
Quarkus - Deploying on OpenShift
This guide covers generating and deploying OpenShift resources based on sane
default and user supplied configuration.

Prerequisites
To complete this guide, you need:

• roughly 5 minutes

• an IDE

• JDK 1.8+ installed with JAVA_HOME configured appropriately

• Apache Maven 3.6.3

• access to an OpenShift cluster (Minishift is a viable option)

• OpenShift CLI (Optional. Only required for manually deploying)

Creating the Maven project
First, we need a new project that contains the OpenShift extension. This can be done using the
following command:

mvn io.quarkus:quarkus-maven-plugin:1.8.2.Final:create \
 -DprojectGroupId=org.acme \
 -DprojectArtifactId=openshift-quickstart \
 -DclassName="org.acme.rest.GreetingResource" \
 -Dpath="/greeting" \
 -Dextensions="openshift"

cd openshift-quickstart

OpenShift
Quarkus offers the ability to automatically generate OpenShift resources based on sane default and
user supplied configuration. The OpenShift extension is actually a wrapper extension that brings
together the kubernetes and container-image-s2i extensions with sensible defaults so that it’s easier
for the user to get started with Quarkus on OpenShift.

When we added the OpenShift extension to the command line invocation above, the following
dependency was added to the pom.xml

1

deploying-to-kubernetes
container-image#s2i

 <dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-openshift</artifactId>
 </dependency>

By adding this dependency, we now have the ability to configure the OpenShift resource generation
and application using the usual application.properties approach that Quarkus provides. The
configuration items that are available can be found in:
io.quarkus.kubernetes.deployment.OpenShiftConfig class. Furthermore, the items
provided by io.quarkus.deployment.ApplicationConfig affect the OpenShift resources.

Build and Deploy (in separate steps)
If the OpenShift extension was not included during the bootstraping of the project nor was it added
subsequently (check pom.xml file for it), then it can be added like this:

 ./mvnw quarkus:add-extension -Dextensions="openshift"

Building is handled by the container-image-s2i extension. To trigger a build:

./mvnw clean package -Dquarkus.container-image.build=true

The build that will be performed is an s2i binary build. The input of the build is the jar that has been
built locally and the output of the build is an ImageStream that is configured to automatically trigger a
deployment.

To deploy the container image created in the above step to OpenShift, follow these commands:

oc get is
oc new-app --name=greeting <project>/openshift-quickstart:1.0-
SNAPSHOT
oc get svc
oc expose svc/greeting
oc get routes
curl http://<route>/greeting

In the above, oc get is will list the image stream created. It should be tagged as
<project>/openshift-quickstart:1.0-SNAPSHOT.

Similarly, oc get route will list the route URL for the exposed service "greeting" so that you can
use it to test the application.

2

container-image#s2i

Non S2i Builds
Out of the box the openshift extension is configured to use container-image-s2i. However, it’s still
possible to use other container image extensions like:

• container-image-docker

• container-image-jib

When a non-s2i container image extension is used, an ImageStream is created that is pointing to an
external dockerImageRepository. The image is built and pushed to the registry and the
ImageStream populates the tags that are available in the dockerImageRepository.

To select which extension will be used for building the image:

quarkus.container-image.builder=docker

or

quarkus.container-image.builder=jib

Build and Deploy (in a single step)
If the OpenShift extension was not included during the bootstraping of the project nor was it added
subsequently (check pom.xml file for it), then it can be added like this:

 ./mvnw quarkus:add-extension -Dextensions="openshift"

To trigger a build and deployment in a single step:

./mvnw clean package -Dquarkus.kubernetes.deploy=true

The aforementioned command will build a jar file locally, trigger a container image build and then
apply the generated OpenShift resources. The generated resources are using OpenShift’s
DeploymentConfig that is configured to automatically trigger a redeployment when a change in the
ImageStream is noticed. In other words, any container image build after the initial deployment will
automatically trigger redeployment, without the need to delete, update or re-apply the generated
resources.

To confirm the above command has created an image stream, a service resource and has deployed the
application (has a pod running), apply these commands:

3

container-image#s2i
container-image#s2i
container-image#s2i

oc get is
oc get pods
oc get svc

To expose the created service to a route and test it:

oc expose svc/greeting
oc get routes
curl http://<route>/greeting

Customizing
All available customization options are available in the OpenShift configuration options.

Some examples are provided in the sections below:

Exposing Routes

To expose a Route for the Quarkus application:

quarkus.openshift.expose=true

Tip: You don’t necessarily need to add this property in the application.properties. You can
pass it as a command line argument:

./mvnw clean package -Dquarkus.openshift.expose=true

The same applies to all properties listed below.

Labels

To add a label in the generated resources:

quarkus.openshift.labels.foo=bar

Annotations

To add an annotation in the generated resources:

quarkus.openshift.annotations.foo=bar

4

deploying-to-kubernetes#openshift

Environment variables

To add an annotation in the generated resources:

quarkus.openshift.env-vars.my-env-var.value=foobar

The command above will add MY_ENV_VAR=foobar as an environment variable. Please note that the
key my-env-var will be converted to uppercase and dashes will be replaced by underscores resulting
in MY_ENV_VAR.

You may also noticed that in contrast to labels, and annotations for environment variables you don’t
just use a key=value approach. That is because for environment variables there are additional options
rather than just value.

Environment variables from Secret

To add all key value pairs of a Secret as environment variables:

quarkus.openshift.env-vars.my-env-var.secret=my-secret

Environment variables from ConfigMap

To add all key value pairs of a ConfigMap as environment variables:

quarkus.openshift.env-vars.my-env-var.configmap=my-secret

Mounting volumes

The OpenShift extension allows the user to configure both volumes and mounts for the application.

Any volume can be mounted with a simple configuration:

quarkus.openshift.mounts.my-volume.path=/where/to/mount

This will add a mount to my pod for volume my-volume to path /where/to/mount

The volumes themselves can be configured as shown in the sections below:

Secret volumes

quarkus.openshift.secret-volumes.my-volume.secret-name=my-secret

5

ConfigMap volumes

quarkus.openshift.config-map-volumes.my-volume.config-map-name=my-
secret

Knative - OpenShift Serverless
OpenShift also provides the ability to use Knative via the OpenShift Serverless functionality.

The first order of business is to instruct Quarkus to generate Knative resources by setting:

quarkus.kubernetes.deployment-target=knative

In order to leverage OpenShift S2I to build the container image on the cluster and use the resulting
container image for the Knative application, we need to set a couple of configuration properties:

set the Kubernetes namespace which will be used to run the
application
quarkus.container-image.group=geoand
set the container image registry - this is the standard URL used
to refer to the internal OpenShift registry
quarkus.container-image.registry=image-registry.openshift-image-
registry.svc:5000

The application can then be deployed to OpenShift Serverless by enabling the standard
quarkus.kubernetes.deploy=true property.

6

https://www.openshift.com/learn/topics/serverless

	Quarkus - Deploying on OpenShift
	Prerequisites
	Creating the Maven project
	OpenShift
	Build and Deploy (in separate steps)
	Non S2i Builds
	Build and Deploy (in a single step)
	Customizing
	Knative - OpenShift Serverless

