
Quarkus - Quarkus Extension for
Spring Scheduling API

While users are encouraged to use regular Quarkus scheduler, Quarkus provides a
compatibility layer for Spring Scheduled in the form of the spring-scheduled
extension.

This guide explains how a Quarkus application can leverage the well known Spring Scheduled
annotation to configure and schedule tasks.



This technology is considered preview.

In preview, backward compatibility and presence in the ecosystem is not guaranteed.
Specific improvements might require to change configuration or APIs and plans to
become stable are under way. Feedback is welcome on our mailing list or as issues in
our GitHub issue tracker.

For a full list of possible extension statuses, check our FAQ entry.

Prerequisites
To complete this guide, you need:

• less than 15 minutes

• an IDE

• JDK 1.8+ installed with JAVA_HOME configured appropriately

• Apache Maven 3.6.3

• Some familiarity with the Spring Web extension

Solution
We recommend that you follow the instructions in the next sections and create the application step by
step. However, you can go right to the completed example.

Clone the Git repository: git clone https://github.com/quarkusio/quarkus-
quickstarts.git, or download an archive.

The solution is located in the spring-scheduled-quickstart directory.

Creating the Maven project
First, we need a new project. Create a new project with the following command:

1

scheduler#standard-scheduling
https://groups.google.com/d/forum/quarkus-dev
https://github.com/quarkusio/quarkus/issues
https://quarkus.io/faq/#extension-status
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts/archive/master.zip
https://github.com/quarkusio/quarkus-quickstarts/tree/master/spring-scheduled-quickstart

mvn io.quarkus:quarkus-maven-plugin:1.8.1.Final:create \
 -DprojectGroupId=org.acme \
 -DprojectArtifactId=spring-scheduler-quickstart \
 -DclassName="org.acme.spring.scheduler.CountResource" \
 -Dpath="/count" \
 -Dextensions="spring-scheduled"
cd spring-scheduler-quickstart

This command generates a Maven project with a REST endpoint and adds the spring-scheduled
extension.

If you already have your Quarkus project configured, you can add the spring-scheduled extension
to your project by running the following command in your project base directory:

./mvnw quarkus:add-extension -Dextensions="spring-scheduled"

This will add the following to your pom.xml:

<dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-spring-scheduled</artifactId>
</dependency>

Creating a scheduled job
In the org.acme.spring.scheduler package, create the CounterBean class, with the following
content:

2

package org.acme.spring.scheduler;

import org.springframework.scheduling.annotation.Scheduled;

import java.util.concurrent.atomic.AtomicInteger;
import javax.enterprise.context.ApplicationScoped;

@ApplicationScoped ①
public class CounterBean {

 private AtomicInteger counter = new AtomicInteger();

 public int get() { ②
 return counter.get();
 }

 @Scheduled(cron="*/5 * * * * ?") ③
 void cronJob() {
 counter.incrementAndGet(); ④
 System.out.println("Cron expression hardcoded");
 }

 @Scheduled(cron = "{cron.expr}") ⑤
 void cronJobWithExpressionInConfig() {
 counter.incrementAndGet();
 System.out.println("Cron expression configured in
application.properties");
 }

 @Scheduled(fixedRate = 1000) ⑥
 void jobAtFixedRate() {
 counter.incrementAndGet();
 System.out.println("Fixed Rate expression");
 }

 @Scheduled(fixedRateString = "${fixedRate.expr}") ⑦
 void jobAtFixedRateInConfig() {
 counter.incrementAndGet();
 System.out.println("Fixed Rate expression configured in
application.properties");
 }
}

1. Declare the bean in the application scope. Spring only detects @Scheduled annotations in beans.

2. The get() method allows retrieving the current value.

3. Use the Spring @Scheduled annotation with a cron-like expression to instruct Quarkus to
schedule this method run. In this example we’re scheduling a task to be executed at 10:15am every

3

day.

4. The code is pretty straightforward. Every day at 10:15am, the counter is incremented.

5. Define a job with a cron-like expression cron.expr which is configurable in
application.properties.

6. Define a method to be executed at a fixed interval of time. The period is expressed in milliseconds.

7. Define a job to be executed at a fixed interval of time fixedRate.expr which is configurable in
application.properties.

Updating the application configuration file
Edit the application.properties file and add the cron.expr and the fixedRate.expr
configuration:

The syntax used by Spring for cron expressions is the same as
which is used by regular Quarkus scheduler.
cron.expr=*/5 * * * * ?
fixedRate.expr=1000

Updating the resource and the test
Edit the CountResource class, and update the content to:

package org.acme.spring.scheduler;

import javax.inject.Inject;
import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.Produces;
import javax.ws.rs.core.MediaType;

@Path("/count")
public class CountResource {

 @Inject
 CounterBean counter; ①

 @GET
 @Produces(MediaType.TEXT_PLAIN)
 public String hello() {
 return "count: " + counter.get(); ②
 }
}

4

1. Inject the CounterBean

2. Send back the current counter value

We also need to update the tests. Edit the CountResourceTest class to match:

package org.acme.spring.scheduler;

import static io.restassured.RestAssured.given;
import static org.hamcrest.CoreMatchers.containsString;

import org.junit.jupiter.api.Test;

import io.quarkus.test.junit.QuarkusTest;

@QuarkusTest
public class CountResourceTest {

 @Test
 public void testHelloEndpoint() {
 given()
 .when().get("/count")
 .then()
 .statusCode(200)
 .body(containsString("count")); ①
 }

}

1. Ensure that the response contains count

Package and run the application
Run the application with: ./mvnw compile quarkus:dev. In another terminal, run curl
localhost:8080/count to check the counter value. After a few seconds, re-run curl
localhost:8080/count to verify the counter has been incremented.

Observe the console to verify that the following messages has been displayed: - Cron expression
hardcoded - Cron expression configured in application.properties - Fixed Rate
expression - Fixed Rate expression configured in application.properties These
messages indicate that the executions of methods annotated with @Scheduled have been triggered.

As usual, the application can be packaged using ./mvnw clean package and executed using the
-runner.jar file. You can also generate the native executable with ./mvnw clean package
-Pnative.

5

Using Property Expressions
Quarkus supports the use of property expressions in the application.properties file so to
externalize the configuration of the tasks you should store the properties in the
application.properties file and use the fixedRateString, initialDelayString params
respectively.

Note that this configuration is a build time configuration, the property expression will be resolved at
build time.

Unsupported Spring Scheduled functionalities
Quarkus currently only supports a subset of the functionalities that Spring @Scheduled provides with
more features being planned. Currently, the fixedDelay and fixedDelayString parameters are
not supported, in other words, @Scheduled methods are always executed independently.

Important Technical Note
Please note that the Spring support in Quarkus does not start a Spring Application Context nor are
any Spring infrastructure classes run. Spring classes and annotations are only used for reading
metadata and / or are used as user code method return types or parameter types. What that means for
end users, is that adding arbitrary Spring libraries will not have any effect. Moreover Spring
infrastructure classes (like
org.springframework.beans.factory.config.BeanPostProcessor for example) will not
be executed.

More Spring guides
Quarkus has more Spring compatibility features. See the following guides for more details:

• Quarkus - Extension for Spring DI

• Quarkus - Extension for Spring Web

• Quarkus - Extension for Spring Data JPA

• Quarkus - Reading properties from Spring Cloud Config Server

• Quarkus - Extension for Spring Boot properties

• Quarkus - Extension for Spring Cache

• Quarkus - Extension for Spring Security

6

spring-di
spring-web
spring-data-jpa
spring-cloud-config-client
spring-boot-properties
spring-cache
spring-security

	Quarkus - Quarkus Extension for Spring Scheduling API
	Prerequisites
	Solution
	Creating the Maven project
	Creating a scheduled job
	Updating the application configuration file
	Updating the resource and the test
	Package and run the application
	Using Property Expressions
	Unsupported Spring Scheduled functionalities
	Important Technical Note
	More Spring guides

