Quarkus - Building applications with
Maven

Creating a new project

With Maven, you can scaffold a new project with:

mvn io.quarkus:quarkus-maven-plugin:1.8.1.Final:create \
-DprojectGroupId=my-groupId \
-DprojectArtifactId=my-artifactId \
-DprojectVersion=my-version \
-DclassName="orqg.my.group.MyResource"

If you just launch mvn io.quarkus:quarkus—-maven-

o plugin:1.8.1.Final:create the Maven plugin asks for user inputs. You can
disable (and use default values) this interactive mode by passing —B to the Maven
command.

The following table lists the attributes you can pass to the create command:

Attribute Default Value Description

projectGroupId org.acme.sample The group id of the created
project

projectArtifactId mandatory The artifact id of the created

project. Not passing it triggers
the interactive mode.

projectVersion 1.0-SNAPSHOT The version of the created
project
platformGroupId io.quarkus The group id of the target

platform. Given that all the
existing platforms are coming
from io0.quarkus this one
won’t practically be used
explicitly. But it’s still an option.

platformArtifactId quarkus-universe-bom The artifact id of the target
platform BOM. It should be
quarkus—bom in order to use
the locally built Quarkus.

Attribute Default Value Description

platformVersion If it’s not specified, the latest one The version of the platform you
will be resolved. want the project to use. It can
also accept a version range, in
which case the latest from the
specified range will be used.

className Not created if omitted The fully qualified name of the
generated resource

path /hello The resource path, only relevant
if clLassName is set.

extensions [] The list of extensions to add to
the project (comma-separated)

By default, the command will target the latest version of quarkus—-universe-bom (unless specific
coordinates have been specified). If you run offline however, it will look for the latest locally available
and if quarkus—-universe-bom (satisfying the default version range which is currently up to 2.0) is
not available locally, it will fallback to the bundled platform based on quarkus—-bom (the version will
match the version of the plugin).

If you decide to generate a REST resource (using the className attribute), the endpoint is exposed
at: http://localhost:8080/Spath. If you wuse the default path, the URL is:
http://localhost:8080/hello.

The project is generated in a directory named after the passed artifactld. If the directory already
exists, the generation fails.

A pair of Dockerfiles for native and jvm mode are also generated in src/main/docker. Instructions
to build the image and run the container are written in those Dockerfiles.

Dealing with extensions

From inside a Quarkus project, you can obtain a list of the available extensions with:
./mvnw quarkus:list-extensions
You can enable an extension using:
./mvnw quarkus:add-extension -Dextensions="hibernate-validator"

Extensions are passed using a comma-separated list.

The extension name is the GAV name of the extension: e.qg. i0.quarkus:quarkus—agroal. But you
can pass a partial name and Quarkus will do its best to find the right extension. For example, agroal,
Agroal or agro will expand to io.quarkus:quarkus-agroal. If no extension is found or if more

http://localhost:8080/$path
http://localhost:8080/$path
http://localhost:8080/$path
http://localhost:8080/hello
http://localhost:8080/hello
http://localhost:8080/hello

than one extensions match, you will see a red check mark inthe command result.

S ./mvnw quarkus:add-extensions -Dextensions=jdbc,agroal,non-exist
-ent
[...]
Multiple extensions matching 'jdbc'
* i1o.quarkus:quarkus—-jdbc-h2
* 1o.quarkus:quarkus—-jdbc-mariadb
* 1o.quarkus:quarkus-jdbc-postgresql
Be more specific e.g using the exact name or the full gav.
Adding extension io.quarkus:quarkus-agroal
Cannot find a dependency matching 'non-exist-ent', maybe a typo?

[...]

You can install all extensions which match a globbing pattern:

./mvnw quarkus:add-extension -Dextensions="hibernate-*"

Development mode

Quarkus comes with a built-in development mode. Run your application with:
./mvnw compile quarkus:dev

You can then update the application sources, resources and configurations. The changes are
automatically reflected in your running application. This is great to do development spanning Ul and
database as you see changes reflected immediately.

quarkus:dev enables hot deployment with background compilation, which means that when you
modify your Java files or your resource files and refresh your browser these changes will
automatically take effect. This works too for resource files like the configuration property file. The act
of refreshing the browser triggers a scan of the workspace, and if any changes are detected the Java
files are compiled, and the application is redeployed, then your request is serviced by the redeployed
application. If there are any issues with compilation or deployment an error page will let you know.

Hit CTRL+C to stop the application.

Remote Development Mode

It is possible to use development mode remotely, so that you can run Quarkus in a container
environment (such as Openshift) and have changes made to your local files become immediately
visible.

This allows you to develop in the same environment you will actually run your app in, and with access
to the same services.

g Do not use this in production. This should only be used in a development
environment. You should not run production application in dev mode.

To do this you must build a mutable application, using the mutable-jar format. Set the following
propertiesinapplication.xml:

quarkus.package.type=mutable-jar @
quarkus.live-reload.password=changeit @
quarkus.live-reload.url=http://my.cluster.host.com:8080 ®

@ This tells Quarkus to use the mutable-jar format. Mutable applications also include the deployment
time parts of Quarkus, so they take up a bit more disk space. If run normally they start just as fast
and use the same memory as an immutable application, however they can also be started in dev
mode.

@ The password that is used to secure communication between the remote side and the local side.

® The URL that your app is going to be running in dev mode at. This is only needed on the local side,
so you may want to leave it out of the properties file and specify it as a system property on the
command line.

Before you start Quarkus on the remote host set the environment variable
QUARKUS_LAUNCH_DEVMODE=true. If you are on bare metal you can just set this via the export
QUARKUS_LAUNCH_DEVMODE=true command, if you are running using docker start the image with
-e QUARKUS_LAUNCH_DEVMODE=true. When the application starts you should now see the
following line in the logs: Profile dev activated. Live Coding activated.

The remote side does not need to include Maven or any other development tools.

o The normal fast-jar Dockerfile that is generated with a new Quarkus application
is all you need. If you are using bare metal launch the Quarkus runner jar, do not
attempt to run normal devmode.

Now you need to connect your local agent to the remote host, using the remote-dev command:

./mvnw quarkus:remote-dev -Dquarkus.live-reload.url=http://my
-remote-host:8080

Now every time you refresh the browser you should see any changes you have made locally
immediately visible in the remote app. This is done via a HTTP based long polling transport, that will
synchronize your local workspace and the remote application via HTTP calls.

If you do not want to use the HTTP feature then you can simply run the remote-dev command
without specifying the URL. In this mode the command will continuously rebuild the local application,
so you can use an external tool such as odo or rsync to sync to the remote application.

It is recommended you use SSL when using remote dev mode, however even if you
are using an unencrypted connection your password is never sent directly over the

o wire. For the initial connection request the password is hashed with the initial state
data, and subsequent requests hash it with a random session id generated by the
server and any body contents for POST requests, and the path for DELETE requests,
as well as an incrementing counter to prevent replay attacks.

Configuring Development Mode

By default, the Maven plugin picks up compiler flags to pass to javac from maven-compiler-
plugin.

If you need to customize the compiler flags used in development mode, add a configuration
section to the plugin block and set the compilerArgs property just as you would when configuring
maven—-compiler—-plugin. You can also set source, target, and jvmArgs. For example, to pass
-—enable-previewto both the JVM and javac:

<plugin>
<groupId>io.quarkus</groupId>
<artifactId>quarkus-maven-plugin</artifactId>
<version>S${quarkus-plugin.version}</version>

<configuration>
<source>S${maven.compiler.source}</source>
<target>S${maven.compiler.target}</target>
<compilerArgs>
<arg>--enable-preview</arg>
</compilerArgs>
<jvmArgs>--enable-preview</jvmArgs>
</configuration>

</plugin>

Debugging

In development mode, Quarkus starts by default with debug mode enabled, listening to port 5005
without suspending the JVM.

This behavior can be changed by giving the debug system property one of the following values:

* false - the JVM will start with debug mode disabled
* true - The JVMis started in debug mode and will be listening on port 5005
* client - the JVM will start in client mode and attempt to connectto localhost:5005

* {port} - The JVM is started in debug mode and will be listening on {port}

An additional system property suspend can be used to suspend the JVM, when launched in debug
mode. suspend supports the following values:

* yor true - The debug mode JVM launch is suspended

* nor false - The debug mode JVM is started without suspending

You can also run a Quarkus application in debug mode with a suspended JVM using
@ ./mvnw compile quarkus:dev -Ddebug which is a shorthand for ./mvnw

\ 4 compile quarkus:dev -Ddebug=true.

Then, attach your debuggerto localhost:5005.

Import in your IDE

Once you have a project generated, you can import it in your favorite IDE. The only requirement is the
ability to import a Maven project.

Eclipse

In Eclipse, click on: File - Import.Inthe wizard, select: Maven » Existing Maven Project.
On the next screen, select the root location of the project. The next screen list the found modules;
select the generated project and click on Finish. Done!

In a separated terminal, run ./mvnw compile quarkus:dev, and enjoy a highly productive
environment.

IntelliJ

In IntelliJ:

1. From inside IntelliJ select File » New » Project From Existing Sources..or,if you are
on the welcome dialog, select Import project.
Select the project root

Select Import project from external model and Maven

Next a few times (review the different options if needed)

L N

On the last screen click on Finish

In a separated terminal or in the embedded terminal, run . /mvnw compile quarkus:dev.Enjoy!
Apache NetBeans

In NetBeans:

1. SelectFile » Open Project
2. Select the project root

3. Click on Open Project

In a separated terminal or the embedded terminal, go to the project root and run . /mvnw compile
quarkus :dev. Enjoy!

Visual Studio Code

Open the project directory in VS Code. If you have installed the Java Extension Pack (grouping a set of
Java extensions), the project is loaded as a Maven project.

Logging Quarkus application build classpath
tree

Usually, dependencies of an application (which is a Maven project) could be displayed using mvn
dependency:tree command. In case of a Quarkus application, however, this command will list only
the runtime dependencies of the application. Given that the Quarkus build process adds deployment
dependencies of the extensions used in the application to the original application classpath, it could be
useful to know which dependencies and which versions end up on the build classpath. Luckily, the
quarkus-bootstrap Maven plugin includes the build-tree goal which displays the build
dependency tree for the application.

To be able to use it, the following plugin configuration has to be added to the pom. xm1:

<plugin>
<groupId>io.quarkus</groupId>
<artifactId>quarkus-bootstrap-maven-
plugin</artifactId>
<version>${quarkus-plugin.version}</version>
</plugin>

Now you should be able to execute . /mvnw quarkus-bootstrap:build-tree on your project
and see something like:

[INFO] --- quarkus-bootstrap-maven-plugin:1.8.1.Final:build-tree
(default-cli) @ getting-started ---

[INFO] org.acme:getting-started:jar:1.0-SNAPSHOT

[INFO] L io.quarkus:quarkus-resteasy-deployment:jar:1.8.1.Final
(compile)

[INFO] F— io.quarkus:quarkus-resteasy-server—-common-
deployment:jar:1.8.1.Final (compile)

[INFO] | }— io.quarkus:quarkus-core-deployment:jar:1.8.1.Final
(compile)

[INFO] | | | commons-beanutils:commons-beanutils:jar:1.9.3
(compile)

[INFO] | | | F commons-logging:commons-logging:jar:1.2
(compile)

[INFO] | | | L commons-collections:commons-

collections:jar:3.2.2 (compile)

Building a native executable

Native executables make Quarkus applications ideal for containers and serverless workloads.

Make sure to have GRAALVM_HOME configured and pointing to GraalVM version 20.2.0 (Make sure to
use a Java 11 version of GraalVM). Verify that your pom.xml has the proper native profile (see
Maven configuration).

Create a native executable using: . /mvnw package -Pnative. A native executable will be present
intarget/.

To run Integration Tests on the native executable, make sure to have the proper Maven plugin
configured (see Maven configuration) and launch the verify goal.

./mvnw verify -Pnative

[quarkus—quickstart-runner:50955] universe: 391.96 ms

[quarkus—-quickstart-runner:50955] (parse): 904.37 ms
[quarkus—quickstart-runner:50955] (inline): 1,143.32 ms
[quarkus—quickstart-runner:50955] (compile): 6,228.44 ms
[quarkus—quickstart-runner:50955] compile: 9,130.58 ms
[quarkus—quickstart-runner:50955] image: 2,101.42 ms
[quarkus—quickstart-runner:50955] write: 803.18 ms
[quarkus—-quickstart-runner:50955] [total]: 33,520.15 ms
[INFO]

[INFO] --- maven-failsafe-plugin:2.22.0:integration-test (default)
@ quarkus—-quickstart-native --—-

[INFO]

[INFO] - -—-——————————
[INFO] TESTS

[INFO] -—————— e

[INFO] Running org.acme.quickstart.GreetingResourceIT

Executing [/Users/starksm/Dev/JBoss/Quarkus/starksmé4—-quarkus-
gquickstarts/getting-started-native/target/quarkus—-quickstart-
runner, -Dquarkus.http.port=8081, -Dtest.url=http://localhost:8081,
-Dquarkus.log.file.path=target/quarkus.log]

2019-02-28 16:52:42,020 INFO [io.quarkus] (main) Quarkus started
in 0.007s. Listening on: http://localhost:8080

2019-02-28 16:52:42,021 INFO [io.quarkus] (main) Installed
features: [cdi, resteasy]

[INFO] Tests run: 2, Failures: 0, Errors: 0, Skipped: 0, Time
elapsed: 1.081 s - in org.acme.quickstart.GreetingResourcelIT
[INFO]

[INFO] Results:

[INFO]

[INFO] Tests run: 2, Failures: 0, Errors: O, Skipped: 0

Build a container friendly executable

The native executable will be specific to your operating system. To create an executable that will run
in a container, use the following:

./mvnw package -Dnative -Dquarkus.native.container-build=true

The produced executable will be a 64 bit Linux executable, so depending on your operating system it
may no longer be runnable. However, it’s not an issue as we are going to copy it to a Docker container.
Note that in this case the build itself runs in a Docker container too, so you don’t need to have GraalVM
installed locally.

By default, the native executable will be generated using the
quay.io/quarkus/ubi-quarkus-native-image:20.2.0-javall Docker

image.
O If you want to build a native executable with a different Docker image (for instance
™ to use a different GraalVM version), use the -Dquarkus.native.builder

—-image=<image name> build argument.

The list of the available Docker images can be found on quay.io. Be aware that a
given Quarkus version might not be compatible with all the images available.

You can follow the Build a native executable guide as well as Deploying Application to Kubernetes and
OpenShift for more information.

Maven configuration

If you have not used project scaffolding, add the following elements in your pom. xml

<dependencyManagement>
<dependencies>
<dependency> @
<groupId>io.quarkus</groupId>
<artifactId>quarkus-bom</artifactId>
<version>S${quarkus.platform.version}</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>

<build>
<plugins>
<plugin> @
<groupId>io.quarkus</groupId>
<artifactId>quarkus-maven-plugin</artifactId>
<version>S${quarkus-plugin.version}</version>
<executions>
<execution>
<goals>
<goal>build</goal>
</goals>
</execution>
</executions>
</plugin>
<plugin> ®
<groupld>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>

https://quay.io/repository/quarkus/ubi-quarkus-native-image?tab=tags
building-native-image
deploying-to-kubernetes
deploying-to-kubernetes

<version>S${surefire-plugin.version}</version>
<confiquration>
<systemPropertyVariables>

<java.util.logging.manager>org. jboss.logmanager.LogManager</java.ut
il.logging.manager>
<maven.home>${maven.home}</maven.home>
</systemPropertyVariables>
</configuration>
</plugin>
</plugins>
</build>

<profiles>
<profile> @
<id>native</id>
<properties> ®
<quarkus.package.type>native</quarkus.package.type>
</properties>
<build>
<plugins>
<plugin> ®
<groupId>org.apache.maven.plugins</groupIld>
<artifactId>maven-failsafe-plugin</artifactId>
<version>S${surefire-plugin.version}</version>
<executions>
<execution>
<goals>
<goal>integration-test</goal>
<goal>verify</goal>
</goals>
<configuration>
<systemPropertyVariables>

<native.image.path>S${project.build.directory}/S{project.build.final
Name}-runner</native.image.path>

<java.util.logging.manager>org. jboss.logmanager.LogManager</java.ut
il.logging.manager>

<maven.home>S{maven.home}</maven.home>
</systemPropertyVariables>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>
</profile>

1

</profiles>

@ Optionally use a BOM file to omit the version of the different Quarkus dependencies.
@ Use the Quarkus Maven plugin that will hook into the build process.

3 Add system properties to maven-surefire-plugin.
maven.home is only required if you have custom configuration in

S{maven.home}/conf/settings.xml.
@ Use a specific native profile for native executable building.
® Enable the native package type. The build will therefore produce a native executable.

® If you want to test your native executable with Integration Tests, add the following plugin
configuration. Test names #*IT and annotated @NativeImageTest will be run against the native
executable. See the Native executable guide for more info.

Uber-Jar Creation

Quarkus Maven plugin supports the generation of Uber-Jars by specifying a
quarkus.package.type=uber-jar configuration optionin your application.properties.

The original jar will still be present in the target directory but it will be renamed to contain the
.original suffix.

When building an Uber-Jar you can specify entries that you want to exclude from the generated jar by
using the quarkus.package.ignored-entries configuration option, this takes a comma
separated list of entries to ignore.

Uber-Jar creation by default excludes signature files that might be present in the dependencies of the
application.

Uber-Jar’s final name is configurable via a Maven’s build settings finalName option.

Working with multi-module projects
By default, Quarkus will not discover CDI beans inside another module.

The best way to enable CDI bean discovery for a module in a multi-module project would be to include
the jandex—-maven-plugin, unless it is the main application module already configured with the
guarkus-maven-plugin, in which case it will indexed automatically.

building-native-image
https://docs.oracle.com/javase/tutorial/deployment/jar/intro.html

<build>
<plugins>
<plugin>
<groupId>org.jboss.jandex</groupId>
<artifactId>jandex-maven-plugin</artifactId>
<version>1.0.7</version>
<executions>
<execution>
<id>make-index</id>
<goals>
<goal>jandex</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>

More information on this topic can be found on the Bean Discovery section of the CDI guide.

Configuring the Project Output

There are a several configuration options that will define what the output of your project build will be.
These are provided in application.properties the same as any other config property.

The properties are shown below:

@& Configuration property fixed at build time - All other configuration properties are overridable at
runtime

Configuration property Type Default

& quarkus.package.type
The requested output type. The default built in types are ‘jar', 'fast-jar' (a

prototype more performant version of the default 'jar' type), 'uber-jar' and
'native'.

string jar

& gquarkus.package.manifest.add-implementation-entries

If the Implementation information should be included in the runner jar's boolean true
MANIFEST.MF.

13

cdi-reference#bean_discovery
#quarkus-package-pkg-package-config_configuration
#quarkus-package-pkg-package-config_quarkus.package.type
#quarkus-package-pkg-package-config_quarkus.package.manifest.add-implementation-entries

& quarkus.package.main-class

The entry point of the application. This can either be a a fully qualified name of a

standard Java class with a main method, or
io.quarkus.runtime.QuarkusApplication. If your application has main
classes annotated with

io.quarkus.runtime.annotations.QuarkusMain then this can also
reference the name given in the annotation, to avoid the need to specify fully
qualified names in the config.

@ quarkus.package.user-configured-ignored-entries

Files that should not be copied to the output artifact

& quarkus.package.runner-suffix

The suffix that is applied to the runner jar and native images

& quarkus.package.output-directory

The output folder in which to place the output, this is resolved relative to the
build systems target directory.

& quarkus.package.output-name

The name of the final artifact

& quarkus.package.create-appcds

Whether to automate the creation of AppCDS. This has not effect when a native
binary is needed and will be ignored in that case. Furthermore, this option only
works for Java 11+ and is considered experimental for the time being. Finally,
care must be taken to use the same exact JVM version when building and
running the application.

& gquarkus.package.user-providers-directory

This is an advanced option that only takes effect for the mutable-jar format. If
this is specified a directory of this name will be created in the jar distribution.
Users can place jar files in this directory, and when re-augmentation is
performed these will be processed and added to the class-path. Note that before
reaugmentation has been performed these jars will be ignored, and if they are
updated the app should be reaugmented again.

string

list of
string

. -runne
string

string

string

boolean false

string

#quarkus-package-pkg-package-config_quarkus.package.main-class
#quarkus-package-pkg-package-config_quarkus.package.user-configured-ignored-entries
#quarkus-package-pkg-package-config_quarkus.package.runner-suffix
#quarkus-package-pkg-package-config_quarkus.package.output-directory
#quarkus-package-pkg-package-config_quarkus.package.output-name
#quarkus-package-pkg-package-config_quarkus.package.create-appcds
#quarkus-package-pkg-package-config_quarkus.package.user-providers-directory

& quarkus.package.manifest.manifest-sections

Map<St
ring,M
ap<Str
ing, St
ring>>

Custom manifest sections to be added to the MANIFEST.MF file. An example of
the user defined property: quarkus.package.manifest.manifest-
sections.{Section-Name}.{Entry-Key1}={Valuel}
qguarkus.package.manifest.manifest-sections.{Section-Name}.{Entry-
Key2}={Value2}

Custom test configuration profile in JVM mode

By default, Quarkus tests in JVM mode are run using the test configuration profile. If you are not
familiar with Quarkus configuration profiles, everything you need to know is explained in the
Configuration Profiles Documentation.

It is however possible to use a custom configuration profile for your tests with the Maven Surefire and
Maven Failsafe configurations shown below. This can be useful if you need for example to run some
tests using a specific database which is not your default testing database.

15

#quarkus-package-pkg-package-config_quarkus.package.manifest.manifest-sections-manifest-sections
config#configuration-profiles

<project>
[...]
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupIld>
<artifactId>maven-surefire-plugin</artifactId>
<version>S${surefire-plugin.version}</version>
<configuration>
<systemPropertyVariables>
<quarkus.test.profile>foo</quarkus.test.profile> @

<buildDirectory>S{project.build.directory}</buildDirectory>
[...]
</systemPropertyVariables>
</configuration>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-failsafe-plugin</artifactId>
<version>S${failsafe-plugin.version}</version>
<configuration>
<systemPropertyVariables>
<quarkus.test.profile>foo</quarkus.test.profile> @

<buildDirectory>S${project.build.directory}</buildDirectory>

[...]
</systemPropertyVariables>
</configuration>
</plugin>
</plugins>
</build>
[...]

</project>
® The foo configuration profile will be used to run the tests.

0 It is not possible to use a custom test configuration profile in native mode for now.
Native tests are always run using the prod profile.

	Quarkus - Building applications with Maven
	Creating a new project
	Dealing with extensions
	Development mode
	Remote Development Mode
	Configuring Development Mode

	Debugging
	Import in your IDE
	Logging Quarkus application build classpath tree
	Building a native executable
	Build a container friendly executable

	Maven configuration
	Uber-Jar Creation
	Working with multi-module projects

	Configuring the Project Output
	Custom test configuration profile in JVM mode

