
Quarkus - Built-In Authentication
Support

This document describes the Quarkus built-in authentication mechanisms for
HTTP based FORM, BASIC and Mutual TLS authentication as well as the proactive
authentication.

Basic Authentication
To enable basic authentication set quarkus.http.auth.basic=true. You must also have at least
one extension installed that provides a username/password based IdentityProvider, such as
Elytron JDBC.

Please see Security Identity Providers for more information.

Form Based Authentication
Quarkus provides form based authentication that works in a similar manner to traditional Servlet form
based auth. Unlike traditional form authentication, the authenticated user is not stored in an HTTP
session, as Quarkus does not provide clustered HTTP session support. Instead the authentication
information is stored in an encrypted cookie, which can be read by all members of the cluster
(provided they all share the same encryption key).

The encryption key can be set using the quarkus.http.auth.session.encryption-key
property, and it must be at least 16 characters long. This key is hashed using SHA-256 and the
resulting digest is used as a key for AES-256 encryption of the cookie value. This cookie contains an
expiry time as part of the encrypted value, so all nodes in the cluster must have their clocks
synchronized. At one minute intervals a new cookie will be generated with an updated expiry time if
the session is in use.

The following properties can be used to configure form based auth:

 Configuration property fixed at build time - All other configuration properties are overridable at
runtime

Configuration property Type Default

 quarkus.http.auth.form.enabled

If form authentication is enabled boolean false

 quarkus.http.auth.form.login-page

The login page string
/login
.html

1

security-jdbc
security#identity-providers
#quarkus-vertx-http-config-group-form-auth-config_configuration
#quarkus-vertx-http-config-group-form-auth-config_quarkus.http.auth.form.enabled
#quarkus-vertx-http-config-group-form-auth-config_quarkus.http.auth.form.login-page

 quarkus.http.auth.form.error-page

The error page string
/error
.html

 quarkus.http.auth.form.landing-page

The landing page to redirect to if there is no saved page to redirect back to string
/index
.html

 quarkus.http.auth.form.redirect-after-login

Option to disable redirect to landingPage if there is no saved page to redirect
back to. Form Auth POST is followed by redirect to landingPage by default.

boolean true

 quarkus.http.auth.form.timeout

The inactivity (idle) timeout When inactivity timeout is reached, cookie is not
renewed and a new login is enforced.

Duration


PT30M

 quarkus.http.auth.form.new-cookie-interval

How old a cookie can get before it will be replaced with a new cookie with an
updated timeout, also referred to as "renewal-timeout". Note that smaller values
will result in slightly more server load (as new encrypted cookies will be
generated more often), however larger values affect the inactivity timeout as the
timeout is set when a cookie is generated. For example if this is set to 10
minutes, and the inactivity timeout is 30m, if a users last request is when the
cookie is 9m old then the actual timeout will happen 21m after the last request,
as the timeout is only refreshed when a new cookie is generated. In other words
no timeout is tracked on the server side; the timestamp is encoded and
encrypted in the cookie itself and it is decrypted and parsed with each request.

Duration


PT1M

 quarkus.http.auth.form.cookie-name

The cookie that is used to store the persistent session string

quarku
s-
creden
tial



About the Duration format

The format for durations uses the standard java.time.Duration format. You
can learn more about it in the Duration#parse() javadoc.

You can also provide duration values starting with a number. In this case, if the value
consists only of a number, the converter treats the value as seconds. Otherwise, PT
is implicitly prepended to the value to obtain a standard java.time.Duration
format.

2

#quarkus-vertx-http-config-group-form-auth-config_quarkus.http.auth.form.error-page
#quarkus-vertx-http-config-group-form-auth-config_quarkus.http.auth.form.landing-page
#quarkus-vertx-http-config-group-form-auth-config_quarkus.http.auth.form.redirect-after-login
#quarkus-vertx-http-config-group-form-auth-config_quarkus.http.auth.form.timeout
https://docs.oracle.com/javase/8/docs/api/java/time/Duration.html
#duration-note-anchor
#quarkus-vertx-http-config-group-form-auth-config_quarkus.http.auth.form.new-cookie-interval
https://docs.oracle.com/javase/8/docs/api/java/time/Duration.html
#duration-note-anchor
#quarkus-vertx-http-config-group-form-auth-config_quarkus.http.auth.form.cookie-name
https://docs.oracle.com/javase/8/docs/api/java/time/Duration.html#parse-java.lang.CharSequence-

Mutual TLS Authentication
Quarkus provides mTLS authentication so that you can authenticate users based on their X.509
certificates.

To use this authentication method, you should first enable SSL for your application. For more details,
check the Supporting secure connections with SSL guide.

Once your application is accepting secure connections, the next step is to configure a
quarkus.http.ssl.certificate.trust-store-file holding all the certificates that your
application should trust as well as how your application should ask for certificates when a client (e.g.:
browser or another service) tries to access one of its protected resources.

quarkus.http.ssl.certificate.key-store-file=server-keystore.jks
①
quarkus.http.ssl.certificate.key-store-
password=the_key_store_secret
quarkus.http.ssl.certificate.trust-store-file=server-truststore.jks
②
quarkus.http.ssl.certificate.trust-store-
password=the_trust_store_secret
quarkus.http.ssl.client-auth=required
③

quarkus.http.auth.permission.default.paths=/*
④
quarkus.http.auth.permission.default.policy=authenticated

① Configures a key store where the server’s private key is located.

② Configures a trust store from where the trusted certificates are going to be loaded from.

③ Defines that the server should always ask certificates from clients. You can relax this behavior by
using REQUEST so that the server should still accept requests without a certificate. Useful when
you are also supporting authentication methods other than mTLS.

④ Defines a policy where only authenticated users should have access to resources from your
application.

Once the incoming request matches a valid certificate in the truststore, your application should be
able to obtain the subject by just injecting a SecurityIdentity as follows:

3

http-reference#ssl

Obtaining the subject

@Inject
SecurityIdentity identity;

@GET
@Produces(MediaType.TEXT_PLAIN)
public String hello() {
 return String.format("Hello, %s",
identity.getPrincipal().getName());
}

You should also be able to get the certificate as follows:

Obtaining the certificate

import java.security.cert.X509Certificate;
import io.quarkus.security.credential.CertificateCredential;

CertificateCredential credential =
identity.getCredential(CertificateCredential.class);
X509Certificate certificate = credential.getCertificate();

Authorization
The information from the client certificate can be used to enhance Quarkus SecurityIdentity. For
example, one can add new roles after checking a client certificate subject name, etc. Please see the
SecurityIdentity Customization section for more information about customizing Quarkus
SecurityIdentity.

Proactive Authentication
By default Quarkus does what we call proactive authentication. This means that if an incoming request
has a credential then that request will always be authenticated (even if the target page does not
require authentication).

This means that requests with an invalid credential will always be rejected, even for public pages. You
can change this behavior and only authenticate when required by setting
quarkus.http.auth.proactive=false.

References
• Quarkus Security

4

security-customization#security-identity-customization
security

	Quarkus - Built-In Authentication Support
	Basic Authentication
	Form Based Authentication
	Mutual TLS Authentication
	Authorization

	Proactive Authentication
	References

