerequisites
	The Scenario
	Solution
	Creating the Maven Project
	Preparing an Application: REST Endpoint and CDI Bean
	Adding Resiliency: Retries
	Adding Resiliency: Timeouts
	Adding Resiliency: Fallbacks
	Adding Resiliency: Circuit Breaker
	Conclusion

