Creating a new project
With Maven, you can scaffold a new project with:
mvn io.quarkus.platform:quarkus-maven-plugin:2.5.0.CR1:create \
-DprojectGroupId=my-groupId \
-DprojectArtifactId=my-artifactId \
-DprojectVersion=my-version \
-DclassName="org.my.group.MyResource"
If you just launch mvn io.quarkus.platform:quarkus-maven-plugin:2.5.0.CR1:create the Maven plugin asks
for user inputs. You can disable (and use default values) this interactive mode by passing -B to the Maven command.
|
The following table lists the attributes you can pass to the create
command:
Attribute | Default Value | Description |
---|---|---|
|
|
The group id of the created project |
|
mandatory |
The artifact id of the created project. Not passing it triggers the interactive mode. |
|
|
The version of the created project |
|
|
The group id of the target platform. |
|
|
The artifact id of the target platform BOM. |
|
The version currently recommended by the Quarkus Extension Registry |
The version of the platform you want the project to use. It can also accept a version range, in which case the latest from the specified range will be used. |
|
Not created if omitted |
The fully qualified name of the generated resource |
|
|
The resource path, only relevant if |
|
[] |
The list of extensions to add to the project (comma-separated) |
By default, the command will target the io.quarkus.platform:quarkus-bom:2.5.0.CR1
platform release (unless the coordinates of the desired platform release have been specified).
If you decide to generate a REST resource (using the className
attribute), the endpoint is exposed at: http://localhost:8080/$path
.
If you use the default path
, the URL is: http://localhost:8080/hello.
The project is generated in a directory named after the passed artifactId. If the directory already exists, the generation fails.
A pair of Dockerfiles for native and jvm mode are also generated in src/main/docker
.
Instructions to build the image and run the container are written in those Dockerfiles.
Dealing with extensions
From inside a Quarkus project, you can obtain a list of the available extensions with:
./mvnw quarkus:list-extensions
You can enable an extension using:
./mvnw quarkus:add-extension -Dextensions="hibernate-validator"
Extensions are passed using a comma-separated list.
The extension name is the GAV name of the extension: e.g. io.quarkus:quarkus-agroal
.
But you can pass a partial name and Quarkus will do its best to find the right extension.
For example, agroal
, Agroal
or agro
will expand to io.quarkus:quarkus-agroal
.
If no extension is found or if more than one extensions match, you will see a red check mark ❌ in the command result.
$ ./mvnw quarkus:add-extensions -Dextensions=jdbc,agroal,non-exist-ent
[...]
❌ Multiple extensions matching 'jdbc'
* io.quarkus:quarkus-jdbc-h2
* io.quarkus:quarkus-jdbc-mariadb
* io.quarkus:quarkus-jdbc-postgresql
Be more specific e.g using the exact name or the full gav.
✅ Adding extension io.quarkus:quarkus-agroal
❌ Cannot find a dependency matching 'non-exist-ent', maybe a typo?
[...]
You can install all extensions which match a globbing pattern :
./mvnw quarkus:add-extension -Dextensions="hibernate-*"
Development mode
Quarkus comes with a built-in development mode. Run your application with:
./mvnw compile quarkus:dev
You can then update the application sources, resources and configurations. The changes are automatically reflected in your running application. This is great to do development spanning UI and database as you see changes reflected immediately.
quarkus:dev
enables hot deployment with background compilation, which means
that when you modify your Java files or your resource files and refresh your browser these changes will automatically take effect.
This works too for resource files like the configuration property file.
The act of
refreshing the browser triggers a scan of the workspace, and if any changes are detected the Java files are compiled,
and the application is redeployed, then your request is serviced by the redeployed application. If there are any issues
with compilation or deployment an error page will let you know.
Hit CTRL+C
to stop the application.
By default,
|
Remote Development Mode
It is possible to use development mode remotely, so that you can run Quarkus in a container environment (such as OpenShift) and have changes made to your local files become immediately visible.
This allows you to develop in the same environment you will actually run your app in, and with access to the same services.
Do not use this in production. This should only be used in a development environment. You should not run production application in dev mode. |
To do this you must build a mutable application, using the mutable-jar
format. Set the following properties in application.properties
:
quarkus.package.type=mutable-jar (1)
quarkus.live-reload.password=changeit (2)
quarkus.live-reload.url=http://my.cluster.host.com:8080 (3)
1 | This tells Quarkus to use the mutable-jar format. Mutable applications also include the deployment time parts of Quarkus, so they take up a bit more disk space. If run normally they start just as fast and use the same memory as an immutable application, however they can also be started in dev mode. |
2 | The password that is used to secure communication between the remote side and the local side. |
3 | The URL that your app is going to be running in dev mode at. This is only needed on the local side, so you may want to leave it out of the properties file and specify it as a system property on the command line. |
The mutable-jar
is then built in the same way that a regular Quarkus jar is built, i.e. by issuing:
./mvnw package
Before you start Quarkus on the remote host set the environment variable QUARKUS_LAUNCH_DEVMODE=true
. If you are
on bare metal you can set it via the export QUARKUS_LAUNCH_DEVMODE=true
command and then run the application with the proper java -jar …
command to run the application.
If you plan on running the application via Docker, then you’ll need to add -e QUARKUS_LAUNCH_DEVMODE=true
to the docker run
command.
When the application starts you should now see the following line in the logs: Profile dev activated. Live Coding activated
.
The remote side does not need to include Maven or any other development tools. The normal fast-jar Dockerfile
that is generated with a new Quarkus application is all you need. If you are using bare metal launch the Quarkus runner
jar, do not attempt to run normal devmode.
|
Now you need to connect your local agent to the remote host, using the remote-dev
command:
./mvnw quarkus:remote-dev -Dquarkus.live-reload.url=http://my-remote-host:8080
Now every time you refresh the browser you should see any changes you have made locally immediately visible in the remote app. This is done via a HTTP based long polling transport, that will synchronize your local workspace and the remote application via HTTP calls.
If you do not want to use the HTTP feature then you can simply run the remote-dev
command without specifying the URL.
In this mode the command will continuously rebuild the local application, so you can use an external tool such as odo or
rsync to sync to the remote application.
All the config options are shown below:
Configuration property fixed at build time - All other configuration properties are overridable at runtime
Type |
Default |
|
---|---|---|
Whether or not Quarkus should enable its ability to not do a full restart when changes to classes are compatible with JVM instrumentation. If this is set to true, Quarkus will perform class redefinition when possible. |
boolean |
|
The names of additional resource files to watch for changes, triggering a reload on change. Directories are not supported. |
list of string |
|
Password used to use to connect to the remote dev-mode application |
string |
|
URL used to use to connect to the remote dev-mode application |
string |
|
The amount of time to wait for a remote dev connect or reconnect |
|
|
The amount of time to wait between attempts when connecting to the server side of remote dev |
|
|
The maximum number of attempts when connecting to the server side of remote dev |
int |
|
About the Duration format
The format for durations uses the standard You can also provide duration values starting with a number.
In this case, if the value consists only of a number, the converter treats the value as seconds.
Otherwise, |
It is recommended you use SSL when using remote dev mode, however even if you are using an unencrypted connection your password is never sent directly over the wire. For the initial connection request the password is hashed with the initial state data, and subsequent requests hash it with a random session id generated by the server and any body contents for POST requests, and the path for DELETE requests, as well as an incrementing counter to prevent replay attacks. |
Configuring Development Mode
By default, the Maven plugin picks up compiler flags to pass to
javac
from maven-compiler-plugin
.
If you need to customize the compiler flags used in development mode,
add a configuration
section to the plugin
block and set the
compilerArgs
property just as you would when configuring
maven-compiler-plugin
. You can also set source
, target
, and
jvmArgs
. For example, to pass --enable-preview
to both the JVM
and javac
:
<plugin>
<groupId>${quarkus.platform.group-id}</groupId>
<artifactId>quarkus-maven-plugin</artifactId>
<version>${quarkus.platform.version}</version>
<configuration>
<source>${maven.compiler.source}</source>
<target>${maven.compiler.target}</target>
<compilerArgs>
<arg>--enable-preview</arg>
</compilerArgs>
<jvmArgs>--enable-preview</jvmArgs>
</configuration>
...
</plugin>
Debugging
In development mode, Quarkus starts by default with debug mode enabled, listening to port 5005
without suspending the JVM.
This behavior can be changed by giving the debug
system property one of the following values:
-
false
- the JVM will start with debug mode disabled -
true
- The JVM is started in debug mode and will be listening on port5005
-
client
- the JVM will start in client mode and attempt to connect tolocalhost:5005
-
{port}
- The JVM is started in debug mode and will be listening on{port}
An additional system property suspend
can be used to suspend the JVM, when launched in debug mode. suspend
supports the following values:
-
y
ortrue
- The debug mode JVM launch is suspended -
n
orfalse
- The debug mode JVM is started without suspending
You can also run a Quarkus application in debug mode with a suspended JVM using Then, attach your debugger to |
Import in your IDE
Once you have a project generated, you can import it in your favorite IDE. The only requirement is the ability to import a Maven project.
Eclipse
In Eclipse, click on: File → Import
.
In the wizard, select: Maven → Existing Maven Project
.
On the next screen, select the root location of the project.
The next screen list the found modules; select the generated project and click on Finish
. Done!
In a separated terminal, run ./mvnw compile quarkus:dev
, and enjoy a highly productive environment.
IntelliJ
In IntelliJ:
-
From inside IntelliJ select
File → New → Project From Existing Sources…
or, if you are on the welcome dialog, selectImport project
. -
Select the project root
-
Select
Import project from external model
andMaven
-
Next a few times (review the different options if needed)
-
On the last screen click on Finish
In a separated terminal or in the embedded terminal, run ./mvnw compile quarkus:dev
. Enjoy!
Apache NetBeans
In NetBeans:
-
Select
File → Open Project
-
Select the project root
-
Click on
Open Project
In a separated terminal or the embedded terminal, go to the project root and run ./mvnw compile quarkus:dev
. Enjoy!
Visual Studio Code
Open the project directory in VS Code. If you have installed the Java Extension Pack (grouping a set of Java extensions), the project is loaded as a Maven project.
Logging Quarkus application build classpath tree
Usually, dependencies of an application (which is a Maven project) could be displayed using mvn dependency:tree
command. In case of a Quarkus application, however, this command will list only the runtime dependencies of the application.
Given that the Quarkus build process adds deployment dependencies of the extensions used in the application to the original application classpath, it could be useful to know which dependencies and which versions end up on the build classpath.
Luckily, the quarkus
Maven plugin includes the dependency-tree
goal which displays the build dependency tree for the application.
Executing ./mvnw quarkus:dependency-tree
on your project should result in an output similar to:
[INFO] --- quarkus-maven-plugin:2.5.0.CR1:build-tree (default-cli) @ getting-started ---
[INFO] org.acme:getting-started:jar:1.0.0-SNAPSHOT
[INFO] └─ io.quarkus:quarkus-resteasy-deployment:jar:2.5.0.CR1 (compile)
[INFO] ├─ io.quarkus:quarkus-resteasy-server-common-deployment:jar:2.5.0.CR1 (compile)
[INFO] │ ├─ io.quarkus:quarkus-core-deployment:jar:2.5.0.CR1 (compile)
[INFO] │ │ ├─ commons-beanutils:commons-beanutils:jar:1.9.3 (compile)
[INFO] │ │ │ ├─ commons-logging:commons-logging:jar:1.2 (compile)
[INFO] │ │ │ └─ commons-collections:commons-collections:jar:3.2.2 (compile)
...
The goal accepts the optional mode
parameter whose default value is prod
, i.e. the production build dependency tree. Alternatively, it accepts values test
to display the test dependency tree and dev
to display the dev mode dependency tree.
Building a native executable
Native executables make Quarkus applications ideal for containers and serverless workloads.
Make sure to have GRAALVM_HOME
configured and pointing to GraalVM version 21.3.0 (Make sure to use a Java 11 version of GraalVM).
Verify that your pom.xml
has the proper native
profile (see Maven configuration).
Create a native executable using: ./mvnw package -Pnative
.
A native executable will be present in target/
.
To run Integration Tests on the native executable, make sure to have the proper Maven plugin configured (see Maven configuration) and launch the verify
goal.
$ ./mvnw verify -Pnative
...
[quarkus-quickstart-runner:50955] universe: 391.96 ms
[quarkus-quickstart-runner:50955] (parse): 904.37 ms
[quarkus-quickstart-runner:50955] (inline): 1,143.32 ms
[quarkus-quickstart-runner:50955] (compile): 6,228.44 ms
[quarkus-quickstart-runner:50955] compile: 9,130.58 ms
[quarkus-quickstart-runner:50955] image: 2,101.42 ms
[quarkus-quickstart-runner:50955] write: 803.18 ms
[quarkus-quickstart-runner:50955] [total]: 33,520.15 ms
[INFO]
[INFO] --- maven-failsafe-plugin:2.22.0:integration-test (default) @ quarkus-quickstart-native ---
[INFO]
[INFO] -------------------------------------------------------
[INFO] T E S T S
[INFO] -------------------------------------------------------
[INFO] Running org.acme.quickstart.GreetingResourceIT
Executing [/Users/starksm/Dev/JBoss/Quarkus/starksm64-quarkus-quickstarts/getting-started-native/target/quarkus-quickstart-runner, -Dquarkus.http.port=8081, -Dtest.url=http://localhost:8081, -Dquarkus.log.file.path=target/quarkus.log]
2019-02-28 16:52:42,020 INFO [io.quarkus] (main) Quarkus started in 0.007s. Listening on: http://localhost:8080
2019-02-28 16:52:42,021 INFO [io.quarkus] (main) Installed features: [cdi, resteasy]
[INFO] Tests run: 2, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 1.081 s - in org.acme.quickstart.GreetingResourceIT
[INFO]
[INFO] Results:
[INFO]
[INFO] Tests run: 2, Failures: 0, Errors: 0, Skipped: 0
...
Build a container friendly executable
The native executable will be specific to your operating system. To create an executable that will run in a container, use the following:
./mvnw package -Dnative -Dquarkus.native.container-build=true
The produced executable will be a 64 bit Linux executable, so depending on your operating system it may no longer be runnable. However, it’s not an issue as we are going to copy it to a Docker container. Note that in this case the build itself runs in a Docker container too, so you don’t need to have GraalVM installed locally.
By default, the native executable will be generated using the If you want to build a native executable with a different Docker image (for instance to use a different GraalVM version),
use the The list of the available Docker images can be found on quay.io. Be aware that a given Quarkus version might not be compatible with all the images available. |
You can follow the Build a native executable guide as well as Deploying Application to Kubernetes and OpenShift for more information.
Maven configuration
If you have not used project scaffolding, add the following elements in your pom.xml
<dependencyManagement>
<dependencies>
<dependency> (1)
<groupId>${quarkus.platform.group-id}</groupId>
<artifactId>quarkus-bom</artifactId>
<version>${quarkus.platform.version}</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>
<build>
<plugins>
<plugin> (2)
<groupId>${quarkus.platform.group-id}</groupId>
<artifactId>quarkus-maven-plugin</artifactId>
<version>${quarkus.platform.version}</version>
<extensions>true</extensions> (3)
<executions>
<execution>
<goals>
<goal>build</goal>
<goal>generate-code</goal>
<goal>generate-code-tests</goal>
</goals>
</execution>
</executions>
</plugin>
<plugin> (4)
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>
<version>${surefire-plugin.version}</version>
<configuration>
<systemPropertyVariables>
<java.util.logging.manager>org.jboss.logmanager.LogManager</java.util.logging.manager>
<maven.home>${maven.home}</maven.home>
</systemPropertyVariables>
</configuration>
</plugin>
</plugins>
</build>
<profiles>
<profile> (5)
<id>native</id>
<properties> (6)
<quarkus.package.type>native</quarkus.package.type>
</properties>
<build>
<plugins>
<plugin> (7)
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-failsafe-plugin</artifactId>
<version>${surefire-plugin.version}</version>
<executions>
<execution>
<goals>
<goal>integration-test</goal>
<goal>verify</goal>
</goals>
<configuration>
<systemPropertyVariables>
<native.image.path>${project.build.directory}/${project.build.finalName}-runner</native.image.path>
<java.util.logging.manager>org.jboss.logmanager.LogManager</java.util.logging.manager>
<maven.home>${maven.home}</maven.home>
</systemPropertyVariables>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>
</profile>
</profiles>
1 | Optionally use a BOM file to omit the version of the different Quarkus dependencies. |
2 | Use the Quarkus Maven plugin that will hook into the build process. |
3 | Enabling Maven plugin extensions will register a Quarkus MavenLifecycleParticipant which will make sure the Quarkus classloaders used during the build are properly closed. During the generate-code and generate-code-tests goals the Quarkus application bootstrap is initialized and re-used in the build goal (which actually builds and packages a production application). The Quarkus classloaders will be properly closed in the build goal of the quarkus-maven-plugin . However, if the build fails in between the generate-code or generate-code-tests and build then the Quarkus augmentation classloader won’t be properly closed, which may lead to locking of JAR files that happened to be on the classpath on Windows OS. |
4 | Add system properties to maven-surefire-plugin .maven.home is only required if you have custom configuration in ${maven.home}/conf/settings.xml . |
5 | Use a specific native profile for native executable building. |
6 | Enable the native package type. The build will therefore produce a native executable. |
7 | If you want to test your native executable with Integration Tests, add the following plugin configuration. Test names *IT and annotated @NativeImageTest will be run against the native executable. See the Native executable guide for more info. |
Using fast-jar
fast-jar
is now the default quarkus package type. The result of ./mvnw package
command is a new directory under target
named quarkus-app
.
You can run the application using: java -jar target/quarkus-app/quarkus-run.jar
.
In order to successfully run the produced jar, you need to have the entire contents of the quarkus-app directory. If any of the files are missing, the application will not start or
might not function correctly.
|
The fast-jar packaging results in creating an artifact that starts a little faster and consumes slightly less memory than a legacy Quarkus jar
because it has indexed information about which dependency jar contains classes and resources. It can thus avoid the lookup into potentially every jar
on the classpath that the legacy jar necessitates, when loading a class or resource.
|
Uber-Jar Creation
Quarkus Maven plugin supports the generation of Uber-Jars by specifying a quarkus.package.type=uber-jar
configuration option in your application.properties
(or <quarkus.package.type>uber-jar</quarkus.package.type>
in your pom.xml
).
The original jar will still be present in the target
directory but it will be renamed to contain the .original
suffix.
When building an Uber-Jar you can specify entries that you want to exclude from the generated jar by using the quarkus.package.ignored-entries
configuration
option, this takes a comma separated list of entries to ignore.
Uber-Jar creation by default excludes signature files that might be present in the dependencies of the application.
Uber-Jar’s final name is configurable via a Maven’s build settings finalName
option.
Working with multi-module projects
By default, Quarkus will not discover CDI beans inside another module.
The best way to enable CDI bean discovery for a module in a multi-module project would be to include the jandex-maven-plugin
,
unless it is the main application module already configured with the quarkus-maven-plugin, in which case it will indexed automatically.
<build>
<plugins>
<plugin>
<groupId>org.jboss.jandex</groupId>
<artifactId>jandex-maven-plugin</artifactId>
<version>1.2.1</version>
<executions>
<execution>
<id>make-index</id>
<goals>
<goal>jandex</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
More information on this topic can be found on the Bean Discovery section of the CDI guide.
Building with a specific configuration profile
Quarkus supports configuration profiles in order to provide a specific configuration according to the target environment.
The profile can be provided directly in the Maven build’s command thanks to the system property quarkus.profile
with a command of type ./mvnw package -Dquarkus.profile=<profile-name-here>
,
however it is also possible to specify the profile directly in the POM file of the project using project properties, the Quarkus Maven plugin configuration properties or system properties set in the Quarkus Maven plugin configuration.
In order of precedence (greater precedence first):
<project xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd" xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
...
<build>
<plugins>
...
<plugin>
<groupId>${quarkus.platform.group-id}</groupId>
<artifactId>quarkus-maven-plugin</artifactId>
<version>${quarkus.platform.version}</version>
<extensions>true</extensions>
<configuration>
<systemProperties>
<quarkus.profile>prod-aws</quarkus.profile> (1)
</systemProperties>
</configuration>
</plugin>
...
</plugins>
</build>
...
</project>
1 | The default configuration profile of this project is prod-aws . |
<project xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd" xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
...
<build>
<plugins>
...
<plugin>
<groupId>${quarkus.platform.group-id}</groupId>
<artifactId>quarkus-maven-plugin</artifactId>
<version>${quarkus.platform.version}</version>
<extensions>true</extensions>
<configuration>
<properties>
<quarkus.profile>prod-aws</quarkus.profile> (1)
</properties>
</configuration>
</plugin>
...
</plugins>
</build>
...
</project>
1 | The default configuration profile of this project is prod-aws . |
<project xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd" xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
...
<properties>
<quarkus.profile>prod-aws</quarkus.profile> (1)
...
</properties>
...
</project>
1 | The default configuration profile of this project is prod-aws . |
Whatever the approach is chosen, the profile can still be overridden with the quarkus.profile system property or the QUARKUS_PROFILE environment variable.
|
Building several artifacts from a single module
In some particular use cases, it can be interesting to build several artifacts of your application from the same module. A typical example is when you want to build your application with different configuration profiles.
In that case, it is possible to add as many executions as needed to the Quarkus Maven plugin configuration.
Below is an example of a Quarkus Maven plugin configuration that will produce two builds of the same application: one using the prod-oracle
profile and the other one using the prod-postgresql
profile.
<project xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd" xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
...
<build>
<plugins>
...
<plugin>
<groupId>${quarkus.platform.group-id}</groupId>
<artifactId>quarkus-maven-plugin</artifactId>
<version>${quarkus.platform.version}</version>
<extensions>true</extensions>
<executions>
<execution>
<id>oracle</id>
<goals>
<goal>build</goal>
</goals>
<configuration>
<properties>
<quarkus.profile>prod-oracle</quarkus.profile> (1)
<quarkus.package.output-directory>oracle-quarkus-app</quarkus.package.output-directory> (2)
</properties>
</configuration>
</execution>
<execution>
<id>postgresql</id>
<goals>
<goal>build</goal>
</goals>
<configuration>
<properties>
<quarkus.profile>prod-postgresql</quarkus.profile> (3)
<quarkus.package.output-directory>postgresql-quarkus-app</quarkus.package.output-directory> (4)
</properties>
</configuration>
</execution>
</executions>
</plugin>
...
</plugins>
</build>
...
</project>
1 | The default configuration profile of the first execution of the plugin is prod-oracle . |
2 | The output directory of the first execution of the plugin is set to oracle-quarkus-app instead of quarkus-app to have a dedicated directory. |
3 | The default configuration profile of the second execution of the plugin is prod-postgresql . |
4 | The output directory of the second execution of the plugin is set to postgresql-quarkus-app instead of quarkus-app to have a dedicated directory. |
With the configuration above, both profile builds will be using the same dependencies, so if we added dependencies on the Oracle and PostgreSQL drivers to the application, both of the drivers will appear in both builds. |
To isolate profile-specific dependencies from other profiles, the JDBC drivers could be added as optional dependencies to the application but configured to be included in each profile that requires them, e.g.:
<project xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd" xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
...
<dependencies>
...
<dependency>
<groupId>org.postgresql</groupId>
<artifactId>postgresql</artifactId>
<version>${postgresql.driver.version}</version>
<optional>true</optional> (1)
</dependency>
</dependencies>
<build>
<plugins>
...
<plugin>
<groupId>${quarkus.platform.group-id}</groupId>
<artifactId>quarkus-maven-plugin</artifactId>
<version>${quarkus.platform.version}</version>
<extensions>true</extensions>
<executions>
...
<execution>
<id>postgresql</id>
<goals>
<goal>build</goal>
</goals>
<configuration>
<properties>
<quarkus.profile>prod-postgresql</quarkus.profile>
<quarkus.package.output-directory>postgresql-quarkus-app</quarkus.package.output-directory>
<quarkus.package.filter-optional-dependencies>true</quarkus.package.filter-optional-dependencies> (2)
<quarkus.package.included-optional-dependencies>org.postgresql:postgresql::jar</quarkus.package.included-optional-dependencies> (3)
</properties>
</configuration>
</execution>
</executions>
</plugin>
...
</plugins>
</build>
...
</project>
1 | The JDBC driver of PostgreSQL is defined as an optional dependency |
2 | For backward compatibility reasons, it is necessary to explicitly indicate that the optional dependencies need to be filtered. |
3 | Only the optional dependency corresponding to the JDBC driver of PostgreSQL is expected in the final artifact. |
Configuring the Project Output
There are a several configuration options that will define what the output of your project build will be.
These are provided in application.properties
the same as any other config property.
The properties are shown below:
Configuration property fixed at build time - All other configuration properties are overridable at runtime
Type |
Default |
|
---|---|---|
The requested output type. The default built in types are 'jar' (which will use 'fast-jar'), 'legacy-jar' for the pre-1.12 default jar packaging, 'uber-jar', 'native' and 'native-sources'. |
string |
|
If the Implementation information should be included in the runner jar’s MANIFEST.MF. |
boolean |
|
The entry point of the application. This can either be a a fully qualified name of a standard Java class with a main method, or |
string |
|
Files that should not be copied to the output artifact |
list of string |
|
List of all the dependencies that have been defined as optional to include into the final package of the application. Each optional dependency needs to be expressed in the following format:
groupId:artifactId:classifier:type
With the classifier and type being optional.
If the type is missing, the artifact is assumed to be of type |
list of string |
|
Flag indicating whether the optional dependencies should be filtered out or not. This parameter is meant to be used in modules where multi-builds have been configured to avoid getting a final package with unused dependencies. |
boolean |
|
The suffix that is applied to the runner jar and native images |
string |
|
The output folder in which to place the output, this is resolved relative to the build systems target directory. |
string |
|
The name of the final artifact |
string |
|
Whether to automate the creation of AppCDS. This has not effect when a native binary is needed and will be ignored in that case. Furthermore, this option only works for Java 11+ and is considered experimental for the time being. Finally, care must be taken to use the same exact JVM version when building and running the application. |
boolean |
|
When AppCDS generation is enabled, if this property is set, then the JVM used to generate the AppCDS file will be the JVM present in the container image. The builder image is expected to have have the 'java' binary on its PATH. This flag is useful when the JVM to be used at runtime is not the same exact JVM version as the one used to build the jar. Note that this property is consulted only when |
string |
|
This is an advanced option that only takes effect for the mutable-jar format. If this is specified a directory of this name will be created in the jar distribution. Users can place jar files in this directory, and when re-augmentation is performed these will be processed and added to the class-path. Note that before reaugmentation has been performed these jars will be ignored, and if they are updated the app should be reaugmented again. |
string |
|
This option only applies when using fast-jar or mutable-jar. If this option is true then a list of all the coordinates of the artifacts that made up this image will be included in the quarkus-app directory. This list can be used by vulnerability scanners to determine if your application has any vulnerable dependencies. |
boolean |
|
An advanced option that will decompile generated and transformed bytecode into the 'decompiled' directory. This is only taken into account when fast-jar is used. |
boolean |
|
The git hash to use to download the fernflower tool from https://jitpack.io/com/github/fesh0r/fernflower/ |
string |
|
The directory into which to save the fernflower tool if it doesn’t exist |
string |
|
If set to |
boolean |
|
Custom manifest sections to be added to the MANIFEST.MF file. An example of the user defined property: quarkus.package.manifest.manifest-sections.{Section-Name}.{Entry-Key1}={Value1} quarkus.package.manifest.manifest-sections.{Section-Name}.{Entry-Key2}={Value2} |
|
Custom test configuration profile in JVM mode
By default, Quarkus tests in JVM mode are run using the test
configuration profile. If you are not familiar with Quarkus
configuration profiles, everything you need to know is explained in the
Configuration Profiles Documentation.
It is however possible to use a custom configuration profile for your tests with the Maven Surefire and Maven Failsafe configurations shown below. This can be useful if you need for example to run some tests using a specific database which is not your default testing database.
<project>
[...]
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>
<version>${surefire-plugin.version}</version>
<configuration>
<systemPropertyVariables>
<quarkus.test.profile>foo</quarkus.test.profile> (1)
<buildDirectory>${project.build.directory}</buildDirectory>
[...]
</systemPropertyVariables>
</configuration>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-failsafe-plugin</artifactId>
<version>${failsafe-plugin.version}</version>
<configuration>
<systemPropertyVariables>
<quarkus.test.profile>foo</quarkus.test.profile> (1)
<buildDirectory>${project.build.directory}</buildDirectory>
[...]
</systemPropertyVariables>
</configuration>
</plugin>
</plugins>
</build>
[...]
</project>
1 | The foo configuration profile will be used to run the tests. |
It is not possible to use a custom test configuration profile in native mode for now. Native tests are always run using the
|
Bootstrap Maven properties
Quarkus bootstrap includes a Maven resolver implementation that is used to resolve application runtime and build time dependencies. The Quarkus Maven resolver is initialized from the same Maven command line that launched the build, test or dev mode. Typically, there is no need to add any extra configuration for it. However, there could be cases where an extra configuration option may be necessary to properly resolve application dependencies in test or dev modes, or IDEs.
Maven test plugins (such as surefire
and failsafe
), for example, are not propagating build system properties to the running tests by default. Which means some of the system properties set by the Maven CLI aren’t available for the Quarkus Maven resolver initialized for the tests, which may result in test dependencies being resolved using different settings than the main Maven build.
Here is a list of system properties the Quarkus bootstrap Maven resolver checks during its initialization.
Property name | Default Value | Description |
---|---|---|
|
|
The Maven home dir is used to resolve the global settings file unless it was explicitly provided on the command line with the |
|
|
Unless the custom settings file has been provided with the |
|
|
This property could be used to configure a custom local Maven repository directory, if it is different from the default one and the one specified in the |
|
none |
This property may be useful to help the Maven resolver identify the top-level Maven project in the workspace. By default, the Maven resolver will be discovering a project’s workspace by navigating the parent-module POM relationship. However there could be project layouts that are using an aggregator module which isn’t appearing as the parent for its modules. In this case, this property will help the Quarkus Maven resolver to properly discover the workspace. |
|
|
By default, the Quarkus Maven resolver is reading project’s POMs directly when discovering the project’s layout. While in most cases it works well enough and relatively fast, reading raw POMs has its limitation. E.g. if a POM includes modules in a profile, these modules will not be discovered. This system property enables project’s layout discovery based on the effective POM models, that are properly interpolated, instead of the raw ones. The reason this option is not enabled by default is it may appear to be significantly more time consuming that could increase, e.g. CI testing times. Until there is a better approach found that could be used by default, projects that require it should enable this option. |
These system properties above could be added to, e.g., a surefire
and/or failsafe
plugin configuration as
<project>
[...]
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>
<version>${surefire-plugin.version}</version>
<configuration>
<systemPropertyVariables>
<maven.home>${maven.hom}</maven.home> (1)
<maven.repo.local>${settings.localRepository}</maven.repo.local> (2)
<maven.settings>${session.request.userSettingsFile.path}</maven.settings> (3)
<maven.top-level-basedir>${session.topLevelProject.basedir.absolutePath}</maven.top-level-basedir> (4)
<quarkus.bootstrap.effective-model-builder>true</quarkus.bootstrap.effective-model-builder> (5)
</systemPropertyVariables>
</configuration>
</plugin>
</plugins>
</build>
[...]
</project>
1 | Propagate maven.home system property set by the Maven CLI to the tests |
2 | Set the Maven local repository directory for the tests |
3 | Set the Maven settings file the tests |
4 | Point to the top-level project directory for the tests |
5 | Enable effective POM-based project layout discovery |
Top-level vs Multi-module project directory
In Maven there appears to be a notion of the top-level project (that is exposed as a project property ${session.topLevelProject.basedir.absolutePath}
)
and the multi-module project directory (that is available as property ${maven.multiModuleProjectDirectory}
). These directories might not always match!
maven.multiModuleProjectDirectory is meant to be consulted by the Maven code itself and not something to be relied upon by user code. So, if you find it useful, use it at your own risk!
|
The ${maven.multiModuleProjectDirectory}
will be resolved to the first directory that contains .mvn
directory as its child going up the workspace file system tree
starting from the current directory (or the one specified with the -f
argument) from which the mvn
command was launched. If the .mvn
directory was not found, however,
the ${maven.multiModuleProjectDirectory}
will be pointing to the directory from which the mvn
command was launched (or the one targeted with the -f
argument).
The ${session.topLevelProject.basedir.absolutePath}
will be pointing either to the directory from which the mvn
command was launched or to the directory targeted with
the -f
argument, if it was specified.