Quarkus - Security Architecture and
Guides

Quarkus Security provides the architecture, multiple authentication and
authorization mechanisms, and other tools for the developers to build a
production-quality security for their Quarkus applications.

This document provides a brief overview of Quarkus Security and links to the individual guides.

Architecture

HttpAuthenticationMechanismis the main entry into Quarkus HTTP Security.

Quarkus Security Manager uses HttpAuthenticationMechanism to extract the authentication
credentials from the HTTP request and delegates to IdentityProvider to complete the conversion
of these credentials to SecurityIdentity.

For example, the credentials may be coming with the HTTP Authorization header, client HTTPS
certificates or cookies.

IdentityProvider verifies the authentication credentials and maps them to SecurityIdentity
which contains the user name, roles, the original authentication credentials, and other attributes.

For every authenticated resource, you can inject a SecurityIdentity instance to get the
authenticated identity information.

In some other contexts you may have other parallel representations of the same information (or parts
of it) such as SecurityContext for JAX-RS or JsonWebToken for JWT.

Authentication mechanisms

Quarkus supports several sources to load authentication information from.

Basic and Form Authentication Mechanisms

Basic and Form HTTP-based authentication mechanisms are the core authentication mechanisms
supported in Quarkus. Please see Basic HTTP Authentication and Form HTTP Authentication for more
information.

Mutual TLS Authentication

Quarkus provides Mutual TLS authentication so that you can authenticate users based on their X.509
certificates.

Please see Mutual TLS Authentication for more information.


security-built-in-authentication#basic-auth
security-built-in-authentication#form-auth
security-built-in-authentication#mutual-tls

Openld Connect

quarkus-oidc extension provides a reactive, interoperable, multi-tenant enabled Openld Connect
adapter which supports Bearer Token and Authorization Code Flow authentication
mechanisms.

Bearer Token mechanism extracts the token from HTTP Authorization header.
Authorization Code Flow mechanism uses Openld Connect Authorization Code flow. It redirects
the user to IDP to authenticate and completes the authentication process after the user has been
redirected back to Quarkus by exchanging the provided code grant for ID, access and refresh tokens.

ID and access JWT tokens are verified with the refreshable JWK key set but both JWT and opaque
(binary) tokens can be introspected remotely.

See the Using OpenlD Connect to Protect Service Applications guide for more information about
Bearer Token authentication mechanism.

See the Using OpenID Connect to Protect Web Application guide for more information about
Authorization Code Flow authentication mechanism.

Both quarkus-oidc Bearer and Authorization Code Flow Authentication
o mechanisms use SmallRye JWT to represent JWT tokens as Microprofile JWT
org.eclipse.microprofile.jwt.JsonWebToken.

See Using OpenlD Connect Multi-Tenancy for more information about multiple tenants which can
support Bearer or Authorization Code Flow authentication mechanism and configured
statically or dynamically.

If you use Keycloak and Bearer tokens then also see the Using Keycloak to Centralize Authorization
quide.

SmallRye JWT

quarkus—-smallrye-jwt provides Microprofile JWT 1.1.1 implementation and many more options to
verify signed and encrypted JWT tokens and represent them as
org.eclipse.microprofile.jwt.JsonWebToken.

It provides an alternative to quarkus-oidc Bearer Token Authentication Mechanism. It can
currently verify only JWT tokens using the PEM keys or refreshable JWK key set.

Additionally it provides JWT Generation API for creating signed, inner-signed and/or
encrypted JWT tokens with ease.

See the Using SmallRye JWT guide for more information.

OAuth2

quarkus-elytron-security-oauth?2 provides an alternative to quarkus—oidc Bearer Token
Authentication Mechanism. It is based on Elytron and is primarily meant for introspecting the


security-openid-connect
security-openid-connect-web-authentication
security-openid-connect-multitenancy
security-keycloak-authorization
security-jwt

opaque tokens remotely.

See the Using OAuth2 quide for more information.

LDAP

Please see the Authenticate with LDAP gquide for more information about LDAP authentication
mechanism.

Identity Providers

IdentityProvider converts the authentication credentials provided by
HttpAuthenticationMechanismto SecurityIdentity.

Some extensions such as O0IDC, OAuth2, SmallRye JWT, LDAP have the inlined
IdentityProvider implementations which are specific to the supported authentication flow. For
example, quarkus-oidc wuses its own IdentityProvider to convert a token to
SecurityIdentity.

If you use Basic or Form HTTP-based authentication then you have to add an IdentityProvider
which can convert a user name and password to SecurityIdentity.

See JPA IdentityProvider and JDBC IdentityProvider for more information.

Combining Authentication Mechanisms

One can combine multiple authentication mechanisms if they get the authentication credentials from
the different sources. For example, combining built-in Basic and quarkus-oidc Bearer
authentication mechanisms is allowed, but combining quarkus-oidc Bearer and smallrye-jwt
authentication mechanisms is not allowed because both will attempt to verify the token extracted
from the HTTP Authorization Bearer scheme.

Proactive Authentication

By default, Quarkus does what we call proactive authentication. This means that if an incoming
request has a credential then that request will always be authenticated (even if the target page does
not require authentication).

See Proactive Authentication for more information.

Authorization

See Security Authorization for more information about Role Based Access Control and other
authorization options.


security-oauth2
security-ldap
security-jpa
security-jdbc
security-built-in-authentication#proactive-authentication
security-authorization

Customization and other useful tips

Quarkus Security is highly customizable. One can register custom
HttpAuthenticationMechanisms, IdentityProviders and
SecurityidentityAugmentors.

See Security Customization for more information about customizing Quarkus Security and other
useful tips about the reactive security, registering the security providers, etc.

Secure connections with SSL

See the Supporting secure connections with SSL guide for more information.

Cross-Origin Resource Sharing

If you plan to make your Quarkus application accessible to another application running on a different
domain, you will need to configure CORS (Cross-Origin Resource Sharing). Please read the HTTP
CORS documentation for more information.

Testing

See Security Testing for more information about testing Quarkus Security.

Secret Engines

Quarkus provides a very comprehensive HashiCorp Vault support, please see the Quarkus and
HashiCorp Vault documentation for more information.


security-customization
http-reference#ssl
http-reference#cors-filter
http-reference#cors-filter
security-testing
vault
vault

	Quarkus - Security Architecture and Guides
	Architecture
	Authentication mechanisms
	Basic and Form Authentication Mechanisms
	Mutual TLS Authentication
	OpenId Connect
	SmallRye JWT
	OAuth2
	LDAP

	Identity Providers
	Combining Authentication Mechanisms
	Proactive Authentication
	Authorization
	Customization and other useful tips
	Secure connections with SSL
	Cross-Origin Resource Sharing
	Testing
	Secret Engines

