
Quarkus - Application Initialization
and Termination

You often need to execute custom actions when the application starts and clean
up everything when the application stops. This guide explains how to:

• Write a Quarkus application with a main method

• Write command mode applications that run a task and then terminate

• Be notified when the application starts

• Be notified when the application stops

Prerequisites
To complete this guide, you need:

• less than 10 minutes

• an IDE

• JDK 1.8+ installed with JAVA_HOME configured appropriately

• Apache Maven 3.6.3

Solution
We recommend that you follow the instructions in the next sections and create the application step by
step. However, you can go right to the completed example.

Clone the Git repository: git clone https://github.com/quarkusio/quarkus-
quickstarts.git, or download an archive.

The solution is located in the lifecycle-quickstart directory.

Creating the Maven project
First, we need a new project. Create a new project with the following command:

mvn io.quarkus:quarkus-maven-plugin:1.8.1.Final:create \
    -DprojectGroupId=org.acme \
    -DprojectArtifactId=lifecycle-quickstart \
    -DclassName="org.acme.lifecycle.GreetingResource" \
    -Dpath="/hello"
cd lifecycle-quickstart

1

https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts.git
https://github.com/quarkusio/quarkus-quickstarts/archive/master.zip
https://github.com/quarkusio/quarkus-quickstarts/tree/master/lifecycle-quickstart


It generates:

• the Maven structure

• a landing page accessible on http://localhost:8080

• example Dockerfile files for both native and jvm modes

• the application configuration file

• an org.acme.lifecycle.GreetingResource resource

• an associated test

The main method
By default Quarkus will automatically generate a main method, that will bootstrap Quarkus and then
just wait for shutdown to be initiated. Let’s provide our own main method:

package om.acme;

import io.quarkus.runtime.annotations.QuarkusMain;
import io.quarkus.runtime.Quarkus;

@QuarkusMain  ①
public class Main {

    public static void main(String ... args) {
        System.out.println("Running main method");
        Quarkus.run(args); ②
    }
}

① This annotation tells Quarkus to use this as the main method, unless it is overridden in the config

② This launches Quarkus

This main class will bootstrap Quarkus and run it until it stops. This is no different to the automatically
generated main class, but has the advantage that you can just launch it directly from the IDE without
needing to run a Maven or Gradle command.



It is not recommenced to do any business logic in this main method, as Quarkus has
not been set up yet, and Quarkus may run in a different ClassLoader. If you want to
perform logic on startup use an io.quarkus.runtime.QuarkusApplication
as described below.

If we want to actually perform business logic on startup (or write applications that complete a task and
then exit) we need to supply a io.quarkus.runtime.QuarkusApplication class to the run
method. After Quarkus has been started the run method of the application will be invoked. When this
method returns the Quarkus application will exit.

2

http://localhost:8080


If you want to perform logic on startup you should call Quarkus.waitForExit(), this method will
wait until a shutdown is requested (either from an external signal like when you press Ctrl+C or
because a thread has called Quarkus.asyncExit()).

An example of what this looks like is below:

package com.acme;

import io.quarkus.runtime.Quarkus;
import io.quarkus.runtime.QuarkusApplication;
import io.quarkus.runtime.annotations.QuarkusMain;

@QuarkusMain
public class Main {
    public static void main(String... args) {
        Quarkus.run(MyApp.class, args);
    }

    public static class MyApp implements QuarkusApplication {

        @Override
        public int run(String... args) throws Exception {
            System.out.println("Do startup logic here");
            Quarkus.waitForExit();
            return 0;
        }
    }
}

Injecting the command line arguments
It is possible to inject the arguments that were passed in on the command line:

@Inject
@CommandLineArguments
String[] args;

Listening for startup and shutdown events
Create a new class named AppLifecycleBean (or pick another name) in the
org.acme.lifecycle package, and copy the following content:

3



package org.acme.lifecycle;

import javax.enterprise.context.ApplicationScoped;
import javax.enterprise.event.Observes;

import io.quarkus.runtime.ShutdownEvent;
import io.quarkus.runtime.StartupEvent;
import org.jboss.logging.Logger;

@ApplicationScoped
public class AppLifecycleBean {

    private static final Logger LOGGER =
Logger.getLogger("ListenerBean");

    void onStart(@Observes StartupEvent ev) {               ①
        LOGGER.info("The application is starting...");
    }

    void onStop(@Observes ShutdownEvent ev) {               ②
        LOGGER.info("The application is stopping...");
    }

}

1. Method called when the application is starting

2. Method called when the application is terminating

 The events are also called in dev mode between each redeployment.


The methods can access injected beans. Check the AppLifecycleBean.java class for
details.

What is the difference from
@Initialized(ApplicationScoped.class) and
@Destroyed(ApplicationScoped.class)
In the JVM mode, there is no real difference, except that StartupEvent is always fired after
@Initialized(ApplicationScoped.class) and ShutdownEvent is fired before
@Destroyed(ApplicationScoped.class). For a native executable build, however,
@Initialized(ApplicationScoped.class) is fired as part of the native build process,
whereas StartupEvent is fired when the native image is executed. See Three Phases of Bootstrap
and Quarkus Philosophy for more details.

4

https://github.com/quarkusio/quarkus-quickstarts/blob/master/lifecycle-quickstart/src/main/java/org/acme/lifecycle/AppLifecycleBean.java
writing-extensions#bootstrap-three-phases
writing-extensions#bootstrap-three-phases



In CDI applications, an event with qualifier
@Initialized(ApplicationScoped.class) is fired when the application
context is initialized. See the spec for more info.

Using @Startup to initialize a CDI bean at application
startup
A bean represented by a class, producer method or field annotated with @Startup is initialized at
application startup:

package org.acme.lifecycle;

import javax.enterprise.context.ApplicationScoped;

@Startup ①
@ApplicationScoped
public class EagerAppBean {

   private final String name;

   EagerAppBean(NameGenerator generator) { ②
     this.name = generator.createName();
   }
}

1. For each bean annotated with @Startup a synthetic observer of StartupEvent is generated.
The default priority is used.

2. The bean constructor is called when the application starts and the resulting contextual instance is
stored in the application context.


@Dependent beans are destroyed immediately afterwards to follow the behavior of
observers declared on @Dependent beans.


If a class is annotated with @Startup but with no scope annotation then
@ApplicationScoped is added automatically.

Package and run the application
Run the application with: ./mvnw compile quarkus:dev, the logged message is printed. When
the application is stopped, the second log message is printed.

As usual, the application can be packaged using ./mvnw clean package and executed using the
-runner.jar file. You can also generate the native executable using ./mvnw clean package
-Pnative.

5

https://docs.jboss.org/cdi/spec/2.0/cdi-spec.html#application_context


Launch Modes
Quarkus has 3 different launch modes, NORMAL (i.e. production), DEVELOPMENT and TEST. If you are
running quarkus:dev then the mode will be DEVELOPMENT, if you are running a JUnit test it will be
TEST, otherwise it will be NORMAL.

Your application can get the launch mode by injecting the io.quarkus.runtime.LaunchMode
enum into a CDI bean, or by invoking the static method
io.quarkus.runtime.LaunchMode.current().

Graceful Shutdown
Quarkus includes support for graceful shutdown, this allows Quarkus to wait for running requests to
finish, up till a set timeout. By default this is disabled, however you can configure this by setting the
quarkus.shutdown.timeout config property. When this is set shutdown will not happen until all
running requests have completed, or until this timeout has elapsed. This config property is a duration,
and can be set using the standard java.time.Duration format, if only a number is specified it is
interpreted as seconds.

Extensions that accept requests need to add support for this on an individual basis. At the moment
only the HTTP extension supports this, so shutdown may still happen when messaging requests are
active.

6


	Quarkus - Application Initialization and Termination
	Prerequisites
	Solution
	Creating the Maven project
	The main method
	Injecting the command line arguments

	Listening for startup and shutdown events
	What is the difference from @Initialized(ApplicationScoped.class) and @Destroyed(ApplicationScoped.class)
	Using @Startup to initialize a CDI bean at application startup

	Package and run the application
	Launch Modes
	Graceful Shutdown

