Ehcache v1.2.3 User Guide

Greg Luck

2 September 2006

Ehcache v1.2.3 User Guide

Contents

1 Preface
1.1 Audience
1.2 BookFormat e
1.3 Acknowledgements
1.4 Aboutthe ehcachenameandlogo

2 Introduction

2.1 AboutCaches e

2.2 Whycachingworks e e
2.2.1 Localityof Reference. e
222 ThelongTail. e

2.3 Wil an Application Bene t from Caching?
2.3.1 Speeding up CPU bound Applications
2.3.2 Speeding up I/O bound Applications
2.3.3 Increased Application Scalability

2.4 How much will an application speed up with Caching?
2.4.1 Theshortanswer e
2.4.2 Applying Amdahl'sLaw e
2.4.3 CacheEfciency
2.4.4 ClusterEfciency. e
245 Acacheversionof Amdahlslaw
24.6 WebPageexample e

3 Getting Started
3.1 GeneralPurposeCaching e
3.2 Hibernate e
3.3 J2EE ServletCaching e
3.4 Spring, Cocoon, Acegi and otherframeworks

4 Features
4.1 FastandLightWeight. e

11

11
11
11
12

13
13
13
13
13
14
14
14
15
15
15
15
16
17
17
18

19
19
19
19
20

21

Ehcache v1.2.3 User Guide

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.1.1 Fast e 22
4.1.2 Simple e e 23
4.1.3 Smallfootprint e 23
4.1.4 Minimaldependencies e 24
Scalable e 24
4.2.1 Provides Memory and Disk stores for scalabilty ingadpytes 24
4.2.2 Scalableto hundredsofcaches 24
4.2.3 Tuned for high concurrent load on large multi-cpuessv. 24

4.2.4 Multiple CacheManagers per virtual machine 24

Complete e 24
4.3.1 Supports Object or Serializablecaching 24
4.3.2 Support cache-wide or Element-based expiry policies 24
4.3.3 Provides LRU, LFU and FIFO cache eviction policies 24
4.3.4 Provides Memory and Diskstores L. 25
435 Distributed 25
Extensible e 25
4.4.1 Listenersmaybe pluggedin Lo 25
4.4.2 Peer Discovery, Replicators and Listenersmay beggeldgn 25
Application Persistence e e 25
45.1 Persistent disk store which stores data between Vtdrtes 25
45.2 Flushtodiskondemand 25
Listeners. e 25
4.6.1 CacheManagerlisteners e 25
4.6.2 Cacheeventlisteners e 26
Distributed Caching e e 26
4.7.1 PeerDiSCOVEIY e e 26
4.7.2 Reliable Delivery e e 26
4.7.3 Synchronous Or Asynchronous Replication 26
4.7.4 Copy Or Invalidate Replication 26
4.7.5 TransparentReplication 26
4.7.6 Extensible. 26
4.7.7 BootstrappingfromPeers 27
J2EE and Applied Caching e 27
4.8.1 Blocking Cache to avoid duplicate processing for corent operations 27
4.8.2 SelfPopulating Cache for pull through caching of evgdee operations 27
4.8.3 J2EE Gzipping ServletFilter o 27
484 CacheableCommands iininun 27
4.85 Workswith Hibernate 28
HighQuality e 28

49.1 HighTestCoverage o o i i i i 28

Ehcache v1.2.3 User Guide 5
4.9.2 Automated Load, Limit and Performance SystemTests 28

4.9.3 SpecicConcurrencyTesting e e 28

4.9.4 Productiontested e 28

495 Fullydocumented e 29

4.9.6 Trusted by Popular Frameworks 29

4.9.7 Conservative Commitpolicy e 29
4.9.8 Full public information on the history ofeverybug 29

4.9.9 Responsiveness to serious bugs 29

4.10 Open SourcelLicensing e 29
4.10.1 Apache2.0license 29

5 Key Ehcache Concepts 31
5.1 KeyEhcacheClasses e 31
5.1.1 CacheManager e 32

5.1.2 Ehcache. e 34

5.1.3 Element e 35

5.2 Cache Eviction Algorithms e 36
5.2.1 AboutEviction Algorithms 36

5.2.2 Ehcache's Eviction Algorithms o oo 36

5.3 CacheUsagePatterns e e 37
5.3.1 DirectManipulation e 37

5.3.2 SelfPopulating e e 37

6 Code Samples 39
6.1 Usingthe CacheManager e 39
6.1.1 Singletonversusinstance. e 39

6.1.2 Ways of loading Cache Conguration 40

6.1.3 Adding and Removing Caches Programmatically 40

6.1.4 Shutdownthe CacheManager c.o... 41

6.2 UsingCaches 41
6.2.1 ObtainingareferencetoaCache 41

6.2.2 Performing CRUD operations 41

6.2.3 Disk Persistenceondemand e 42

6.2.4 ObtainingCache Sizes e 42

6.2.5 Obtaining Statistics of Cache HitsandMisses 42

6.3 Creatinganewcachefromdefaults., 43
6.4 Creating a new cache with custom parameters 43
6.5 BrowsetheJUnitTests e e 44

7 Dependencies 45
7.1 JavaRequirements e e 45

Ehcache v1.2.3 User Guide

7.2 Dependencies e e 45
Logging And Debugging 47
8.1 CommonsLogging e e 47
8.2 Logging Philosophy 47
8.3 Remote Network debugging and monitoring for Distribu@aches 48
Class loading and Class Loaders 49
9.1 Pluginclassloading e 49
9.2 Loading of ehcache.xmlresources aw 50
Performance Considerations 51
10.1 DiskStore e 51
10.2 Replication e e e 51
Cache Decorators 53
11.1 CreatingaDecorator e e 53
11.2 Accessingthe decoratedcache 53
11.2.1 Using CacheManager to access decoratedcaches 53
11.3 Built-inDecorators e e e e 54
11.3.1 BlockingCache e e 54
11.3.2 SelfPopulatingCache 56
Cache Con guration 57
12.1 ehcache.xxsd e e 57
12.2 ehcache-failsafexml e 59
12.3 ehcache.xmland other conguration les 59
Storage Options 67
13.1 Memory SEtOre o o e e e e e e e 67
13.1.1 Memory Use, Spooling and Expiry Strategy 67
13.2 DiskStore e 68
Virtual Machine Shutdown Considerations 71
140 e 71
Hibernate Caching 73

15.1 Setting ehcache asthe cacheprovider 73

15.1.1 Using the ehcache provider from the ehcache project 73
15.1.2 Using the ehcache provider from the Hibernate ptojec. 74
15.1.3 Programmatic setting of the Hibernate Cache Provide 74
15.2 Hibernate Mapping Files e e 74

15.2.1 read-write e e e e 75

Ehcache v1.2.3 User Guide 7

16

15.2.2 nonstrict-read-write e 75
15.2.3 read-only 75
15.3 Hibernate Doclet e e 75
15.4 Con guration with ehcache.xml 76
15.4.1 DomainObjects 76
15.4.2 Hibernate e 76
15.4.3 Collections e 76
15.4.4 Hibernate CacheConcurrencyStrategy 77
1545 QUETIES o e e e e 77
15.4.6 StandardQueryCache e 77
15.4.7 UpdateTimestampsCache.o 77
15.4.8 NamedQueryCaches iimmn 77
15.4.9 UsingQueryCaches e 78
15.4.10 Hibernate CacheConcurrencyStrategy« oo v v v oo .. 78
15.5 Hibernate Caching Performance Tips o v v i i v 78
15.5.1 In-ProcessCache e 78
15.5.2 Objectld 79
15.5.3 Sessiondoad e 79
15.5.4 Session.ndandQuery.nd e 79
15.5.5 Session.iterate and Query.iterateo 79
The Design of distributed ehcache 81
16.1 Acknowledgements e 81
16.2 Problems with Instance Caches in a Clustered Envirahme 81
16.3 Replicated Cache e 81
16.4 Distributed Cache Terms e 82
16.5 Noti cation Strategies e 82
16.6 Topology ChoiCes e e 82
16.6.1 PeerCache Replicator i .. 82
16.6.2 Centralised Cache Replicator 82
16.7 Discovery Choices e e 82
16.7.1 Multicast Discovery e e e 82
16.7.2 StaticList e 83
16.8 Delivery Mechanism Choices e 83
16.8.1 Custom Socket Protocol 83
16.8.2 Multicast Delivery e 83
16.8.3 JMSTOPICS o e aa 83
16.8.4 RMI RMl is the default RPC mechanisminJava. 83
16.8.5 IXTA . . . e 83

16.8.6 JGroUPS o v e e e 83

8 Ehcache v1.2.3 User Guide

16.8.7 The Default Implementation 83
16.9 Replication Drawbacks and Solutions in ehcache'semintation 84
16.9.1 Chatty Protocol e e 84
16.9.2 RedundantNotications 84
16.9.3 Potential for InconsisentData oL 84
16.9.4 SynchronousDelivery e 85
16.9.5 Updatevialnvalidation 85
17 Distributed Caching 87
17.1 Suitable ElementTypes e e 87
17.2 Peer DISCOVEIY e e e e e e 87
17.2.1 Automatic Peer Discovery e 88
17.2.2 Manual PeerDiscovery i e e e e 88
17.3 Con guring a CacheManagerPeerListener o oo oo 89
17.4 Conguring CacheReplicators e 90
17.5 Common Problems e 90
17.5.1 Tomcaton Windows e 90
17.5.2 MulticastBlocking e 91
18 The Design of the ehcache constructs package 93
18.1 Acknowledgements L e 93
18.2 The purpose of the Constructspackageo .. 93
18.3 Caching meets Concurrent Programming o oo o oo oL 93
18.4 What can possiblygowrong? 94
18.4.1 Safety Failures e 94
18.4.2 LivenessFailures e 94
18.5 Theconstructs e e 94
18.5.1 BlockingCache e e 94
18.5.2 SelfPopulatingCache 97
18.5.3 CachingFilter e 97
18.5.4 SimplePageCachingFilter, 97
18.5.5 PageFragmentCachingFilter 97
18.5.6 SimplePageFragmentCachingFilter 98
18.5.7 AsynchronousCommandExecutor cuw 98
18.6 Real-life problems in the constructs package and fodutions 98
18.6.1 The Blocking Cache Stampede wuu ... 98
18.6.2 TheBlank Page problem 98
18.6.3 BlockingCascade e 99
19 CacheManager Event Listeners 101

19.1 Conguration e e e 101

Ehcache v1.2.3 User Guide 9

20

21

22

19.2 Implementing a CacheManagerEventListenerFactahyatheManagerEventListener . . 102

Cache Event Listeners 105
20.1 Conguration e e e e e 105
20.2 Implementing a CacheEventListenerFactory and CacheEistener 106
Frequently Asked Questions 109
21.1 Does ehcacherunonJDK1.3? e e 109
21.2 Canyou use more than one instance of ehcacheinasiMffe V. 109
21.3 Can you use ehcache with Hibernate and outside of Hibegat the same time? 109
21.4 What happens when maxElementsinMemory is reachedthAr@dest items are expired

when new ones comein? e e 110
21.5 Is it thread safe to modify Element values after retdi@om a Cache? 110
21.6 Can non-Serializable objects be stored in a cache? . e B K¢
21.7 Why is there an expiry thread for the DiskStore but nottie MemoryStore'7 110
21.8 What elements are mandatory in ehcachexml? 110
21.9 Canluse ehcache asamemorycacheonly? 11
21.10Can luse ehcache as adisk cacheonly? 111
21.11Where is the source code? The source code is disttilmutee root directory of the download.111
21.12How do you get statistics on an Element without affecthem? 111
21.13How do you get WebSphere to work with ehcache? 111
21.14Do you need to call CacheManager.getinstance(flstvat() when you nish with ehcache? 111
21.15Can you use ehcache after a CacheManager.shutdown(}?. 111
21.161 have created a new cache and its status is STATUS_IJIMINISED. How do | initialise

] 12
21.17Is there a simple way to disable ehcache when testing? 112
21.18Is there a Maven bundle for ehcache?. 112
21.19How do | dynamically change Cache attributes at rieftim 112

21.201 get net.sf.ehcache.distribution.RemoteCacheyiiian: Error doing put to remote peerre-
mote peer. Message was: Error unmarshaling return heasltehexceptionis: java.net.SocketTimeoutException:

Read timed out. Whatdoesthismean. cu..... 112
21.21Should I use this directive when doing distributechaag? cacheManagerEventListener-

Factory class="" properties=""/ 113
21.22What is the minimum con g to get distributed cachingng® 113
21.23How can | see if distributed caching is working? 113

21.241 get net.sf.ehcache.CacheException: Problenrgjdidtener for RMICachePeer ... java.rmi.Unmarshalftics:
error unmarshalling arguments; nested exception is: j@tdlalformedURLException:

no protocol: Files/Apache. Whatisgoingon? 114
21.25Why can't | run multiple applications using ehcacheoe machine? 114
21.26How many threads does ehcache use, and how much mecssyhéit consume? 114

About the ehcache name and logo 115

10

Ehcache v1.2.3 User Guide

Chapter 1

Preface

This is a book about ehcache, a widely used open source Jave.d@hcache has grown in size and scope
since it was introduced in October 2003. As people usedyt dfiten noticed it was missing a feature they
wanted. Over time, the features that were repeatedly asikedrid make sense for a Cache, have been
added.

Ehcache is now used for Hibernate caching, data accesst @hjgting, security credential caching, web
caching, application persistence and distributed cachiing biggest issue faced by Ehcache users at the
time of writing is understanding when and how to use theseifea.

1.1 Audience

The intended audience for this book is developers who usacilec It should be able to be used to start
from scratch, get up and running quickly, and also be usefuhfe more complex options.

Ehcache is about performance and load reduction of underigsources. Another natural audience is
performance specialists.

It is also intended for application and enterprise arckétecSome of the features of ehcache, such as
distributed caching and J2EE caching, are alternativeg toolsidered along with other ways of solving
those problems. This book discusses the trade-offs in @le&aapproach to help make a decision about
appropriateness of use.

1.2 Book Format

This is the rst time that the ehcache documentation has peéim book form suitable for use as an online
PDF or printed. It is designed to be printed from PDF, so blaages have been deliberately left to give a
good ow.

1.3 Acknowledgements

Ehcache has had many contributions in the form of forum disicuns, feature requests, bug reports, patches
and code commits.

Rather than try and list the many hundreds of people who hamg&ibuted to ehcache in some way it is
better to link to the web site where contributions are ackedged in the following ways:

Bug reports and features requests appear in the changethepa

11

12 Ehcache v1.2.3 User Guide

Patch contributors generally end up with an author tag irsthece they contributed to

Team members appear on the team list page here:
Thanks to Denis Orlov for suggesting the need for a book inriglace.

1.4 About the ehcache name and logo

B EH HE

Adam Murdoch (an all round top Java coder) came up with theeniara moment of inspiration while we
were stuck on the SourceForge project create page. Ehcaehpalindrome. He thought the name was
wicked cool and we agreed.

The logo is similarly symmetrical, and is evocative of thagiiam symbol for a doubly-linked list. That
structure lies at the heart of ehcache.

Greg Luck Brisbane, Australia June, 2006

Chapter 2

Introduction

Ehcache is a cache library. Before getting into ehcaches Wwadrth stepping back and thinking about
caching generally.

2.1 About Caches

Wiktionary de nes a cache & store of things that will be required in future, and can bieved rapidly
That is the nub of it.

In computer science terms, a cache is a collection of temnpalaa which either duplicates data located
elsewhere or is the result of a computation. Once in the ¢dbkealata can be repeatedly accessed inex-
pensively.

2.2 Why caching works

2.2.1 Locality of Reference

While ehcache concerns itself with Java objects, cachingas throughout computing, from CPU caches
to the DNS system. Why? Because many computer systems eldaiblity of referenceData that is near
other data or has just been used is more likely to be used.again

2.2.2 The Long Talil

Chris Anderson, of Wired Magazine, coined the téfle Long Tailo refer to Ecommerce systems. The
idea that a small number of items may make up the bulk of salemall number of blogs might get the
most hits and so on. While there is a small list of popular #ethere is a long tail of less popular ones.

The Long Tail

13

14 Ehcache v1.2.3 User Guide

The Long Tail is itself a vernacular term for a Power Law pioibgy distribution. They don't just appear
in ecommerce, but throughout nature. One form of a Power Liawilglition is the Pareto distribution,
commonly know as the 80:20 rule.

This phenomenon is useful for caching. If 20% of objects @edB0% of the time, and the a way can be
found to reduce the cost of obtaining that 20% the systenopadnce will improve.

2.3 Will an Application Bene t from Caching?

The short answer is that it often does, due to the effectslraiteve.

The medium answer is that it often depends on whether it is G8Uhd or I/O bound. If an application
is I/0 bound then then the time taken to complete a computaigpends principally on the rate at which
data can be obtained. If it is CPU bound, then the time takewipally depends on the speed of the CPU
and main memory.

While the focus for caching is on improving performance, @$o worth realizing that it reduces load. The
time it takes something to complete is usually related toettgense of it. So, caching often reduces load
on scarce resources.

2.3.1 Speeding up CPU bound Applications
CPU bound applications are often sped up by:

improving algorithm performance
parallelizing the computations across multiple CPUs (Shtjultiple machines (Clusters).

upgrading the CPU speed.
The role of caching, if there is one, is to temporarily stavenputations that may be reused again.

An example from ehcache would be large web pages that haghadndering cost. Another caching
of authentication status, where authentication requingstagraphic transforms.

2.3.2 Speeding up I/O bound Applications

Many applications are I/O bound, either by disk or networknagions. In the case of databases they can
be limited by both.

There is no Moore's law for hard disks. A 10,000 RPM disk was ft0 years ago and is still fast. Hard
disks are speeding up by using their own caching of blocksnmgmory.

Network operations can be bound by a number of factors:

time to set up and tear down connections
latency, or the minimum round trip time
throughput limits

marshalling and unmarhshalling overhead

The caching of data can often help a lot with 1/O bound aptios. Some examples of ehcache
uses are:

Data Access Object caching for Hibernate

Web page caching, for pages generated from databases.

Ehcache v1.2.3 User Guide 15

2.3.3 Increased Application Scalability

The ip side of increased performance is increased scatgb$ay you have a database which can do 100
expensive queries per second. After that it backs up andhifiections are added to it it slowly dies.

In this case, caching may be able to reduce the workload nexdjuif caching can cause 90 of that 100 to
be cache hits and not even get to the database, then the slatatrascale 10 times higher than otherwise.

2.4 How much will an application speed up with Caching?

2.4.1 The short answer

The short answer is that it depends on a multitude of facteirsg

how many times a cached piece of data can and is reused byjfitiesdipn

the proportion of the response time that is alleviated byicar

In applications that are I/O bound, which is most businegtiegitions, most of the response time is
getting data from a database. Therefore the speed up megtgnds on how much reuse a piece of
data gets.

In a system where each piece of data is used just once, itas lrea system where data is reused a
lot, the speed up is large.

The long answer, unfortunately, is complicated and mathieaialt is considered next.

2.4.2 Applying Amdahl's Law

Amdahl's law, after Gene Amdahl, is used to nd the systemeshap from a speed up in part of the system.
1/ ((1 - Proportion Sped Up) + Proportion Sped Up / Speed up)

The following examples show how to apply Amdahl's law to coomsituations. In the interests of sim-
plicity, we assume:

a single server

a system with a single thing in it, which when cached, get94 0ache hits and lives forever.

Persistent Object Relational Caching

A Hibernate Session.load() for a single object is about 1008s faster from cache than from a database.

A typical Hibernate query will return a list of IDs from the tdhase, and then attempt to load each. If
Session.iterate() is used Hibernate goes back to the datadéoad each object.

Imagine a scenario where we execute a query against theagatalhich returns a hundred IDs and then
load each one.

The query takes 20% of the time and the roundtrip loadingstétke rest (80%). The database query itself
is 75% of the time that the operation takes. The proportiandgped up is thus 60% (75% * 80%).

The expected system speedup is thus:

16 Ehcache v1.2.3 User Guide

1/ (1 - .6) + .6/ 1000)

1/ (4 + .006)

= 2.5 times system speedup

Web Page Caching

An observed speed up from caching a web page is 1000 timesacBbaan retrieve a page from its
SimplePageCachingFilter in a few ms.

Because the web page is the end result of a computation, & pesportion of 100%.
The expected system speedup is thus:

1/ (- 1) + 1/ 1000)

1/ (0 + .001)

1000 times system speedup

Web Page Fragment Caching

Caching the entire page is a big win. Sometimes the liverexpginements vary in different parts of the
page. Here the SimplePageFragmentCachingFilter can be use

Let's say we have a 1000 fold improvement on a page fragmantaking 40% of the page render time.
The expected system speedup is thus:

1/ (1 - .4) + .4/ 1000)

1/ (6 + .004)

1.6 times system speedup

2.4.3 Cache Ef ciency

In real life cache entrie do not live forever. Some examphet tome close are "static" web pages or
fragments of same, like page footers, and in the databab®,regference data, such as the currencies in
the world.

Factors which affect the ef ciency of a cache are:

liveness how live the data needs to be. The less live the more it can dieeda

proportion of data cached what proportion of the data can tinto the resource limitstoé machine. For
32 bit Java systems, there was a hard limit of 2GB of addressespWhile now relaxed, garbage
collection issues make it harder to go a lot large. Variousti®n algorithms are used to evict excess
entries.

Shape of the usage distributionIf only 300 out of 3000 entries can be cached, but the Parstdlalition
applies, it may be that 80% of the time, those 300 will be thesorequested. This drives up the
average request lifespan.

Read/Write ratio The proportion of times data is read compared with how oftenviritten. Things such
as the number of rooms left in a hotel will be written to quitt However the details of a room

Ehcache v1.2.3 User Guide 17

sold are immutable once created so have a maximum write oftLawotentially large number of
reads.

Ehcache keeps these statistics for each Cache and eacingleméhey can be measured directly
rather than estimated.

2.4.4 Cluster Ef ciency

Also in real life, we generally do not nd a single server?
Assume a round robin load balancer where each hit goes teettiesarver.

The cache has one entry which has a variable lifespan of stgjusay caused by a time to live. The
following table shows how that lifespan can affect hits anslsms.

Server 1 Server 2 Server 3 Server 4
M M M M
H H H H
H H H H
H H H H
H H H H

The cache hit ratios for the system as a whole are as follows:

Entry

Lifespan Hit Ratio Hit Ratio Hit Ratio Hit Ratio

in Hits 1 Server 2 Servers 3 Servers 4 Servers

2 1/2 0/2 0/2 0/2

4 3/4 2/4 1/4 0/4

10 9/10 8/10 7/10 6/10
20 19/20 18/20 17/20 16/10
50 49/50 48/50 47/20 46/50

The ef ciency of a cluster of standalone caches is generally
(Lifespan in requests - Number of Standalone Caches) / Lifes pan in requests

Where the lifespan is large relative to the number of stamdalcaches, cache ef ciency is not much
affected.

However when the lifespan is short, cache ef ciency is draadly affected.

(To solve this problem, ehcache supports distributed cachihere an entry put in a local cache is also
propagated to other servers in the cluster.)

2.45 A cache version of Amdahl's law
From the above we now have:

1/ ((1 - Proportion Sped Up + effective cache efficiency) + (Proportion Sped Up

effective cache ef ciency = cache ef ciency * cluster ef@ncy

* effective cache

18

Ehcache v1.2.3 User Guide

2.4.6 Web Page example

Applying this to the earlier web page cache example whereave bache ef ciency of 35% and average
request lifespan of 10 requests and two servers:

cache efficiency = .35

cluster efficiency = .(10 - 1) / 10

=9

effective cache efficiency = .35 * .9

= 315
/(@-1 * .315) + 1 = .315 / 1000)
1 / (.685 + .000315)

1.45 times system speedup

What if, instead the cache ef ciency is 70%; a doubling of@éncy. We keep to two servers.

cache efficiency = .70

cluster efficiency = .(10 - 1) / 10

=9

effective cache efficiency = .70 * .9

= .63
/(1-1 =+ 63 +1 = .63/ 1000)
1/ (.37 + .00063)

2.69 times system speedup

What if, instead the cache ef ciency is 90%; a doubling of@éncy. We keep to two servers.

cache efficiency = .90

cluster efficiency = .(10 - 1) / 10

=.9

effective cache efficiency = .9 * 9

= 81
/(-1 =+ 81)+1 = .81/ 1000)
1/ (.19 + .00081)

5.24 times system speedup

Why is the reduction so dramatic? Because Amdahl's law istis@ssitive to the proportion of the system

that is sped

up.

Chapter 3

Getting Started

Ehcache can be used directly. It can also be used with thdgrdpilbernate Object/Relational tool. Finally,
it can be used for J2EE Servlet Caching.

This quick guide gets you started on each of these. The rakealocumentation can be explored for a
deeper understanding.

3.1 General Purpose Caching

Make sure you are using a supported Java version.

Place the ehcache jar into your classpath.

Ensure that any libraries required to satisfy dependemeialso in the classpath.
Con gure ehcache.xml and place it in your classpath.

Optionally, con gure an appropriate logging level.
See Code Samples for more information on direct interaetitimehcache.

3.2 Hibernate

Perform the same steps as General Purpose Caching.

Create caches in ehcache.xml.
See Hibernate Caching for more information.

3.3 J2EE Servlet Caching

Perform the same steps as General Purpose Caching.
Con gure a cache for your web page in ehcache.xml.

To cache an entire web page, either use SimplePageCachéngifi create your own subclass of
CachingFilter

To cache a jsp:Include or anything callable from a Request@icher, either use SimplePageFrag-
mentCachingFilter or create a subclass of PageFragmenitCaalter.

19

20 Ehcache v1.2.3 User Guide

Con gure the web.xml. Declare the lters created above arghte Iter mapping associating the
lter with a URL.

See J2EE Servlet Caching for more information.
3.4 Spring, Cocoon, Acegi and other frameworks

Usually, with these, you are using ehcache without everisiaglit. The rst steps in getting more control
over what is happening are:

discover the cache names used by the framework

create your own ehcache.xml with settings for the cachepkaue it in the application classpath.

Chapter 4

Features

Fast and Light Weight
— Fast
— Simple
— Small foot print
— Minimal dependencies

Scalable

— Provides Memory and Disk stores for scalabilty into gigaisyt
— Scalable to hundreds of caches

— Tuned for high concurrent load on large multi-cpu servers
— Multiple CacheManagers per virtual machine

Complete

— Supports Object or Serializable caching

— Support cache-wide or Element-based expiry policies
— Provides LRU, LFU and FIFO cache eviction policies
— Provides Memory and Disk stores

— Distributed Caching

Extensible

— Listeners may be plugged in
— Peer Discovery, Replicators and Listeners may be plugged in

Application Persistence

— Persistent disk store which stores data between VM restarts
— Flush to disk on demand

Supports Listeners

— CacheManager listeners
— Cache event listeners

21

22 Ehcache v1.2.3 User Guide

Distributed

— Peer Discovery

— Reliable Delivery

— Synchronous Or Asynchronous Replication
— Copy Or Invalidate Replication

— Transparent Replication

— Extensible

— Bootstrapping from Peers
J2EE and Applied Caching

— Blocking Cache to avoid duplicate processing for concuroperations
— SelfPopulating Cache for pull through caching of expensperations
— J2EE Gzipping Servlet Filter

— Cacheable Commands

— Works with Hibernate
High Quality

— High Test Coverage

— Automated Load, Limit and Performance System Tests
— Production tested

— Fully documented

— Trusted by Popular Frameworks

— Conservative Commit policy

— Full public information on the history of every bug

— Responsiveness to serious bugs
Open Source Licensing

— Apache 2.0 license

4.1 Fastand Light Weight

4.1.1 Fast

Over the years, various performance tests have shown ehdache one of the fastest Java caches.
Ehcache's threading is designed for large, high concuyrenstems.

Extensive performance tests in the test suite keep ehcsapbdbrmance consistent between releases.
As an example, some guys have created a java cache testlledlcache4]_perfomance_tester.
The results for ehcache-1.1 and ehcache-1.2 follow.

Ehcache v1.2.3 User Guide 23

ehcache-1.1

[[ava] ----m-mmmmmmmm e e
[java] java.version=1.4.2_09

[lava] java.vm.name=Java HotSpot(TM) Client VM

[lava] java.vm.version=1.4.2-54

[java] java.vm.info=mixed mode

[lava] java.vm.vendor="Apple Computer, Inc."

[[ava] os.name=Mac OS X

[java] os.version=10.4.5

[java] os.arch=ppc

[[ava] ----m-mmmmmmmm e e
[java] This test can take about 5-10 minutes. Please wait ...

[[ava] ----m-mmmmmmmm e e
[[ava] |GetPutRemoveT |GetPutRemove |Get |

[[ava] ----mmmmemmmemmem s e
[[ava] cache4j 0.4 |9240 |9116 |5556 |

[lava] oscache 2.2 |33577 |30803 |8350 |

[lava] ehcache 1.1 |7697 |6145 |3395 |

[lava] jes 1.2.7.0 |8966 |9455 (4072 |

[[ava] --m-mmmmemmmemmemm s e

ehcache-1.2

[[ava] --m-mmmmemmmemmemm s e
[java] java.version=1.4.2_09

[lava] java.vm.name=Java HotSpot(TM) Client VM

[java] java.vm.version=1.4.2-54

[java] java.vm.info=mixed mode

[lava] java.vm.vendor="Apple Computer, Inc.
[java] os.name=Mac OS X

[java] os.version=10.4.5

[java] os.arch=ppc

[[ava] --m-mmmmemmmemmem s e
[java] This test can take about 5-10 minutes. Please wait ...

[[ava] ----m-mmmmmmmmm e e
[lava] |GetPutRemoveT |GetPutRemove |Get |

[[ava] --m-mmmmemmmemmem s e
[java] cache4j 0.4 |9410 |9053 |5865 |

[lava] oscache 2.2 |28076 |30833 |8031 |

[lava] ehcache 1.2 |8753 |7072 [3479 |

[lava] jes 1.2.7.0 |8806 |9522 4097 |

[[ava] --m-mmmmemmmemmemm s e

4.1.2 Simple

Many users of ehcache hardly know they are using it. Sendifkeults require no initial con guration.

The APl is very simple and easy to use, making it possible tag@nd running in minutes. See the Code
Samples for details.

4.1.3 Small foot print

Ehcache 1.2 is 110KB making it convenient to package.

24 Ehcache v1.2.3 User Guide

4.1.4 Minimal dependencies

Commons logging and collections are the only dependenaigadst JDKs.

4.2 Scalable

4.2.1 Provides Memory and Disk stores for scalabilty into ggabytes

The largest ehcache installations use memory and diskssitotbe gigabyte range. Ehcache is tuned for
these large sizes.

4.2.2 Scalable to hundreds of caches

The largest ehcache installations use hundreds of caches.

4.2.3 Tuned for high concurrent load on large multi-cpu serers

There is a tension between thread safety and performancacké's threading started off coarse-grained,
but has increasingly made use of ideas from Doug Lea to aelgimater performance. Over the years there
have been a number of scalability bottlenecks identi ed xed.

4.2.4 Multiple CacheManagers per virtual machine

Ehcache 1.2 introduced multiple CacheManagers per vinizahine. This enables completely difference
ehcache.xml con gurations to be applied.

4.3 Complete

4.3.1 Supports Object or Serializable caching

As of ehcache-1.2 there is an API for Objects in addition ® dhe for Serializable. Non-serializable
Objects can use all parts of ehcache except for DiskStoreepiitation. If an attempt is made to persist
or replicate them they are discarded without error and wBHEBUG level log message.

The APIs are identical except for the return methods fronmiglet. Two new methods on Element: getO-
bjectValue and getKeyValue are the only API differencesveen the Serializable and Object APIs. This
makes it very easy to start with caching Objects and thengthgaur Objects to Seralizable to participate
in the extra features when needed. Also a large number ofclasses are simply not Serializable.

4.3.2 Support cache-wide or Element-based expiry policies

Time to lives and time to idles are settable per cache. Intiatdifrom ehcache-1.2.1, overrides to these
can be set per Element.

4.3.3 Provides LRU, LFU and FIFO cache eviction policies

Ehcache 1.2 introduced Less Frequently Used and First $h Gt caching eviction policies. These round
out the eviction policies.

Ehcache v1.2.3 User Guide 25

4.3.4 Provides Memory and Disk stores

Ehcache, like most of the cache solutions, provides higfopeance memory and disk stores.

4.3.5 Distributed
Flexible, extensible, high performance distributed caghiThe default implementation supports cache
discovery via multicast or manual con guration. Updates delivered either asynchronously or syn-

chronously via custom RMI connections. Additional disagver delivery schemes can be plugged in by
third parties.

See the Distributed Caching documentation for more featetails.

4.4 Extensible

4.4.1 Listeners may be plugged in

Ehcache 1.2 provideSacheManagerEventListener and CacheEventListener interfaces. Imple-
mentations can be plugged in and con gured in ehcache.xml.

4.4.2 Peer Discovery, Replicators and Listeners may be plggd in

Distributed caching, introduced in ehcache 1.2 involvesiynzhoices and tradeoffs. The ehcache team
believe that one size will not tall. Implementers can usdthim mechanisms or write their own. A plugin
development guide is included for this purpose.

4.5 Application Persistence

45.1 Persistent disk store which stores data between VM rests

With ehcache 1.1 in 2004, ehcache was the rst open sourceckahe to introduce persistent storage of
cache data on disk on shutdown. The cached data is then #xde¢ise next time the application runs.

45.2 Flush to disk on demand

With ehcache 1.2, the ushing of entries to disk can be exagtutith acache.flush() method whenever
required, making it easier to use ehcache

4.6 Listeners

4.6.1 CacheManager listeners

Ehcache 1.2 introduced tl@acheManagerEventListener interface with the following event methods:

notifyCacheAdded()

notifyCacheRemoved()

26 Ehcache v1.2.3 User Guide

4.6.2 Cache event listeners

Ehcache 1.2 introduced th@acheEventListener interfaces, providing a lot of exibility for post-
processing of cache events. The methods are:

notifyElementRemoved
notifyElementPut
notifyElementUpdated

notifyElementExpired

4.7 Distributed Caching

Ehcache 1.2 introduced a full-featured, ne-grained distied caching mechanism for clusters.

4.7.1 Peer Discovery

Peer discovery may be either manually con gured or autoenasing multicast. Multicast is simple, and
adds and removes peers automatically. Manual con gurajioes ne control and is useful for situations
where multicast is blocked.

4.7.2 Reliable Delivery

The built-in delivery mechanism uses RMI with custom sosketer TCP, not UDP.

4.7.3 Synchronous Or Asynchronous Replication

Replication can be set to synchronous Or asynchronousagbec

4.7.4 Copy Or Invalidate Replication

Replication can be set to copy or invalidate, per cache, agpsopriate.

4.7.5 Transparent Replication

No programming changes are required to make use of reglicaiinly con guration in ehcache.xml.

4.7.6 Extensible

Distributed caching, introduced in ehcache 1.2 involvesynzhoices and tradeoffs. The ehcache team
believe that one size will not tall. Implementers can usdthim mechanisms or write their own. A plugin
development guide is included for this purpose.

Ehcache v1.2.3 User Guide 27

4.7.7 Bootstrapping from Peers

Distributed caches enter and leave the cluster at diffanergs. Caches can be con gured to bootstrap
themselves from the cluster when they are rst initialized.

An abstract factory, BootstrapCachelLoaderFactory haa deeed along with an interface Bootstrap-
CacheLoader along with an RMI based default implementation

4.8 J2EE and Applied Caching

High quality implementations for common caching scenagiod patterns.

4.8.1 Blocking Cache to avoid duplicate processing for comcrent operations

A cache which blocks subsequent threads until the rst rbaglad populates a cache entry.

4.8.2 SelfPopulating Cache for pull through caching of expasive operations

SelfPopulatingCache - a read-through cache. A cache tpatg@tes elements as they are requested without
requiring the caller to know how the entries are populatealsb enables refreshes of cache entries without
blocking reads on the same entries.

4.8.3 J2EE Gzipping Servlet Filter
CachingFilter - an abstract, extensible caching lter.

SimplePageCachingFilter

A high performance J2EE servlet Iter that caches pagesdasdhe request URI and Query String.
It also gzips the pages and delivers them to browsers eithippgd or ungzipped depending on the
HTTP request headers. Use to cache entire Servlet pagetherliom JSP, velocity, or any other

rendering technology.

Tested with Orion and Tomcat.

SimplePageFragmentCachingFilter

A high performance J2EE lIter that caches page fragmentedhas the request URI and Query
String. Use with Servlet request dispatchers to cache pépages, whether from JSP, velocity, or
any other rendering technology. Can be used from JSPs wsgirigglude.

Tested with Orion and Tomcat.

Works with Servlet 2.3 and Servlet 2.4 speci cations.

4.8.4 Cacheable Commands

This is the trusty old command pattern with a twist: asynobre behaviour, fault tolerance and caching.
Creates a command, caches it and then attempts to execute it.

28 Ehcache v1.2.3 User Guide

4.8.5 Works with Hibernate

Tested with Hibernate2.1.8 and Hibernate3.1.3, which ¢éisaiall of the new features except for Object

API and multiple session factories each using a differeadehe CacheManager. A neeat.sf.ehcache.hibernate.EnCacheProvider
makes those additional features available to Hibernéte33A version of the new provider should make it

into the Hibernate3.2 release.

4.9 High Quality

4.9.1 High Test Coverage

The ehcache team believe that the rst and most importarlitguaeasure is a well designed and compre-
hensive test suite.

Ehcache has a relatively high 86% test coverage of sourae ddds has edged higher over time. Clover
enforces the test coverage. Most of the missing 14% is lapaird exception paths.

4.9.2 Automated Load, Limit and Performance System Tests

The ehcache JUnit test suite contains some long-runningraytests which place high load on different
ehcache subsystems to the point of failure and then are bgttkjost below that point. The same is done
with limits such as the amount of Elements that can t in a giveeap size. The same is also done with
performance testing of each subsystem and the whole tagdthe same is also done with network tests
for cache replication.

The tests serve a number of purposes:

establishing well understood metrics and limits
preventing regressions
reproducing any reported issues in production

Allowing the design principle of graceful degradation toemhieved. For example, the asynchronous
cache replicator uses SoftReferences for queued messagtst the messages will be reclaimed
before before an OutOfMemoryError occurs, thus favouriagitity over replication.

4.9.3 Specic Concurrency Testing

Ehcache also has concurrency testing, which typically 68esoncurrent threads hammering a piece of

code. The test suites are also run on multi-core or multitopehines so that concurrency is real rather

than simulated. Additionally, every concurrency relatexlie that has ever been anticipated or resulted in
a bug report has a unit test which prevents the condition freearring. There are no reported issues that

have not been reproduced in a unit test.

Concurrency unit tests are somewhat dif cult to write, ane aften overlooked. The team considers these
tests a major factor in ehcache's quality.

4.9.4 Production tested

Ehcache came about in the rst place because of productiuesswith another open source cache.

Final release versions of ehcache have been producti@utesta very busy e-commerce site, supporting
thousands of concurrent users, gigabyte size caches @mtartgji-cpu machines. It has been the experience

Ehcache v1.2.3 User Guide 29

of the team that most threading issues do not surface uigtifthe of load has been applied. Once an issue
has been identi ed and investigated a concurrency unitdastthen be crafted.

4.9.5 Fully documented

A core belief held by the project team is that a project needslglocumentation to be useful.
In ehcache, this is manifested by:

comprehensive written documentation

Complete, meaningful JavaDoc for every package, class abliceand protected method. Check-
style rules enforce this level of documentation.

an up-to-date FAQ

4.9.6 Trusted by Popular Frameworks

Ehcache is used extensively. See the Who is Using? pagepwséiGoogle.

4.9.7 Conservative Commit policy

Projects like Linux maintain their quality through a resteid change process, whereby changes are sub-
mitted as patches, then reviewed by the maintainer anddediuor modi ed. Ehcache follows the same
process.

4.9.8 Full public information on the history of every bug

Through the SourceForge project bug tracker, the full hjsddall bugs are shown, including current status.
We take this for granted in an open source project, as thypisdlly a feature that all open source projects
have, but this transparency makes it possible to gauge thléygand riskiness of a library, something not
usually possible in commercial products.

4.9.9 Responsiveness to serious bugs

The ehcache team is serious about quality. If one user isigavproblem, it probably means others are
too, or will have. The ehcache team use ehcache themselyesduction. Every effort will be made to
provide xes for serious production problems as soon asiptessThese will be committed to trunk. From
there an affected user can apply the x to their own branch.

4.10 Open Source Licensing

4.10.1 Apache 2.0 license

Ehcache's original Apachel.1 copyright and licensing veaseved and approved by the Apache Software
Foundation, making ehcache suitable for use in Apache gjehcache-1.2 is released under the updated
Apache 2.0 license.

The Apache license is also friendly one, making it safe arsy éainclude ehcache in other open source
projects or commercial products.

30

Ehcache v1.2.3 User Guide

Chapter 5

Key Ehcache Concepts

5.1 Key Ehcache Classes

net.sf.ehcache

Ehcache

i
Cache
: CacheException .
i
| ObjectExistsException
CacheManager | Element
.Stalistics Status

generated by yDoc

Top Level Package Diagram

Ehcache consists of@acheManager , which manages caches. Caches contain elements, whichsae-e
tially name value pairs. Caches are physically implemeat#er in-memory, or on disk.

31

32 Ehcache v1.2.3 User Guide

5.1.1 CacheManager

java.lang
Object
net.sf.ehcache
net.sf.ehcache.event net.sf.ehcache. confi
CacheManager 2
CacheManagerEventLi: +ALL CACHE MANAGERS: List =2 = Configuration

caches : Map

+ CacheManager()
java.lang + CacheManager(InputStream) java.net
+ CacheManager(5tring)

+ CacheManager(URL)
+ CacheManager(Configuration)

String ec——————— L = URL

- + addCache(String) - void
java.util + addCache(Cache) : void net.sf.ehcache

+ addCache(Ehcache) : vaid

List<E> ‘g1 +addCache(Ehcache) :vad] L [—
+ cacheExists(String) : boolean | |
Map<K, V> = T clearAll]) : void
+create(: CacheManager
java.io

+ create(lnputStream) : CacheManager
+ create(String) : CacheManager
- + create(URL) : CacheManager
CacheManager |% + getCache(String) : Cache
+ getCacheManagerEventListener() : CacheManagerEventListener
Ehcache ==—————— + getCacheManagerPeerProvider() : CacheManagerPeerProvider
;) + getCacheNames() : String[]
Status = | getCachePeerlistener() : CacheManagerPeerListener
+ getCachePeerProvider() - CacheManagerPeerProvider
+ getEhcache(String) : Ehcache

retsf.ehcache | — ——— ——— o-——= = InputSream

org.apache.commons.logging + getinstance() : CacheManager
+ getStatus() : Status
Log + removalAlll) : void

+ removeCache(String) : void
+ replaceCacheWithDecorated Cache(Ehcache, Ehcache) : void
net.sf.ehcache. distribution + setCacheManagerEventlistener(CacheManagerEventListener) : void
+ shutdown() : void
CacheManagerPeerListener —~=———

CacheManagerPeerProvider =

generated by yDoc

CacheManager Class Diagram

TheCacheManager comprises Caches which in turn comprise Elements.
Creation of, access to and removal of caches is controllédd@acheManager .

CacheManager Creation Modes

CacheManager supports two creation modes: singleton and instance.

Singleton Mode Ehcache-1.1 supported only obecheManager instance which was a singleton. Cache-
Manager can still be used in this way using the static factoethods.

Instance Mode From ehcache-1.2, CacheManager has constructors whicbrrthie various static create
methods. This enables multiple CacheManagers to be craatedsed concurrently. Each CacheManager

Ehcache v1.2.3 User Guide 33

requires its own con guration.

If the Caches under management use only the MemoryStore,dine no special considerations. If Caches
use the DiskStore, the diskStore path specied in each Qdahager con guration should be unique.
When a new CacheManager is created, a check is made thatiieeme other CacheManagers using the
same diskStore path. If there are, a CacheException is thrifa CacheManager is part of a cluster, there
will also be listener ports which must be unique.

Mixed Singleton and Instance Mode If an application creates instances of CacheManager usiog-a
structor, and also calls a static create method, there wigt @ singleton instance of CacheManager which
will be returned each time the create method is called tagetlith any other instances created via con-
structor. The two types will coexist peacefully.

34 Ehcache v1.2.3 User Guide

5.1.2 Ehcache

java.lang

Cloneable

net.sf.ehcache

<<interface>> net.sf.ehcache.event

Ehcache ~------>= RegisteredEventListeners

+ bootstrap() : void
+ calculateinMe morySize() : long

+clearStatistics() : void fava.ang
+clone() : Object . -—-—== Object
+dispose() : void

+ evictExpiredElements() : void ————-—== String
+ flush() - void

+get(Serializable) : Elernent

+ get(Object) : Element java.uil

+ getBootstrapCacheLoader() : BootstrapCacheloader

+ getCacheEveniNotificationService() : RegisteredEventListeners —————— == LiSt<E>
+ getCacheManager() : CacheManager

+ getDiskExpiryThreadintervalSeconds() : long
+ getDiskStore HitCount() : int

+ getDiskStoreSize() : int

+getGuidy) : String = CacheManager
+ getHitCount() - int

+getKeys() : List ——----== Element

+ getKeysNoDuplicateCheck() : List - _
+getkeysWithExpiryCheck() - List ~—---->> Statistics

+ getMaxElernentsinMernory() : int

+ getMermoryStore EvictionPoilicy() : MermaoryStore EvictionPolicy
+ getMemoryStoreHitCount() : int

+ getMemaoryStoreSize() : long

+ getMissCountExpired() : int net.sf.ehcache.store
+ getMissCountNotFound() : int
+getName() : String

+ getQuiet(Serializable) - Element
+ getQuietObject) : Element
+getSize() : int java.io
+ getStatistics() : Statistics

+ getStatisticsAccuracyr) : int

+ getStatus() : Status

+ getTime ToldleSeconds() : long
+ getTime ToLiveSeconds() : long net.sf.ehcache.bootstrap
+initlalise() : void

+isDiskPersistent() : boolean

+ isFlementinMemary(Serializable) - boolean
+ isElementinMemory(Object) : boolean
+IsElementOnDisk(Senalizable) : boolean

+ isElementOnDisk(Object) : boolean
+isEternalk) : boolean

+isExpired(Element) : boolean
+isKeylnCache(Object) : boolean
+isOverflowToDisk() : boolean
+isValuelnCache{Object) : boolean

+ put{Element) : void

+ put(Element, boolean) : void

+ putQuietElement) : void

+ remove(Serializable) : boolean

+ remove(Serializable, boolean) : boolean

+ remove(Object) : boolean
+remove(Object, boolean) : boolean

+ removeAll() : void

+ removeAll{boolean) : void

+ removeQuiet(Serializable) : bookan

+ removeQuiet{Object) : boalean

net.sf.ehcache

—--———2= Status

——-----= MemeoryStoreEviction Policy

—-----== Serializable

——---->= BootstrapCacheLoader

+ setBootstrap Cacheloader{BootstrapCacheloader) : void
+ setCacheManager{CacheManager) : void

+ setDiskStorePath{String) : void

+ setName(String) : void

+ setStatisticsAccuracyfint) : void

+ toString() : String

generated by yDoc

= T T I

Ehcache v1.2.3 User Guide 35

All caches implement thehcache interface. A cache has a name and attributes. Each cachairtont
Elements.

A Cache in ehcache is analogous to a cache region in otheinggsystems.
Cache elements are stored in MemoryStore . Optionally they also over ow to ®iskStore

5.1.3 Element

Java.lang java.lang Java.io
Object Cloneable Serializable
i |
e ;
net.sf.ehcache i i
| 1
1
Jjava.lang Element ; ‘ Jjava.lang
Object | Stri
L e '+ ElementSerializable, Serializable) I
+ Element(Serializable, Serializable, long)
+ Element(Object, Object)
org.apache.commons.logging + Element(Object, Object, long) java.o

+ done(} : Object

+ equals(Object) : boolean
+ getCreationTime() : long

+ getExpirationTime() : long
+ getHitCount() : long

+ getKey(: Seralizable

+ getlastAccessTime(: long
+ getlastipdateTime(: long

~—----== Serializable

Log

/ getNextTolLastAccessTime() : long
+ getObjectieyl) : Object

+ getObjectValue() : Object

+ getSerializedSize() : long

+ getTimeToldle() : int

+ getTimeTolLive() © int

+ getValue() : Serializable

+ getVersion() : long

+ hashCode() : int

+ isEternal() - boolean

+ isExpired() : boolean

+ iskeySerializable() : boolean
+ isLifespanSet] : bodean

+ isSerializable(: boolean

+ resetAccessStatistics() | void
+ setCreateTime() : void

+ setEternal(boolean) : void

+ setTimeToldle(int) : void

+ setTimeToLive(int) : void

+ setVersion(long) : void

+ toString() - String

+ updatesAccessStatistics() : void
+ updateUpdateStatistics() : void

generated by yDoc

Element Class Diagram

An element is an atomic entry in a cache. It has a key, a valdeaarecord of accesses. Elements are
put into and removed from caches. They can also expire andrbeved by the Cache, depending on the
Cache settings.

As of ehcache-1.2 there is an API for Objects in addition & d¢ine for Serializable. Non-serializable
Objects can use all parts of ehcache except for DiskStoreepiitation. If an attempt is made to persist
or replicate them they are discarded without error and wIHEBUG level log message.

36 Ehcache v1.2.3 User Guide

The APIs are identical except for the return methods fronmt€let. Two new methods on Element: getO-
bjectValue and getKeyValue are the only API differencesveen the Serializable and Object APIs. This
makes it very easy to start with caching Objects and thengdhgaur Objects to Seralizable to participate
in the extra features when needed. Also a large number ofclasses are simply not Serializable.

5.2 Cache Eviction Algorithms

A cache eviction algorithm is a way of deciding whiglement to evict when the cache is full. In ehcache
the MemoryStore has a xed limited size and thBiskStore is unlimited. So, the only store that can
be full is theMemoryStore . If a cache is set to only useMemoryStore then the cache will also be full
when theMemoryStore is full, otherwise it will over ow to theDiskStore

The eviction algorithms in ehcache thus determine whemidreoryStore evicts an element. If there is
no DiskStore this will also be a cache eviction, otherwise it will causeoaer ow to disk.

5.2.1 About Eviction Algorithms

The idea here is, given a limit on the number of items to calche, to choose the thing to evict that gives
thebestresult.

In 1966 Laszlo Belady showed that the most ef cient cachilggpathm would be to always discard the
information that will not be needed for the longest time ie fature. This it a theoretical result that is
unimplementable without domain knowledge. The Least Riycélsed ("LRU") algorithm is often used
as a proxy. It works pretty well because of the locality okerehce phenonemon. As a result, LRU is the
default eviction algorithm in ehcache, as it is in most cache

Ehcache users may sometimes have a good domain knowledger.diayly, ehcache provides three evic-
tion algorithms to choose from.

5.2.2 Ehcache's Eviction Algorithms

Ehcache supports three eviction algorithms: LRU, LFU areFI

Least Recently Used (LRU)

The eldest element, is the Least Recently Used (LRU). Theitesl timestamp is updated when an element
is put into the cache or an element is retrieved from the cadthea get call.

LRU is the default in ehcache.

Less Frequently Used (LFU)

For each get call on the element the number of hits is upd&itaen a put call is made for a new element
(and assuming that the max limit is reached for the memongystbe element with least number of hits,
the Less Frequently Used element, is evicted.

If cache element use follows a pareto distribution, thiethm may give better results than LRU.
First In First Out (FIFO)
Elements are evicted in the same order as they come in. Whaehaalbis made for a new element (and

assuming that the max limit is reached for the memory sttwektement that was placed rst (First-In) in
the store is the candidate for eviction (First-Out).

Ehcache v1.2.3 User Guide 37

This algorithm is used if the use of an element makes it lé&dyiito be used in the future. An example
here would be an authentication cache.

5.3 Cache Usage Patterns

Caches can be used in different ways. Each of these ways/laache usage pattern. Ehcache supports
the following:

direct manipulation
pull-through

self-populating

5.3.1 Direct Manipulation

Here, to put something in the cache youddohe.put(Element element) and to get something from
the cache you doache.get(Object key)

You are aware you are using a cache and you are doing so caslcio

5.3.2 Self Populating

Here, you just do gets to the cache usiaghe.get(Object key) . The cache itself knows how to
populate an entry.

See the SelfPopulatingCache for more on this pattern.

38

Ehcache v1.2.3 User Guide

Chapter 6

Code Samples

Using the CacheManager

— Singleton versus Instance

— Ways of loading Cache Con guration

— Adding and Removing Caches Programmatically
— Shutdown the CacheManager

Using Caches

— Obtaining a reference to a Cache
— CRUD operations

— Disk Persistence on demand

— Cache Sizes

— Statistics of Cache Hits and Misses

Programmatically Creating Caches

— Creating a new cache from defaults
— Creating a new cache with custom parameters

Browse the JUnit Tests

6.1 Using the CacheManager

All usages of ehcache start with the creation of a CacheMamag

6.1.1 Singleton versus Instance

As of ehcache-1.2, ehcache CacheManagers can be creatébesssimgletons (use the create factory
method) or instances (use new).

Create a singleton CacheManager using defaults, theralites.

CacheManager.create();
String[] cacheNames = CacheManager.getinstance().getCa cheNames();

39

40 Ehcache v1.2.3 User Guide

Create a CacheManager instance using defaults, thendisesa

CacheManager manager = new CacheManager();
String[] cacheNames = manager.getCacheNames();

Create two CacheManagers, each with a different con garatind list the caches in each.

CacheManager managerl = new CacheManager("src/config/eh cachel.xml);
CacheManager manager2 = new CacheManager("src/config/eh cache2.xml");
String[] cacheNamesForManagerl = managerl.getCacheName s();
String[] cacheNamesForManager2 = manager2.getCacheName s();

6.1.2 Ways of loading Cache Con guration

When the CacheManager is created it creates caches foumel @oh guration.
Create a CacheManager using defaults. Ehcache will loo&Hfoache.xml in the classpath.

CacheManager manager = new CacheManager();
Create a CacheManager specifying the path of a con guraléon
CacheManager manager = new CacheManager("src/config/ehc ache.xml");
Create a CacheManager from a con guration resource in tgesphth.

URL url = getClass().getResource("/anotherconfiguratio nname.xml");
CacheManager manager = new CacheManager(url);

Create a CacheManager from a con guration in an InputStream

InputStream fis = new FilelnputStream(new File("src/conf ig/ehcache.xml").getAbsolutePath());
try {
CacheManager manager = new CacheManager(fis);
} finally {
fis.close();
}

6.1.3 Adding and Removing Caches Programmatically

You are not just stuck with the caches that were placed in dimegaration. You can create and remove
them programmatically.

Add a cache using defaults, then use it. The following exaneptates a cache callggstCachewhich
will be con gured using defaultCache from the con guration

CacheManager singletonManager = CacheManager.create();
singletonManager.addCache("testCache");
Cache test = singletonManager.getCache("testCache");

Create a Cache and add it to the CacheManager, then useéttiddiCaches are not usable until they have
been added to a CacheManager.

Ehcache v1.2.3 User Guide 41

CacheManager singletonManager = CacheManager.create();

Cache memoryOnlyCache = new Cache("testCache", 5000, fals e, false, 5, 2);
manager.addCache(memoryOnlyCache);

Cache test = singletonManager.getCache("testCache");

See Cache#Cache(...) for the full parameters for a new Cache
Remove cache called sampleCachel

CacheManager singletonManager = CacheManager.create();
singletonManager.removeCache("sampleCachel");

6.1.4 Shutdown the CacheManager

Ehcache should be shutdown after use. It does have a shutdmbknbut it is best practice to shut it down
in your code.

Shutdown the singleton CacheManager

CacheManager.getinstance().shutdown();

Shutdown a CacheManager instance, assuming you have aneédao the CacheManager caltednager
manager.shutdown();

See the CacheManagerTest for more examples.

6.2 Using Caches

All of these examples refer tmanagey which is a reference to a CacheManager, which has a cache in i
calledsampleCachel

6.2.1 Obtaining a reference to a Cache
Obtain a Cache called "sampleCachel", which has been pgeged in the con guration le

Cache cache = manager.getCache("sampleCachel");

6.2.2 Performing CRUD operations
Put an element into a cache

Cache cache = manager.getCache("sampleCachel");
Element element = new Element("keyl", "valuel");
cache.put(element);

Update an element in a cache. Even thougthe.put() is used, ehcache knows there is an existing
element, and considers the put an update for the purposdifyfing cache listeners.

Cache cache = manager.getCache("sampleCachel");
cache.put(new Element("keyl", "valuel®);

/IThis updates the entry for "keyl"

cache.put(new Element("keyl", "value2");

42 Ehcache v1.2.3 User Guide

Get a Serializable value from an element in a cache with a k&yey1".

Cache cache = manager.getCache("sampleCachel");
Element element = cache.get("keyl");
Serializable value = element.getValue();

Get a NonSerializable value from an element in a cache witktyak"key1".

Cache cache = manager.getCache("sampleCachel");
Element element = cache.get("keyl");
Object value = element.getObjectValue();

Remove an element from a cache with a key of "key1".

Cache cache = manager.getCache("sampleCachel");
Element element = new Element("keyl", "valuel"
cache.remove("keyl1");

6.2.3 Disk Persistence on demand

sampleCachehas a persistent diskStore. We wish to ensure that the ddtamdex are written immedi-
ately.

Cache cache = manager.getCache("sampleCachel");
cache.flush();

6.2.4 Obtaining Cache Sizes
Get the number of elements currently in tbache.

Cache cache = manager.getCache("sampleCachel");
int elementsinMemory = cache.getSize();

Get the number of elements currently in themoryStore .

Cache cache = manager.getCache("sampleCachel");
long elementsinMemory = cache.getMemoryStoreSize();

Get the number of elements currently in tiskStore

Cache cache = manager.getCache("sampleCachel");
long elementsinMemory = cache.getDiskStoreSize();

6.2.5 Obtaining Statistics of Cache Hits and Misses

These methods are useful for tuning cache con gurations.
Get the number of times requested items were found in theecaeh cache hits

Cache cache = manager.getCache("sampleCachel");
int hits = cache.getHitCount();

Get the number of times requested items were found invheoryStore of the cache.

Ehcache v1.2.3 User Guide 43

Cache cache = manager.getCache("sampleCachel");
int hits = cache.getMemoryStoreHitCount();

Get the number of times requested items were found iDitieStore of the cache.

Cache cache = manager.getCache("sampleCachel");
int hits = cache.getDiskStoreCount();

Get the number of times requested items were not found inableec i.e. cache misses.

Cache cache = manager.getCache("sampleCachel");
int hits = cache.getMissCountNotFound();

Get the number of times requested items were not found inableecdue to expiry of the elements.

Cache cache = manager.getCache("sampleCachel");
int hits = cache.getMissCountExpired();

These are just the most commonly used methods. See CaclieTegire examples. See Cache for the
full API.

6.3 Creating a new cache from defaults

A new cache with a given name can be created from defaultssiermly:

manager.addCache("cache name");

6.4 Creating a new cache with custom parameters

The con guration for a Cache can be speci ed programmaliydalthe Cache constructor:

public Cache(
String name,
int maxElementsinMemory,
MemoryStoreEvictionPolicy memoryStoreEvictionPolicy,
boolean overflowToDisk,
boolean eternal,
long timeToLiveSeconds,
long timeToldleSeconds,
boolean diskPersistent,
long diskExpiryThreadintervalSeconds) {

}
Here is an example which creates a cache called test.

/ICreate a CacheManager using defaults
CacheManager manager = CacheManager.create();

/ICreate a Cache specifying its configuration.
Cache testCache = new Cache("test", maxElements,

MemoryStoreEvictionPolicy.LFU, true, false, 60, 30, fals e, 0);
manager.addCache(cache);

44 Ehcache v1.2.3 User Guide

Once the cache is created, add it to the list of caches marmghe CacheManager:
manager.addCache(testCache);

The cache is not usable until it has been added.

6.5 Browse the JUnit Tests

Ehcache comes with a comprehensive JUnit test suite, whitbnly tests the code, but shows you how to
use ehcache.

A link to browsable unit test source code for the major eheattasses is given per section. The unit tests
are also in the src.zip in the ehcache tarball.

Chapter 7

Dependencies

7.1 Java Requirements

Ehcache supports 1.3, 1.4, 1.5 and 1.6 at runtime. Ehcadieefeases are compiled with -target 1.3.
This produces Java class data, version 47.0.

When compiling from source, the build process requiresaatl@DK 1.4, because 1.4 features are compile
in but switched out at runtime if the JDK is 1.3. JDK1.3 is safpd by catching NoSuchMethodError and
providing an alternate implementation. No JDK1.4 or 1.9lsage features are used.

Ehcache is known not to work with JDK1.1 and is not tested ok1IR.

Because of an RMI bug, in JDKs before JDK1.5 ehcache is lanibteone CacheManager operating in
distributed mode per virtual machine. (The bug limits thenber of RMI registries to one per virtual
machine). Because this is the expected deployment contigumahowever, ther should be no practical
effect.

On JDK1.5 and higher it is possible to have multiple Cachedgns per VM each participating in the
same or different clusters. Indeed the replication testhidowith 5 CacheManagers on the same VM all
run from JUnit.

7.2 Dependencies

For JDK1.4, JDK1.5 and JDK 1.6, ehcache requires commaygitig and commons-collections 2.1.1
from Apache's Jakarta project.

For JDK 1.3, ehcache also requires Apache xerces (xmljapésid xercesimpl.jar), version 2.5.
These dependencies are very common, so they are probatdyglglmet in your project.

45

46

Ehcache v1.2.3 User Guide

Chapter 8

Logging And Debugging

8.1 Commons Logging

Ehcache uses the Apache Commons Logging library for logging

It acts as a thin bridge between logging statements in the aod logging infrastructure detected in the
classpath. It will use in order of preference:

log4j
JDK1.4 logging

and then its owrsimpleLog

This enables ehcache to use logging infrastructures cahpatith Java versions from JDK1.2 to
JDKS5. It does create a dependency on Apache Commons Lodgingyver many projects, including
Hibernate, share the same dependency.

For normal production use, use th&\RNevel in log4J and th&VARNINGevel for JDK1.4 logging.

8.2 Logging Philosophy

Ehcache seeks to trade off informing production supporebi@ers or important messages and cluttering
the log.

ERROR (JDK logging SEVERE_ messages should not occur in alggroduction and indicate that action
should be taken.

WARNING (JDK logging WARN) messages generally indicate a garation change should be made or
an unusual event has occurred.

DEBUG (JDK logging FINE) messages are for development udeDBBUG level statements are sur-
rounded with a guard so that they are not executed unlesevbki$ DEBUG.

Setting the logging level to DEBUG (JDK level FINE) shoulcbpide more information on the source
of any problems. Many logging systems enable a logging lelrahge to be made without restarting the
application.

47

48 Ehcache v1.2.3 User Guide

8.3 Remote Network debugging and monitoring for Distributed Caches

A simple new tool in ehcache-1.2, ehcache-1.x-remote-gigdjar can be used to debug replicated cache
operations. Itis included in the distribution tarball fdroache-1.2.3 and higher.

Itis invoked using:
java -jar ehcache-1.x-remote-debugger.jar path_to_ehca che.xml cacheToMonitor

It will print a con guration of the cache, including replitian settings and monitor the number of elements
in the cache. If you are not seeing replication in your agpicn, run up this tool to see what is going on.

Itis a command line application, so it can easily be run frot@reninal session.

Chapter 9

Class loading and Class Loaders

Class loading within the plethora of environments ehcaelmebe running is a somewhat vexed issue.

Since ehcache-1.2 all classloading is done in a standardnaaye utility class:ClassLoaderUtil

9.1 Plugin class loading

Ehcache allows plugins for events and distribution. Thesdaaded and created as follows:

| **
*
*
*
*

*

*/

public static Object createNewlInstance(String className

Creates a new class instance. Logs errors along the way. Clas
ehcache standard classloader.

@param className a fully qualified class name
@return null if the instance cannot be loaded

Class clazz;
Object newlnstance;
try {
clazz = Class.forName(className, true, getStandardClass
} catch (ClassNotFoundException e) {
IItry fallback
try {
clazz = Class.forName(className, true, getFallbackClass
} catch (ClassNotFoundException ex) {
throw new CacheException("Unable to load class
". Initial cause was " + e.getMessage(), e);

}

try {
newlnstance = clazz.newlnstance();

} catch (lllegalAccessException e) {
throw new CacheException("Unable to load class " + classNam
". Initial cause was " + e.getMessage(), e);
} catch (InstantiationException e) {
throw new CacheException("Unable to load class " + classNam
". Initial cause was " + e.getMessage(), e);

}

return newilnstance;

49

+ classNam

ses are loaded using the

) throws CacheException {

Loader());

Loader());

e +

50

Ehcache v1.2.3 User Guide

}

| *x
* Gets the <code>ClassLoader</code> that all classes in ehca
* use for classloading. All ClassLoading in ehcache should us
* thing that seems to work for all of the class loading situatio
* @return the thread context class loader.
*/
public static ClassLoader getStandardClassLoader() {

return Thread.currentThread().getContextClassLoader(

}

| *x
* Gets a fallback <code>ClassLoader</code> that all classes
* should use for classloading. This is used if the context clas
* @return the <code>ClassLoaderUstil.class.getClassLoade
* [
public static ClassLoader getFallbackClassLoader() {

return ClassLoaderUtil.class.getClassLoader();

}

che, and extensions, should
e this one. This is the only
ns found in the wild.

in ehcache, and extensions,
s loader does not work.
r();</code>

If this does not work for some reason a CacheException iswinmgith a detailed error message.

9.2 Loading of ehcache.xml resources

If the con guration is otherwise unspeci ed, ehcache lodtsa con guration in the following order:

Thread.currentThread().getContextClassLoader() ggRrce("/ehcache.xml”)

Con gurationFactory.class.getResource("/ehcachexmi

Con gurationFactory.class.getResource("/ehcachiseta. xml™)

Ehcache uses the rst con guration found.

Note the use of "/ehcache.xml" which requires that ehcaahide placed at the root of the classpath, i.e.
not in any package.

Chapter 10

Performance Considerations

10.1 DiskStore

Ehcache comes with emoryStore and aDiskStore . TheMemoryStore is approximately an order
of magnitude faster than theiskStore . The reason is that thRiskStore incurs the following extra
overhead:

Serialization of the key and value
Eviction from theMemoryStore using an eviction algorithm

Reading from disk

Note that writing to disk is not a synchronous performancerbgad because it is handled by a separate
thread.

A Cache should alway have itsaximumSize attribute set to 1 or higher. A Cache with a maximum size
of 1 has twice the performance of a disk only cache, i.e. onerg/themaximumSize is set to 0. For this
reason a warning will be issued if a Cache is created witlmaxdmumsSize .

10.2 Replication
The asynchronous replicator is the highest performancerelére two different effects:

Because it is asynchronous the caller returns immediately

The messages are placed in a queue. As the queue is proaessiole messages are sent in one
RMI call, dramatically accelerating replication performea.

51

52

Ehcache v1.2.3 User Guide

Chapter 11

Cache Decorators

Ehcache 1.2 introduced the Ehcache interface, of which €&chn implementation. It is possible and
encouraged to create Ehcache decorators that are backe€Caghe instance, implement Ehcache and
provide extra functionality.

The Decorator pattern is one of the the well known Gang of fpatterns.

11.1 Creating a Decorator

Cache decorators are created as follows:
BlockingCache newBlockingCache = new BlockingCache(cach e);

The class must implement Ehcache.

11.2 Accessing the decorated cache

Having created a decorator it is generally useful to put & place where multiple threads may access it.
This can be achieved in multiple ways.

11.2.1 Using CacheManager to access decorated caches

A built-in way is to replace the Cache in CacheManager withdbcorated one. This is achieved as in the
following example:

cacheManager.replaceCacheWithDecoratedCache(cache, n ewBlockingCache);

TheCacheManager replaceCacheWithDecoratedCache method requires that the decorated cache be
built from the underlying cache from the same name.

Note that any overwritten Ehcache methods will take on ndvabieurs without casting, as per the normal
rules of Java. Casting is only required for new methods thetiecorator introduces.

Any calls to get the cache out of the CacheManager now religrdécorated one.

A word of caution. This method should be called in an appweiply synchronized init style method before
multiple threads attempt to use it. All threads must be efeing the same decorated cache. An example
of a suitable init method is found i@achingFilter

53

54 Ehcache v1.2.3 User Guide

| *x

* The cache holding the web pages. Ensure that all threads for a given cache name are using the
*/

private BlockingCache blockingCache;

| *x

* |nitialises blockingCache to use

*

* @throws CacheException The most likely cause is that a cache has not been
* configured in ehcache's configuration file ehcache.xml fo r the filter
*/

public void dolnit() throws CacheException {
synchronized (this.getClass()) {
if (blockingCache == null) {
final String cacheName = getCacheName();
Ehcache cache = getCacheManager().getEhcache(cacheName);
if (!(cache instanceof BlockingCache)) {
/ldecorate and substitute

BlockingCache newBlockingCache = new BlockingCache(cach e);
getCacheManager().replaceCacheWithDecoratedCache(ca che, newBlockingCache);

}

blockingCache = (BlockingCache) getCacheManager().getE hcache(getCacheName());

}
}
}
Ehcache blockingCache = singletonManager.getEhcache("s ampleCachel");

The returned cache will exhibit the decorations.

11.3 Built-in Decorators

11.3.1 BlockingCache

A blocking decorator for an Ehcache, backed by a @link Eheach

It allows concurrent read access to elements already inableec If the element is null, other reads will
block until an element with the same key is put into the cache.

This is useful for constructing read-through or self-p@pinlg caches.
BlockingCache is used b@achingFilter

Ehcache v1.2.3 User Guide

55

56 Ehcache v1.2.3 User Guide

11.3.2 SelfPopulatingCache

A selfpopulating decorator for @link Ehcache that createéges on demand.

Clients of the cache simply call it without needing knowledy whether the entry exists in the cache. If
null the entry is created.

The cache is designed to be refreshed. Refreshes operdte badking cache, and do not degrade perfor-
mance of get calls.

SelfPopulatingCache extends BlockingCache. Multipledhs attempting to access a null element will
block until the rst thread completes. If refresh is beindled the threads do not block - they return the
stale data.

This is very useful for engineering highly scalable systems

SelfPopulatingCache

Chapter 12

Cache Con guration

Caches can be con gured in ehcache either declarativebyrih or by creating them programmatically
and specifying their parameters in the constructor.

While both approaches are fully supported it is generallpadjidea to separate the cache con guration
from runtime use. There are also these bene ts:

It is easy if you have all of your con guration in one place. ddas consume memory, and disk
space. They need to be carefully tuned. You can see the ftdal & a con guration le. You could
do this code, but it would not as visible.

Cache con guration can be changed at deployment time.

Con guration errors can be checked for at start-up, rathantcausing a runtime error.

This chapter covers XML declarative con guration. See tloel€ samples for programmatic con guration.

Ehcache is redistributed by lots of projects. They may or matyprovide a sample ehcache XML con g-
uration le. If one is not provided, download ehcache frortphfiehcache.sf.net. It, and the ehcache.xsd is
provided in the distribution.

12.1 ehcache.xsd

Ehcache con guration les must be comply with the ehcache X8hema, ehcache.xsd, reproduced be-
low.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmins:xs="http://www.w3.0rg/2001/XMLSchem a
elementFormDefault="qualified">
<xs:element name="ehcache">
<xs:complexType>
<xs:sequence>
<xs:element ref="diskStore"/>
<xs:element minOccurs="0" maxOccurs="1"
ref="cacheManagerEventListenerFactory"/>

<xs:element minOccurs="0" maxOccurs="1

<xs:element minOccurs="0" maxOccurs="1"
ref="cacheManagerPeerListenerFactory"/>

<xs:element ref="defaultCache"/>

57

58

Ehcache v1.2.3 User Guide

<xs:element maxOccurs="unbounded" ref="cache"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="diskStore">
<xs:complexType>
<xs:attribute name="path" use="required" type="xs:NCNa
</xs:complexType>
</xs:element>
<xs:element name="cacheManagerEventListenerFactory">
<xs:.complexType>
<xs:attribute name="class" use="required"/>
<xs:attribute name="properties" use="optional"/>
</xs:complexType>
</xs:element>
<xs:element name="cacheManagerPeerProviderFactory">
<xs:.complexType>
<xs:attribute name="class" use="required"/>
<xs:attribute name="properties" use="optional"/>
</xs:complexType>
</xs:element>
<xs:element name="cacheManagerPeerListenerFactory">
<xs:.complexType>
<xs:attribute name="class" use="required"/>
<xs:attribute name="properties" use="optional"/>
</xs:complexType>
</xs:element>
<xs:element name="defaultCache">
<xs:.complexType>
<xs:sequence>
<xs:element minOccurs="0" ref="cacheEventListenerFact
<xs:element minOccurs="0" ref="bootstrapCachelLoaderFa
</xs:sequence>
<xs:attribute name="diskExpiryThreadIntervalSeconds"
use="optional" type="xs:integer"/>
<xs:attribute name="diskPersistent" use="optional" typ
<xs:attribute name="eternal" use="required" type="xs:b

<xs:attribute
<xs:attribute
<xs:attribute

<xs:attribute
<xs:attribute

name="maxElementsinMemory" use="require
type="xs:integer"/>
name="memoryStoreEvictionPolicy" use="o
type="xs:NCName"/>
name="overflowToDisk" use="required" typ
name="timeToldleSeconds" use="optional"
name="timeToLiveSeconds" use="optional"

me"/>

ory"/>
ctory"/>

e="xs:boolean"/>
oolean"/>
d

ptional”
e="xs:boolean"/>

type="xs:integer"/>
type="xs:integer"/>

</xs:complexType>
</xs:element>
<xs:.element name="cache">
<xs:complexType>
<xs:sequence>
<xs:element minOccurs="0" ref="cacheEventListenerFact
<xs:element minOccurs="0" ref="bootstrapCachelLoaderFa
</xs:sequence>
<xs:attribute name="diskExpiryThreadIntervalSeconds"

ory"/>
ctory"/>

type="xs:integer"/>

<xs:attribute name="diskPersistent" type="xs:boolean" 1>
<xs:attribute name="eternal" use="required" type="xs:b oolean"/>
<xs:attribute name="maxElementsinMemory" use="require d"

type="xs:integer"/>

<xs:attribute name="memoryStoreEvictionPolicy" type=" xs:NCName"/>

Ehcache v1.2.3 User Guide 59

<xs:attribute name="name" use="required" type="xs:NCNa me"/>
<xs:attribute name="overflowToDisk" use="required" typ e="xs:boolean"/>
<xs:attribute name="timeToldleSeconds" type="xs:integ er'/>
<xs:attribute name="timeToLiveSeconds" type="xs:integ er'/>

</xs:complexType>
</xs:element>
<xs:element name="cacheEventListenerFactory">
<xs:.complexType>
<xs:attribute name="class" use="required"/>
<xs:attribute name="properties" use="optional"/>
</xs:complexType>
</xs:element>
<xs:element name="bootstrapCachelLoaderFactory">
<xs:.complexType>
<xs:attribute name="class" use="required"/>
<xs:attribute name="properties" use="optional"/>
</xs:complexType>
</xs:element>
</xs:schema>

12.2 ehcache-failsafe.xml

If the CacheManager default constructor or factory metteoddlled, ehcache looks for a le called
ehcache.xml in the top level of the classpath. Failing thaidks for ehcache-failsafe.xml in the class-
path. ehcache-failsafe.xml is packaged in the ehcachaghslould always be found.

ehcache-failsafe.xml provides an extremely simple défaan guration to enable users to get started be-
fore they create their own ehcache.xml.

If it used ehcache will emit a warning, reminding the userabup a proper con guration.

The meaning of the elments and attributes are explainedarsdttion on ehcache.xml. -ehcache

diskStore path="java.io.tmpdir"/ defaultCache maxElens¢tnMemory="10000" eternal="false" timeTol-
dleSeconds="120" timeToLiveSeconds="120" over owTdBi$srue" diskPersistent="true" diskExpiry-
ThreadlIntervalSeconds="120" memoryStoreEvictionRalit RU" / /ehcache--

12.3 ehcache.xml and other con guration les

If the CacheManager default constructor or factory mettedalled, ehcache looks for a le called
ehcache.xmlin the top level of the classpath.

The non-default creation methods allow a con guration telde speci ed which can be called anything.

One XML con guration is required for each CacheManager thatreated. It is an error to use the same
con guration, because things like directory paths ancehstr ports will con ict. Ehcache will attempt
to resolve con icts and will emit a warning reminding the use con gure a separate con guration for
multiple CacheManagers with con icting settings.

The sample ehcache.xml, which is included in the ehcachetdison is shown below:

<ehcache>

<l--
Sets the path to the directory where cache files are created.

If the path is a Java System Property it is replaced by its valu e in the
running VM.

60

Ehcache v1.2.3 User Guide

The following properties are translated:

* user.home - User's home directory

* user.dir - User's current working directory
* java.io.tmpdir - Default temp file path

Subdirectories can be specified below the property e.g. jav a.io.tmpdir/one
>

<diskStore path="java.io.tmpdir"/>

<l--
Specifies a CacheManagerEventListenerFactory, be used to create a CacheManagerPeerProvider,
which is notified when Caches are added or removed from the Ca cheManager.

The attributes of CacheManagerEventListenerFactory are:
* class - a fully qualified factory class name
* properties - comma separated properties having meaning onl y to the factory.

Sets the fully qualified class name to be registered as the Ca cheManager event listener.

The events include:
* adding a Cache
* removing a Cache

Callbacks to listener methods are synchronous and unsynchr onized. It is the responsibility
of the implementer to safely handle the potential performan ce and thread safety issues
depending on what their listener is doing.

If no class is specified, no listener is created. There is no d efault.

>

<cacheManagerEventListenerFactory class="" properties =""/>

<l--

(Enable for distributed operation)

Specifies a CacheManagerPeerProviderFactory which will b e used to create a
CacheManagerPeerProvider, which discovers other CacheMa nagers in the cluster.

The attributes of cacheManagerPeerProviderFactory are:
* class - a fully qualified factory class name

* properties - comma separated properties having meaning onl y to the factory.

Ehcache comes with a built-in RMI-based distribution syste m with two means of discovery of

CacheManager peers participating in the cluster:

* automatic, using a multicast group. This one automatically discovers peers and detects
changes such as peers entering and leaving the group

* manual, using manual rmiURL configuration. A hardcoded lis t of peers is provided at

configuration time.

Configuring Automatic Discovery:

Automatic discovery is configured as per the following exam ple:
<cacheManagerPeerProviderFactory
class="net.sf.ehcache.distribution.RMICacheManagerP eerProviderFactory"
properties="peerDiscovery=automatic, multicastGroupA ddress=230.0.0.1,

multicastGroupPort=4446"/>

Valid properties are:

Ehcache v1.2.3 User Guide 61

* peerDiscovery (mandatory) - specify "automatic"

* multicastGroupAddress (mandatory) - specify a valid multi cast group address
* multicastGroupPort (mandatory) - specify a dedicated port for the multicast heartbeat
traffic

Configuring Manual Discovery:
Manual discovery is configured as per the following example
<cacheManagerPeerProviderFactory class=

"net.sf.ehcache.distribution.RMICacheManagerPeerPro viderFactory"
properties="peerDiscovery=manual,
rmiUrls=//server1:40000/sampleCachell//server2:4000 O/sampleCachel
| //server1:40000/sampleCache?2|//server2:40000/sampl eCache2"/>

Valid properties are:

* peerDiscovery (mandatory) - specify "manual”

* rmiUrls (mandatory) - specify a pipe separated list of rmiUr Is, in the form
/Ihostname:port

The hostname is the hostname of the remote CacheManager peer . The port is the listening
port of the RMICacheManagerPeerListener of the remote Cach eManager peer.

An alternate CacheManagerPeerProviderFactory can be used for JNDI discovery of other
CacheManagers in the cluster. Only manual discovery is supp orted.

For cacheManagerPeerProviderFactory specify class

net.sf.ehcache.distribution.JNDIManualRMICacheManag erPeerProviderFactoryerFactory.
Correspondingly for cacheManagerPeerListenerFactory sp ecify class
net.sf.ehcache.distribution.JNDIRMICacheManagerPeer ListenerFactoryory.

Configuring JNDI Manual Discovery:

Manual JNDI discovery is configured as per the following exa mple:
<cacheManagerPeerProviderFactory class=
"net.sf.ehcache.distribution.JNDIManualRMICacheMana gerPeerProviderFactoryerFactory"
properties="peerDiscovery=manual, stashContexts=true , stashRemoteCachePeers=true,
jndiUrls=t3//server1:40000/sampleCachel|t3//server2 :40000/sampleCachel
|t3//server1:40000/sampleCache?2|t3//server2:40000/s ampleCache2"/>

Valid properties are:
* peerDiscovery (mandatory) - specify "manual”

* stashContexts (optional) - specify "true" or "false". Defa ults to true.
java.naming.Context objects are stashed for performance.

* stashRemoteCachePeers (optional) - specify "true" or "fal se". Defaults to true.
CachePeer objects are stashed for performance.

* jndiUrls (mandatory) - specify a pipe separated list of jndi Urls,
in the form protocol//hostname:port

-—>

<cacheManagerPeerProviderFactory

class="net.sf.ehcache.distribution.RMICacheManagerP eerProviderFactory"

properties="peerDiscovery=automatic,
multicastGroupAddress=230.0.0.1,
multicastGroupPort=4446"/>

<l--
(Enable for distributed operation)

Specifies a CacheManagerPeerListenerFactory which will b e used to create a

Ehcache v1.2.3 User Guide

CacheManagerPeerListener, which
listens for messages from cache replicators participating

The attributes of cacheManagerPeerListenerFactory are:
class - a fully qualified factory class name
properties - comma separated properties having meaning onl

Ehcache comes with a built-in RMI-based distribution syste
RMICacheManagerPeerListener which is configured using
RMICacheManagerPeerListenerFactory. It is configured as

<cacheManagerPeerListenerFactory
class="net.sf.ehcache.distribution.RMICacheManagerP
properties="hostName=fully_qualified_hostname_or_ip
port=40001,
socketTimeoutMillis=120000"/>

All properties are optional. They are:

* hostName - the hostName of the host the listener is running on
where the host is multihomed and you want to control the inter
messages are received. Defaults to the host name of the defau
specified.

* port - the port the listener listens on. This defaults to a fre

* socketTimeoutMillis - the number of ms client sockets will s
messages to the listener. This should be long enough for the s
If not specified it defaults 120000ms.

An alternate CacheManagerPeerListenerFactory can be also
listeners for messages from cache replicators participati
cacheManagerPeerListenerFactory specify

in the cluster.

y to the factory.
m. The listener component is

per the following example:

eerListenerFactory"

. Specify
face over which cluster
It interface if not

e port if not specified.
tay open when sending
lowest message.

be used for JNDI binding of
ng in the cluster. For

class net.sf.ehcache.distribution.JNDIRMICacheManage rPeerListenerFactory.
Correspondingly for cacheManagerPeerProviderFactory sp ecify class
net.sf.ehcache.distribution.JNDIManualRMICacheManag erPeerProviderFactoryerFactory.
Properties for JNDIRMICacheManagerPeerListenerFactory are the same as

RMICacheManagerPeerListenerFactory.

-—>
<cacheManagerPeerListenerFactory
class="net.sf.ehcache.distribution.RMICacheManagerP

<l-- Cache configuration.
The following attributes are required.

name:
Sets the name of the cache. This is used to identify the cache.

maxElementsinMemory:
Sets the maximum number of objects that will be created in mem

eternal:
Sets whether elements are eternal. If eternal, timeouts are
element is never expired.

overflowToDisk:
Sets whether elements can overflow to disk when the in-memor
has reached the maxInMemory limit.

eerListenerFactory"/>

It must be unique.

ory

ignored and the

y cache

Ehcache v1.2.3 User Guide 63

The following attributes are optional.

timeToldleSeconds:
Sets the time to idle for an element before it expires.

i.e. The maximum amount of time between accesses before an el ement expires
Is only used if the element is not eternal.
Optional attribute. A value of 0 means that an Element can idl e for infinity.

The default value is 0.

timeToLiveSeconds:
Sets the time to live for an element before it expires.

i.e. The maximum time between creation time and when an eleme nt expires.
Is only used if the element is not eternal.
Optional attribute. A value of 0 means that and Element can i ve for infinity.

The default value is 0.

diskPersistent:
Whether the disk store persists between restarts of the Virt ual Machine.
The default value is false.

diskExpiryThreadIntervalSeconds:
The number of seconds between runs of the disk expiry thread. The default value
is 120 seconds.

memoryStoreEvictionPolicy:

Policy would be enforced upon reaching the maxElementsinMe mory limit. Default
policy is Least Recently Used (specified as LRU). Other poli cies available -
First In First Out (specified as FIFO) and Less Frequently Us ed

(specified as LFU)

Cache elements can also contain sub elements which take the s ame format of a factory class
and properties. Defined sub-elements are:

* cacheEventListenerFactory - Enables registration of list eners for cache events, such as
put, remove, update, and expire.

* bootstrapCachelLoaderFactory - Specifies a BootstrapCach eLoader, which is called by a
cache on initialisation to prepopulate itself.

Each cache that will be distributed needs to set a cache event listener which replicates
messages to the other CacheManager peers. For the built-in R MI implementation this is done
by adding a cacheEventListenerFactory element of type RMIC acheReplicatorFactory to each
distributed cache's configuration as per the following exa mple:

<cacheEventListenerFactory class="net.sf.ehcache.dis tribution.RMICacheReplicatorFactory"

properties="replicateAsynchronously=true,
replicatePuts=true,

replicateUpdates=true,
replicateUpdatesViaCopy=true,
replicateRemovals=true "/>

The RMICacheReplicatorFactory recognises the following p roperties:

* replicatePuts=truel|false - whether new elements placed in a cache are
replicated to others. Defaults to true.

* replicateUpdates=truelfalse - whether new elements which override an

64

Ehcache v1.2.3 User Guide

element already existing with the same key are replicated. D
* replicateRemovals=true - whether element removals are rep

* replicateAsynchronously=true | false - whether replicati
asynchronous (true) or synchronous (false). Defaults to tr

* replicateUpdatesViaCopy=true | false - whether the new ele
copied to other caches (true), or whether a remove message is

The RMIBootstrapCachelLoader bootstraps caches in cluster
used. It is configured as per the following example:

<bootstrapCachelLoaderFactory
class="net.sf.ehcache.distribution.RMIBootstrapCach
properties="bootstrapAsynchronously=true, maximumChu

The RMIBootstrapCachelLoaderFactory recognises the follo

* bootstrapAsynchronously=truelfalse - whether the bootst
after the cache has started. If false, bootstrapping must co
made available. The default value is true.

* maximumChunkSizeBytes=<integer> - Caches can potentiall
memory limits of the VM. This property allows the bootstrape
chunks. The default chunk size is 5000000 (5MB).

>

<l--
Mandatory Default Cache configuration. These settings wil
created programmtically using CacheManager.add(String ¢
-—>
<defaultCache
maxElementsinMemory="10000"
eternal="false"
timeToldleSeconds="120"
timeToLiveSeconds="120"
overflowToDisk="true"
diskPersistent="false"
diskExpiryThreadIntervalSeconds="120"
memoryStoreEvictionPolicy="LRU"
/>

<l--

Sample caches. Following are some example caches. Remove th
-—>

<l--

Sample cache named sampleCachel

This cache contains a maximum in memory of 10000 elements, an
an element if it is idle for more than 5 minutes and lives for mo
10 minutes.

If there are more than 10000 elements it will overflow to the
disk cache, which in this configuration will go to wherever j

efaults to true.
licated. Defaults to true.

ons are
ue.

ments are

sent. Defaults to true.

s where RMICacheReplicators are

eLoaderFactory"
nkSizeBytes=5000000"/>

wing optional properties:

rap happens in the background
mplete before the cache is

y be very large, larger than the
r to fetched elements in

| be applied to caches
acheName)

ese before use.

d will expire
re than

ava.io.tmp is

Ehcache v1.2.3 User Guide 65

defined on your system. On a standard Linux system this will b e /tmp"
-->
<cache name="sampleCachel"

maxElementsinMemory="10000"

eternal="false"

overflowToDisk="true"

timeToldleSeconds="300"

timeToLiveSeconds="600"

memoryStoreEvictionPolicy="LFU"

/>
<I--
Sample cache named sampleCache2
This cache has a maximum of 1000 elements in memory. There is n o overflow to disk, so 1000
is also the maximum cache size. Note that when a cache is etern al, timeToLive and
timeToldle are not used and do not need to be specified.
>

<cache name="sampleCache2"
maxElementsinMemory="1000"
eternal="true"
overflowToDisk="false"
memoryStoreEvictionPolicy="FIFO"

/>
<I--
Sample cache named sampleCache3. This cache overflows to di sk. The disk store is
persistent between cache and VM restarts. The disk expiry th read interval is set to 10
minutes, overriding the default of 2 minutes.
>

<cache name="sampleCache3"
maxElementsinMemory="500"
eternal="false"
overflowToDisk="true"
timeToldleSeconds="300"
timeToLiveSeconds="600"
diskPersistent="true"
diskExpiryThreadintervalSeconds="1"
memoryStoreEvictionPolicy="LFU"
/>

<l--
Sample distributed cache named sampleDistributedCachel.
This cache replicates using defaults.
It also bootstraps from the cluster, using default properti es.
-->
<cache name="sampleDistributedCachel"
maxElementsinMemory="10"
eternal="false"
timeToldleSeconds="100"
timeToLiveSeconds="100"
overflowToDisk="false">
<bootstrapCachelLoaderFactory
class="net.sf.ehcache.distribution.RMIBootstrapCach eLoaderFactory"/>
<cacheEventListenerFactory
class="net.sf.ehcache.distribution.RMICacheReplicat orFactory"/>

66 Ehcache v1.2.3 User Guide

</cache>

<I--
Sample distributed cache named sampleDistributedCache?2.
This cache replicates using specific properties.
It only replicates updates and does so synchronously via cop y
>
<cache name="sampleDistributedCache2"
maxElementsinMemory="10"
eternal="false"
timeToldleSeconds="100"
timeToLiveSeconds="100"
overflowToDisk="false">
<cacheEventListenerFactory
class="net.sf.ehcache.distribution.RMICacheReplicat orFactory"
properties="replicateAsynchronously=false, replicate Puts=false,
replicateUpdates=true, replicateUpdatesViaCopy=true,
replicateRemovals=false"/>
</cache>

</ehcache>

Chapter 13

Storage Options

Ehcache has two stores:

a MemoryStore and

a DiskStore

13.1 Memory Store

TheMemoryStore is always enabled. It is not directly manipulated, but is mponent of every cache.

Suitable Element Types
All Elements are suitable for placement in the MemoryStore.
It has the following characteristics:

— Safety
Thread safe for use by multiple concurrent threads.
Tested for memory leaks. See MemoryCacheTest#testMereakylT his test passes for ehcache
but exploits a number of memory leaks in JCS. JCS will give and@Memory error with a
default 64M in 10 seconds.

— Backed By JDK
LinkedHashMap Th&emoryStore for JDK1.4 and JDK 5 itis backed by an extended Linked-
HashMap. This provides a combined linked list and a hash raag,is ideally suited for
caching. Using this standard Java class simpli es the imgletation of the memory cache. It
directly supports obtaining the least recently used elémen

For JDK1.2 and JDK1.3, the LRUMap from Apache Commons is udeg@rovides similar
features to LinkedHashMap.

The implementation is determined dynamically at runtiménkedHashMap is preferred if
found in the classpath.

— Fast
The memory store, being all in memory, is the fastest cacbpimn.

13.1.1 Memory Use, Spooling and Expiry Strategy

All caches specify their maximum in-memory size, in termshef number of elements, at con guration
time.

67

68 Ehcache v1.2.3 User Guide

When an element is added to a cache and it goes beyond its mraximemory size, an existing element
is either deleted, if over owToDisk is false, or evaluateat Epooling to disk, if over owToDisk is true.
In the latter case, a check for expiry is carried out. If it Xpieed it is deleted; if not it is spooled. The
eviction of an item from the memory store is based on the Mg®tmreEvictionPolicy setting speci ed in
the con guration le.

memoryStoreEvictionPolicy is an optional attribute in &tize.xml introduced since 1.2. Legal values are
LRU (default), LFU and FIFO.

LRU, LFU and FIFO eviction policies are supported. LRU is tledault, consistent with all earlier releases
of ehcache.

Least Recently Used (LRU) - Default

The eldest element, is the Least Recently Used (LRU). Theutal timestamp is updated when an
element is put into the cache or an element is retrieved frentache with a get call.

Less Frequently Used (LFU)

For each get call on the element the number of hits is updaéten a put call is made for a new
element (and assuming that the max limit is reached for theong store) the element with least
number of hits, the Less Frequently Used element, is evicted

First In First Out (FIFO)

Elements are evicted in the same order as they come in. Whencalbis made for a new element
(and assuming that the max limit is reached for the memomg}tbe element that was placed rst
(First-In) in the store is the candidate for eviction (FiGxt).

For all the eviction policies there are alpotQuiet andgetQuiet methods which do not update
the last used timestamp.

When there is get or agetQuiet on an element, it is checked for expiry. If expired, it is remd
and null is returned.

Note that at any point in time there will usually be some exgielements in the cache. Memory
sizing of an application must always take into account thgimam size of each cache. There is a
convenience method which can provide an estimate of thersizgtes of theMemoryStore . See
calculatelnMemorySize(). It returns the serialized sitéhe cache. Do not use this method in
production. It is very slow. It is only meant to provide a rbugstimate.

The alternative would have been to have an expiry thread ita trade-off between lower memory
use and short locking periods and cpu utilisation. The daesdn favour of the latter. For those
concerned with memory use, simply reduce ifexElementsinMemory

13.2 DiskStore

TheDiskStore provides a disk spooling facility.

Suitable Element Types

Only Element s which areSerializable can be placed in the DiskStore. Any non serializable
Element s which attempt to over ow to th®iskStore will be removed instead, and a WARNING
level log message emitted.

It has the following characteristics:

Storage Files
The disk store creates one le per cache called "cache natz.d
If the DiskStore is con gured to be persistent, @dche nameindex” le is also created.

Ehcache v1.2.3 User Guide 69

Files are created in the directory speci ed by the diskStame guration element. The default con-
guration is "java.io.tmpdir”, which causes les to be cted in the system's temporary directory.

Following is a list of Java system properties which are suiggbas values for diskStore:

— user.home - User's home directory
— user.dir - User's current working directory
— java.io.tmpdir - Default temp le path

Apart from these, any directory can be speci ed using symtpgropriate to the operating system.
e.g. for Unix "/home/application/cache".
Expiry Strategy

One thread per cache is used to remove expired elements plibea attributeliskExpiry ThreadintervalSeconds
sets the interval between runs of the expiry thread. Warrsegfing this to a low value is not rec-
ommended. It can cause excesdbiskStore locking and high cpu utilisation. The default value

is 120 seconds.

Serializable Objects

Only Serializable objects can be stored iniskStore . A NotSerializableException will be thrown
if the object is not serializable.

Safety

DiskStore s are thread safe.

Persistence

DiskStore persistence is controlled by the diskPersistent con gare¢lement. If false or omitted,
DiskStore s will not persist betwee@acheManager restarts. The data le for each cache will be
deleted, if it exists, both on shutdown and startup. No data fa previous instancgacheManager

is available.

If diskPersistent is true, the data le, and an index le, ased. Cache Elements are available to a
newCacheManager . ThisCacheManager may be in the same VM instance, or a new one.

The data le is updated continuously during operation of fligk Store. New elements are spooled
to disk, and deleted when expired. The index le is only veittwhen dispose is called on the
DiskStore . This happens when the CacheManager is shut down, a Caclsp@sédd, or the VM

is being shut down. It is recommended that the CacheMandged®vn() method be used. See
Virtual Machine Shutdown Considerations for guidance ow km safely shut the Virtual Machine
down.

When aDiskStore is persisted, the following steps take place:

— Any non-expired Elements of thdemoryStore are ushed to the DiskStore
— Elements awaiting spooling are spooled to the data le
— The free list and element list are serialized to the index le

On startup the following steps take place:

— An attempt is made to read the index le. If it does not existannot be read successfully, due
to disk corruption, upgrade of ehcache, change in JDK versio, then the data le is deleted
and theDiskStore starts with no Elements in it.

— Ifthe index le is read successfully, the free list and elernlist are loaded into memory. Once
this is done, the index le contents are removed. This wathéfe is a dirty shutdown, when
restarted, ehcache will delete the dirt index and data les.

— TheDiskStore starts. All data is available.

70

Ehcache v1.2.3 User Guide

— The expiry thread starts. It will delete Elements which hexpired.

These actions favour safety over persistence. Ehcacheaisteecnot a database. If a le gets dirty,
all data is deleted. Once started there is further checlangdrruption. When a get is done, if
the Element cannot be successfully derserialized, it istdd] and null is returned. These measures
prevent corrupt and inconsistent data being returned.

— Fragmentation

Expiring an element frees its space on the le. This spaced#able for reuse by new elements.
The element is also removed from the in-memory index of eteme

— Speed
Spool requests are placed in-memory and then asynchrgnettiien to disk. There is one

thread per cache. An in-memory index of elements on disk istaiaed to quickly resolve
whether a key exists on disk, and if so to seek it and read it.

— Serialization

Writes to and from the disk use ObjectinputStream and tha Sewialization mechanism. This
is not required for the MemoryStore. As a result the Disk&toan never be as fast as the
MemoryStore.

Serialization speed is affected by the size of the objedtggbeerialized and their type. It has
been found in the ElementTest test that:

The serialization time for a Java object being a large Maptdh@ arrays was 126ms,
where the a serialized size was 349,225 bytes.

The serialization time for a byte[] was 7ms, where the segdlsize was 310,232 bytes

Byte arrays are 20 times faster to serialize. Make use of agi@ys to increase DiskStore
performance.

— RAMFS

One option to speed up disk stores is to use a RAM le system.s@ne operating systems
there are a plethora of le systems to choose from. For exatpe Disk Cache has been
successfully used with Linux' RAMFS le system. This le si@n simply consists of memory.
Linux presents it as a le system. The Disk Cache treats & kknormal disk - it is just
way faster. With this type of le system, object serializatibecomes the limiting factor to
performance.

Chapter 14

Virtual Machine Shutdown
Considerations

14.1

The DiskStore can optionally be con gured to persist betw@acheManager and Virtual Machine in-
stances. See documentation on the diskPersistent cadbatatfor information on how to do this.

When diskPersistent is turned on for a cache, a Virtual Meelshutdown hook is added to enable the
DiskStore to persist itself. When the Virtual Machine shdisvn, the the hook runs and, if the cache is
not already disposed, it calls dispose. Any elements in teebtyStore are spooled to the DiskStore. The
DiskStore then ushes the spool, and writes the index to.disk

The cache shutdown hooks will run when:

a program exists normally. e.g. System.exit() is calledherast non-daemon thread exits

the Virtual Machine is terminated. e.g. CTRL-C. This cop@sds tokill -SIGTERM pid or
kill -15 pid on Unix systems.

The cache shutdown hooks will not run when:

the Virtual Machine aborts

A SIGKILL signal is sent to the Virtual Machine process on kKsystems. e.gkill -SIGKILL
pid orkill -9 pid

A TerminateProcess call is sent to the process on Windows systems.
If dispose was not called on the cache either by CacheMarshgitdiown() or the shutdown hook, then the
DiskStore will be corrupt when the application is next stdrtlf this happens, it will be detected and the

DiskStore le will be automatically truncated and a log wang level message is emitted. The cache will
work normally, except that it will have lost all data.

71

72

Ehcache v1.2.3 User Guide

Chapter 15

Hibernate Caching

Note these instructions are for Hibernate 3.1. Go to Guid&éosion 1.1 for older instructions on how to
use Hibernate 2.1.

Ehcache easily integrates with the Hibernate Object/Relak persistence and query service. Gavin King,
the maintainer of Hibernate, is also a committer to the ehegeoject. This ensures ehcache will remain
a rst class cache for Hibernate.

Since Hibernate 2.1, ehcache has been the default cachdipnnate.

The net.sf.ehcache.hibernate package provides clagsgsating ehcache with Hibernate. Hibernate is an
application of ehcache. Ehcache is also widely used a geperpose Java cache.

To use ehcache with Hibernate do the following:

Ensure ehcache is enabled in the Hibernate con guration.

Add the cache element to the Hibernate mapping le, eithemuadly, or via hibernatedoclet for each
Domain Object you wish to cache.

Add the cache element to the Hibernate mapping le, eithemuadly, or via hibernatedoclet for each
Domain Object collection you wish to cache.

Add the cache element to the Hibernate mapping le, eithamumadly, or via hibernatedoclet for each
Hibernate query you wish to cache.

Create a cache element in ehcache.xml

Each of these steps is illustrated using a ctional Countoniain Object.

For more about cache con guration in Hibernate see the Hidter documentation. Parts of this chapter
are drawn from Hibernate documentation and source code eornsm

They are reproduced here for convenience in using ehcache.

15.1 Setting ehcache as the cache provider

15.1.1 Using the ehcache provider from the ehcache project

To ensure ehcache is enabled, verify that the hibernateeqarovider_class property is set to net.sf.hibernatbe&hCacheProvi
in the Hibernate con guration le; either hibernate.cfgakor hibernate.properties. The format given is for
hibernate.cfg.xml.

73

74 Ehcache v1.2.3 User Guide

If you are using hibernate-3 or hibernate-3.1 you will needise the ehcache provider to use multiple
SessionFactories/CacheManagers in a single VM. That geowhould be integrated into the Hibernate-
3.2 version.1

hibernate.cache.provider_class=net.sf.hibernate.cac he.EhCacheProvider
net.sf.ehcache.configurationResourceName=/name_of ¢ onfiguration_resource

The meaning of the properties is as follows:
hibernate.cache.provider_class - The fully quali ed slaame of the cache provider
net.sf.ehcache.con gurationResourceName - The name ofi @aration resource to use.

The resource is searched for in the root of the classpatb.ngéded to support multiple CacheManagers
in the same VM. It tells Hibernate which con guration to uge example might be "ehcache-2.xml".

15.1.2 Using the ehcache provider from the Hibernate projeic

To use the one from the Hibernate project:

hibernate.cache.provider_class=org.hibernate.cache. EhCacheProvider
hibernate.cache.provider_configuration_file_resourc e_path=/name_of_configuration_resource

15.1.3 Programmatic setting of the Hibernate Cache Provide

The provider can also be set programmatically in HibernsitgguCon guration.setProperty("hibernate.cache.pevi class”,
"net.sf.hibernate.cache.EhCacheProvider").

15.2 Hibernate Mapping Files

In Hibernate, each domain object requires a mapping le.

For example to enable cache entries for the domain objecismonecompany.someproject.domain.Country
there would be a mapping le something like the following:

<hibernate-mapping>

<class
name="com.somecompany.someproject.domain.Country"
table="ut_Countries"
dynamic-update="false"
dynamic-insert="false"

>

</hibernate-mapping>

To enable caching, add the following element.

Ehcache v1.2.3 User Guide 75

<cache usage="read-write|nonstrict-read-write|read-o nly" />

e.g.

<cache usage="read-write" />

15.2.1 read-write

Caches data that is sometimes updated while maintainingehgantics of "read committed" isolation
level. If the database is set to "repeatable read", thisuwency strategy almost maintains the semantics.
Repeatable read isolation is compromised in the case oLicmnt writes.

This is an "asynchronous" concurrency strategy.

15.2.2 nonstrict-read-write

Caches data that is sometimes updated without ever lockingdche. If concurrent access to an item is
possible, this concurrency strategy makes no guaranteéhthétem returned from the cache is the latest
version available in the database. Con gure your cachedimaccordingly! This is an "asynchronous"
concurrency strategy.

This policy is the fastest. It does not use synchronized atsthvhereas read-write and read-only both do.

15.2.3 read-only

Caches data that is never updated.

15.3 Hibernate Doclet

Hibernate Doclet, part of the XDoclet project, can be usegkterate Hibernate mapping les from markup
in JavaDoc comments.

Following is an example of a Class level JavaDoc which conggua read-write cache for the Country
Domain Object:

| *x

* A Country Domain Object

*

* @hibernate.class table="COUNTRY"

* @hibernate.cache usage="read-write"

*/

public class Country implements Serializable

{
}

The @hibernate.cache usage tag should be set to one of rdagdnenstrict-read-write and read-only.

76 Ehcache v1.2.3 User Guide

15.4 Con guration with ehcache.xml

Because ehcache.xml has a defaultCache, caches will ahgayreated when required by Hibernate. How-
ever more control can be exerted by specifying a con guragier cache, based on its name.

In particular, because Hibernate caches are populated daiabases, there is potential for them to get
very large. This can be controlled by capping their maxEletsiaMemory and specifying whether to
over owToDisk beyond that.

Hibernate uses a speci ¢ convention for the naming of caolfi®®main Objects, Collections, and Queries.

15.4.1 Domain Objects

Hibernate creates caches named after the fully quali edenafibomain Objects.

So, for example to create a cache for com.somecompany.sojeepdomain.Country create a cache con-
guration entry similar to the following in ehcache.xml.

<cache
name="com.somecompany.someproject.domain.Country"
maxElementsinMemory="10000"
eternal="false"
timeToldleSeconds="300"
timeToLiveSeconds="600"
overflowToDisk="true"

/>

15.4.2 Hibernate

CacheConcurrencyStrategy read-write, nonstrict-redtevand read-only policies apply to Domain Ob-
jects.

15.4.3 Collections

Hibernate creates collection caches named after the fullyi @d name of the Domain Object followed by
"." followed by the collection eld name.

For example, a Country domain object has a set of advanced&eilities. The Hibernate doclet for the
accessor looks like:

| **
* Returns the advanced search facilities that should appear f or this country.
* @hibernate.set cascade="all" inverse="true"
* @hibernate.collection-key column="COUNTRY_ID"
* @hibernate.collection-one-to-many class="com.wotif.j aguar.domain.AdvancedSearchFacility"
* @hibernate.cache usage="read-write"
*/
public Set getAdvancedSearchFacilities() {
return advancedSearchFacilities;

}
You need an additional cache con gured for the set. The eeaml con guration looks like:

<cache name="com.somecompany.someproject.domain.Coun try"
maxElementsinMemory="50"

Ehcache v1.2.3 User Guide 77

eternal="false"
timeToLiveSeconds="600"
overflowToDisk="true"

/>
<cache

name="com.somecompany.someproject.Country.advancedS earchFacilities"
maxElementsinMemory="450"
eternal="false"
timeToLiveSeconds="600"
overflowToDisk="true"

/>

15.4.4 Hibernate CacheConcurrencyStrategy

read-write, nonstrict-read-write and read-only poli@pply to Domain Object collections.

15.4.5 Queries

Hibernate allows the caching of query results. Two cachesgcalled "net.sf.hibernate.cache.StandardQueryCache
in version 2.1.4 and higher and "net.sf.hibernate.caaneryache" in versions 2.1.0 - 2.1.3, and one
called "net.sf.hibernate.cache.UpdateTimestampsCacbalways used.

15.4.6 StandardQueryCache

This cache is used if you use a query cache without settingreend typical ehcache.xml con guration
is:

<cache
name="net.sf.hibernate.cache.StandardQueryCache"
maxElementsinMemory="5"
eternal="false"
timeToLiveSeconds="120"
overflowToDisk="true"/>

15.4.7 UpdateTimestampsCache

Tracks the timestamps of the most recent updates to patiables. It is important that the cache timeout
of the underlying cache implementation be set to a higharevéhan the timeouts of any of the query
caches. In fact, it is recommend that the the underlyingeacit be con gured for expiry at all.

A typical ehcache.xml con guration is:

<cache
name="net.sf.hibernate.cache.UpdateTimestampsCache"
maxElementsinMemory="5000"
eternal="true"
overflowToDisk="true"/>

15.4.8 Named Query Caches

In addition, a QueryCache can be given a speci ¢ name in Hidter using Query.setCacheRegion(String
name). The name of the cache in ehcache.xml is then the nase igi that method. The name can be
whatever you want, but by convention you should use "quéojidwed by a descriptive name.

78 Ehcache v1.2.3 User Guide

E.g.

<cache name="query.AdministrativeAreasPerCountry"

eternal="false"
timeToLiveSeconds="86400"
overflowToDisk="true"/>

15.4.9 Using Query Caches

For example, let's say we have a common query running agéiestountry Domain.
Code to use a query cache follows:

public List getStreetTypes(final Country country) throws HibernateException {
final Session session = createSession();
try {

final Query query = session.createQuery(

"select st.id, st.name"

+ " from StreetType st "

+ " where st.country.id = :countryld "

+ " order by st.sortOrder desc, st.name");

query.setLong("countryld”, country.getld().longValue 0);
query.setCacheable(true);

query.setCacheRegion("query.StreetTypes");

return query.list();

} finally {
session.close();
}
}
Thequery.setCacheable(true) line caches the query.
Thequery.setCacheRegion("query.StreetTypes") line sets the name of the Query Cache.

15.4.10 Hibernate CacheConcurrencyStrategy

None of read-write, nonstrict-read-write and read-onliigies apply to Domain Objects. Cache policies
are not con gurable for query cache. They act like a non-iogkead only cache.

15.5 Hibernate Caching Performance Tips

To get the most out of ehcache with Hibernate, Hibernatesafst's in-process cache is important to
understand.
15.5.1 In-Process Cache

From Hibernate's point of view, Ehcache is an in-processieacCached objects are accessible across
different sessions. They are common to the Java process.

Ehcache v1.2.3 User Guide 79

15.5.2 ObjectId

Hibernate identi es cached objects via an object id. Thisasmally the primary key of a database row.

15.5.3 Session.load

Session.load will always try to use the cache.

15.5.4 Session. nd and Query. nd

Session. nd does not use the cache for the primary objechetiate will try to use the cache for any
associated objects. Session. nd does however cause the tabe populated.

Query. nd works in exactly the same way.
Use these where the chance of getting a cache hit is low.

15.5.5 Session.iterate and Query.iterate

Session.iterate always uses the cache for the primarytajecany associated objects.
Query.iterate works in exactly the same way.
Use these where the chance of getting a cache hit is high.

80

Ehcache v1.2.3 User Guide

Chapter 16

The Design of distributed ehcache

This is a discussion and explanation of the distributedgteshoices made in ehcache. One or more
default implementations are provided in each area. A plugéthanism has been provided which will
allow interested parties to implement alternative appneadiscussed here and hopefully contribute them
back to ehcache.

16.1 Acknowledgements

Much of the material here was drawn from Data Access PattbynGlifton Nock.
Thanks to Will Pugh and ehcache contributor Surya Suravei@suggesting we take ehcache distributed.
Finally, thanks to James Strachan for making helpful sugges

16.2 Problems with Instance Caches in a Clustered Environnre

Many production applications are deployed in clusters.atffeapplication maintains its own cache, then

updates made to one cache will not appear in the others. Aakoukd for web based applications is to use

sticky sessions, so that a user, having established a Bassione server, stays on that server for the rest
of the session. A workaround for transaction processintesys using Hibernate is to do a session.refresh
on each persistent object as part of the save. sessioshefxelicitly reloads the object from the database,

ignoring any cache values.

16.3 Replicated Cache

Another solution is to replicate data between the cachesap khem consistent. This is sometimes called
cache coherency. Applicable operations include:

put
update (put which overwrites an existing entry)

remove

81

82 Ehcache v1.2.3 User Guide

16.4 Distributed Cache Terms

Distributed Cache - a cache instance that noti es otherswifsecontents change
Noti cation - a mechanism to replicate changes
Topology - a layout for how replicated caches connect witth rmotify each other

16.5 Noti cation Strategies

The best way of notifying of put and update depends on the@atithe cache.

If the Element is not available anywhere else then the Eleftssif should form the payload of the noti -
cation. An example is a cached web page. This noti catioatetyy is called copy. Where the cached data
is available in a database, there are two choices. Copy asshef invalidate the data. By invalidating the
data, the application tied to the other cache instance wifldoced to refresh its cache from the database,
preserving cache coherency. Only the Element key needspassed over the network.

Ehcache supports noti cation through copy and invalidagdectable per cache.

16.6 Topology Choices

16.6.1 Peer Cache Replicator

Each replicated cache instance noti es every other cac$tarice when its contents change. This requires
n-1 noti cations per change, where n is the number of cack&amces in the cluster. If multicast is used,
these noti cations can be emitted as one noti cation frore driginating cache.

16.6.2 Centralised Cache Replicator

Each replicated cache instance noti es a master cachenestahen its contents change. The master
cache then noti es the other instances. This requires otiecation from the originating cache and n-2
noti cations from the master cache to other slaves.

Ehcache uses a peer topology. The main advantages arediynphd greater redundancy as there is no
single point of failure.

16.7 Discovery Choices

In a peer based system, there needs to be a way for peers twatigach other so as to perform delivery
of changes.

16.7.1 Multicast Discovery

In multicast discovery, peers join a multicast group on acspdP address in the multicast range of
224.0.0.1 to 239.255.255.255 (speci ed in RFC1112) andexispport. Each peer noti es the other
group members of its membership.

This approach is simple and allows for dynamic entry andfeodh the cluster.

Ehcache v1.2.3 User Guide 83

16.7.2 Static List

Here alist of listeners in the cluster is con gured. Thereasdlynamic entry or exit. Peer listener addresses
must be known in advance.

Ehcache provides both techniques.

16.8 Delivery Mechanism Choices

16.8.1 Custom Socket Protocol

This approach uses a protocol built directly on TCP or UDPptmary advantage is high performance.

16.8.2 Multicast Delivery
The advantage with multicast is that the sender only tratssonice. It is however based on UDP datagrams
and is nonreliable. Practical experience on modern newyar&twork cards and operating systems has

shown this approach to be quite lossy. Whether it would befspeci ¢ combination is hard to predict.
This approach is thought unlikely to produce suf cient adility.

16.8.3 JMS Topics
JMS Topics are standard, well understood way to propagassages to multiple subscribers. JMS is not

used in the default ehcache implementation because mamghasers are outside the scope of J2EE.
However JMS based delivery, with its richer services, ctndé could choice for J2EE bases systems.

16.8.4 RMI RMI is the default RPC mechanism in Java.

16.8.5 JIXTA

JXTA is a peer to peer technology that provides discoverydatidery, together with much else.

16.8.6 JGroups

JGroups provides many of the desired features for a peereodistributed system. The default mode
for JGroups on a LAN is UDP, which is not desired. However J@sodoes provide reliably transmission
using TCP, similar to the approach taken in ehcache.

16.8.7 The Default Implementation

Ehcache uses RMI, based on custom socket options for delivits default implementation.
Ehcache does not use JXTA or JGroups for the following resison

enables ne control over distribution behaviour
allows tuning speci c to a distributed cache, rather thastrithution generally

reduces the number of dependent libraries to run ehcache

RMI is used by default because:

84 Ehcache v1.2.3 User Guide

it itself is the default remoting mechanism in Java
itis mature
it allows tuning of TCP socket options

Element keys and values for disk storage must already balRable, therefore directly transmit-
table over RMI without the need for conversion to a third fatreuch as XML.

it can be con gured to pass through rewalls

RMI had improvements added to it with each release of Javechaan then be taken advantage of.

However the pluggable nature of ehcache's distributiontraatsm allows for both of these approaches to
be plugged in. These approaches may become a standard phdawhe in a future release.

A JGroups implementation is planned for ehcache-1.2.1.

16.9 Replication Drawbacks and Solutions in ehcache's impmen-
tation

Some potentially signi cant obstacles have to be overcdmeplication is to provide a net bene t.

16.9.1 Chatty Protocol

n-1 noti cations need to happen each time a a cache instamaege occurs. A very large amount of
network traf ¢c can be generated. This issue affect the symbus replication mode of ehcache.

Ehcache provides an asynchronous replication mode whitibates this effect. All changes are buffered
for delivery. The queue is then checked each second and allages delivered in one RMI call, as a list
of messages, to each peer.

The characteristics of each RMI call will be those of RMI. Bblce does however use a custom socket
factory so that socked read timeout can be set.

16.9.2 Redundant Noti cations

The cache instance that initiated the change should nolvesite own noti cations. To do so would add
additional overhead. Also, noti cations should not endlggo back and forth as each cache listener gets
changes caused by a remote replication.

Ehcache's CachePeerProvider indenti es the local cacstante and excludes it from the noti cation list.
Each Cache has a GUID. That GUID can be compared with listaffepeers and the local peer excluded.

In nite noti cations are prevented by passing a ag when tteeche operation occurs. Events with that ag
are ignored by instanced of CacheReplicator.

16.9.3 Potential for Inconsisent Data

Timing scenarios, race conditions, delivery, reliabil@ggnstraints and concurrent updates to the same
cached data can cause inconsistency (and thus a lack ofecawyg@racross the cache instances.

This potential exists within the ehcache implementatiohede issues are the same as what is seen when
two completely separate systems are sharing a databaseymaaoscenario.

Ehcache v1.2.3 User Guide 85

Whether data inconsistency is a problem depends on the ddthaav it is used. For those times when it
is important, ehcache provides for synchronous delivenypafates via invalidation. These are discussed
below:

16.9.4 Synchronous Delivery

Delivery can be speci ed to be synchronous or asynchrondagnchronous delivery gives faster returns
to operations on the local cache and is usually preferredcl@pnous delivery adds time to the local

operation, however requires successful delivery of an tgptiaall peers in the cluster before the cache
operation returns.

16.9.5 Update via Invalidation

The default is to update other caches by copying the new valtieem. If the replicateUpdatesViaCopy
property is set to false in the replication con gurationdapes are made by removing the element in any
other cache peers. This forces the applications using ttfeeqaeers to return to a canonical source for the
data.

A similar effect can be obtained by setting the element TTha tow value such as a second.

Note that these features impact cache performance anddshotibe used where the main purpose of a
cache is performance boosting over coherency.

86

Ehcache v1.2.3 User Guide

Chapter 17

Distributed Caching

As of version 1.2, Ehcache can be used as a distributed cache.

The distribution feature is built using plugins. Ehcachmes with some default distribution plugins which
should be suitable for most applications. Other pluginsamdeveloped. Developers should see the source
code in the distribution package for the fullly documentd?l £o see how to do that.

Though not necessary to use distributed caching an insightiie design decisions used in ehcache may
be helpful. See the Design of distributed ehcache chapter.

The rest of this section documents the distribution plugih&gh are bundled with ehcache.
The following concepts are central to cache distribution:
How do you know about the other caches that are in your clster
What form of communication will be used to distribute messy
What is replicated? Puts, Updates, Expiries?
When is it replicated? Synchronous or asynchronous?
To set up distributed caching you need to con gure a PeeiBeova CacheManagerPeerListener, which

is done globally for a CacheManager. For each cache thabpdtate distributed, you then need to add a
cacheEventListener to propagate messages.

17.1 Suitable Element Types

Only Serializable Elements are suitable for replication.

Some operations, such as remove, work off Element keysrrttaa the full Element itself. In this case
the operation will be replicated provided the key is Sezxadie, even if the Element is not.

17.2 Peer Discovery

Ehcache has the notion of a group of caches acting as a digttilsache. Each of the caches is a peer to
the others. There is no master cache. How do you know abouttliee caches that are in your cluster?
This problem can be given the name Peer Discovery.

Ehcache provides two mechanisms for peer discovery, kestlicar: manual and automatic.

87

88 Ehcache v1.2.3 User Guide

To use one of the built-in peer discovery mechanisms sp#uifglass attribute aticheManagerPeerProviderFactory
asnet.sf.ehcache.distribution.RMICacheManagerPeerProv iderFactory in the ehcache.xml
con guration le.

17.2.1 Automatic Peer Discovery

Automatic discovery uses TCP multicast to establish andchtaiz a multicast group. It features minimal
con guration and automatic addition to and deletion of menslfrom the group. No a priori knowledge
of the servers in the cluster is required. This is recommemdehe default option.

Peers send heartbeats to the group once per second. If agseaphbeen heard of for 5 seconds it is
dropped from the group. If a new peer starts sending hedstiiés admitted to the group.

Any cache within the con guration set up as replicated wélinade available for discovery by other peers.

To set automatic peer discovery, specify the propertiebate ofcacheManagerPeerProviderFactory
as follows:

peerDiscovery=automatic multicastGroupAddress=mastiaddress |multicast host name multicastGroup-
Port=port

Example

Suppose you have two servers in a cluster. You wish to digibampleCachell and sampleCachel2.
The con guration required for each server is identical:

Con guration for serverl and server2

<cacheManagerPeerProviderFactory
class="net.sf.ehcache.distribution.RMICacheManagerP eerProviderFactory"

properties="peerDiscovery=automatic, multicastGroupA ddress=230.0.0.1,
multicastGroupPort=4446"/>

17.2.2 Manual Peer Discovery

Manual peer con guration requires the IP address and pogboh listener to be known. Peers cannot be
added or removed at runtime. Manual peer discovery is recamded where there are technical dif culties
using multicast, such as a router between servers in a chiwstedoes not propagate multicast datagrams.
You can also use it to set up one way replications of data, bingaserver2 know about serverl but not
vice versa.

To set manual peer discovery, specify the properties at&ibfcacheManagerPeerProviderFactory
as follows: peerDiscovery=manual rmiUrls=//server:fmatheName, ...

The rmiUrls is a list of the cache peers of the server beinggeoed. Do not include the server being
con gured in the list.

Example

Suppose you have two servers in a cluster. You wish to diggisampleCachell and sampleCachel2.
Following is the con guration required for each server:

Con guration for serverl

<cacheManagerPeerProviderFactory
class="net.sf.ehcache.distribution.RMICacheManagerP eerProviderFactory"

Ehcache v1.2.3 User Guide 89

properties="peerDiscovery=manual,
rmiUrls=//server2:40001/sampleCachell|//server2:400 01/sampleCachel2"/>

Con guration for server2

<cacheManagerPeerProviderFactory
class="net.sf.ehcache.distribution.RMICacheManagerP eerProviderFactory"

properties="peerDiscovery=manual,
rmiUrls=//server1:40001/sampleCachell|//serverl:400 0l/sampleCachel2"/>

17.3 Con guring a CacheManagerPeerListener

A CacheManagerPeerListener listens for messages frors frethre current CacheManager.

You con gure the CacheManagerPeerListener by speci yingacheManagerPeerListenerFactory which
is used to create the CacheManagerPeerListener usingugie phechanism.

The attributes of cacheManagerPeerListenerFactory are:

class - a fully quali ed factory class name * properties - comseparated properties having meaning
only to the factory.

Ehcache comes with a built-in RMI-based distribution systeThe listener component is RMI-
CacheManagerPeerListener which is con gured using RMheManagerPeerListenerFactory. It is
con gured as per the following example:

<cacheManagerPeerListenerFactory
class="net.sf.ehcache.distribution.RMICacheManagerP eerListenerFactory"

properties="hostName=localhost, port=40001,
socketTimeoutMillis=2000"/>

Valid properties are:

hostName (optional) - the hostName of the host the listenarrining on. Specify where the host is
multihomed and you want to control the interface over whikister messages are received.

The hostname is checked for reachability during CacheMamagdialisation.

If the hostName is unreachable, the CacheManager will egiustart and an CacheException will
be thrown indicating connection was refused.

If unspeci ed, the hostname will useetAddress.getLocalHost().getHostAddress() ,which
corresponds to the default host network interface.

Warning: Explicitly setting this to localhost refers to tleeal loopback of 127.0.0.1, which is not
network visible and will cause no replications to be recegifrem remote hosts. You should only use
this setting when multiple CacheManagers are on the samhingac

port (mandatory) - the port the listener listens on.

socketTimeoutMillis (optional) - the number of secondsiatisockets will wait when sending mes-
sages to this listener until they give up. By default thisG9@ms.

a0 Ehcache v1.2.3 User Guide

17.4 Con guring CacheReplicators

Each cache that will be distributed needs to set a cache kstemier which then replicates messages to the
other CacheManager peers. This is done by adding a cachtiistenerFactory element to each cache's
con guration.

<l-- Sample cache named sampleCache2. -->
<cache name="sampleCache2"
maxElementsinMemory="10"
eternal="false"
timeToldleSeconds="100"
timeToLiveSeconds="100"
overflowToDisk="false">
<cacheEventListenerFactory class="net.sf.ehcache.dis tribution.RMICacheReplicatorFactory"
properties="replicateAsynchronously=true, replicateP uts=true, rep

</cache>

class - use net.sf.ehcache.distribution.RMICacheRafpliEactory
The factory recognises the following properties:

replicatePuts=true |false - whether new elements placadache are replicated to others. Defaults
to true.

replicateUpdates=true |false - whether new elements wahvielride an element already existing with
the same key are replicated. Defaults to true.

replicateRemovals=true - whether element removals ateatpd. Defaults to true.

replicateAsynchronously=true |false - whether replaatiare asyncrhonous (true) or synchronous
(false). Defaults to true.

replicateUpdatesViaCopy=true |false - whether the nemetds are copied to other caches (true),
or whether a remove message is sent. Defaults to true.

To reduce typing if you want default behaviour, which is fegte everything in asynchronous mode, you
can leave off th&kMICacheReplicatorFactory properties as per the following example:

<!-- Sample cache named sampleCache4. All missing RMICache ReplicatorFactory properties default
<cache name="sampleCache4"
maxElementsinMemory="10"
eternal="true"
overflowToDisk="false"
memoryStoreEvictionPolicy="LFU">
<cacheEventListenerFactory class="net.sf.ehcache.dis tribution.RMICacheReplicatorFactory"/>

</cache>

17.5 Common Problems

17.5.1 Tomcat on Windows

There is a bug in Tomcat and/or the JDK where any RMI listerirfail to start on Tomcat if the installa-
tion path has spaces in it. See http://archives.java.emiagi-bin/wa?A2=ind0205&L=rmi-users&P=797
and http://www.ontotext.com/kim/doc/sys-doc/fag-hovsugs/known-bugs.html.

As the default on Windows is to install Tomcat in "PrograneBil this issue will occur by default.

Ehcache v1.2.3 User Guide 91

17.5.2 Multicast Blocking

The automatic peer discovery process relies on multicasttiddst can be blocked by routers. Virtualisa-
tion technologies like Xen and VMWare may be blocking mast If so enable it. You may also need to
turn it on in the con guration for your network interface dar

An easy way to tell if your mutlicast is getting through is teeuthe ehcache remote debugger and watch
for the heartbeat packets to arrive.

92

Ehcache v1.2.3 User Guide

Chapter 18

The Design of the ehcache constructs
package

This is a discussion and explanation of the reasons for andehign forces behind the constructs package
in ehcache.

18.1 Acknowledgements

Much of the material here was drawn from Concurrent Progrargin Java by Doug Lea. Thanks also to
Doug for answering several questions along the way.

18.2 The purpose of the Constructs package

Doug Lea in his book Concurrent Programming in Java talksiaboncurrency support constructs. One
meaning of a construct is "an abstract or general idea idleor derived from speci ¢ instances”. Just
like patterns emerge from noting the similarities of probdeand gradually nding a solution to classes of
them, so to constructs are general solutions to commondeimzh

The ehcache constructs package, literally the net.sfobleceonstructs package, provides ready to use,
extensible implementations are offered to solve commomlpros in J2EE and light-weight container
applications.

Why not leave ehcache at the core and let everyone createtheiapplications? Well, everyone is doing
that. But getting it right can be devilishly hard.

18.3 Caching meets Concurrent Programming

So, why not just use Doug's library or the one he contributethtJDK1.5? The ehcache constructs are
around the intersection of concurrency programming andhingc It uses a number of Doug's classes
copied verbatim into the net.sf.ehcache.concurrent gpekas permiited under the license.

93

94 Ehcache v1.2.3 User Guide

18.4 What can possibly go wrong?

Thatis a favourite tongue in cheek saying of Adam Murdochgréginal contributor to the ehcache project.
The answer in concurrent programming is a lot.

(The following section is based heavily on Chapter 1.3 of ®baa's Concurrent Programming in Java).
There are two often con icting design goals at play in comeat programming. They are:

liveness, where something eventually happens within awiigct

safety, where nothing bad ever happens to an object.

18.4.1 Safety Failures

Failures of safety include:

Read/Write Con icts, where one thread is reading from a ettt another is writing to it. The value
read depends on who won the race.

Write/Write Con icts, where two threads write to the samdde The value on the next read is
impossible to predict.

A cache is similar to a global variable. By its nature it is eggible to multiple threads. Cache
entries, and the locking around them, are often highly aued for.

18.4.2 Liveness Failures

Failures of liveness include:

Deadlock. This is caused by a circular dependency amonglddke threads involved cannot make
progress.

Missed Signals. A thread entered the wait state after a catiion to wake it up was produced.
Nested monitor lockouts. A waiting thread holds a lock nedalea thread wishing to wake it up
Livelock. A continously retried action continously fails.

Starvation. Some threads never get allocated CPU time.

Resource Exhaustion. All resourcesof some kind are in ugbreads, none of which will give one
up.

Distributed Failure. A remote machine connected by soc&ebimes inaccessible.

Stampede. With notifyAll(), all threads wake up and in a gtade, attempt to make progress.

18.5 The constructs

18.5.1 Blocking Cache

Imagine you have a very busy web site with thousands of coentiusers. Rather than being evenly
distributed in what they do, they tend to gravitate to poppkges. These pages are not static, they have
dynamic data which goes stale in a few minutes. Or imaginewae collections of data which go stale in

a few minutes. In each case the data is extremely expenspaddolate.

Ehcache v1.2.3 User Guide 95

Let's say each request thread asks for the same thing. Thadbisof work. Now, add a cache. Get each
thread to check the cache; if the data is not there, go and gediput it in the cache. Now, imagine that
there are so many users contending for the same data that tirté it takes the rst user to request the
data and put it in the cache, 10 other users have done the bargeThe upstream system, whether a JSP
or velocity page, or interactions with a service layer oatdase are doing 10 times more work than they
need to.

Enter the BlockingCache.

96

Ehcache v1.2.3 User Guide

Ehcache v1.2.3 User Guide 97

It is blocking because all threads requesting the same kéyfovahe rst thread to complete. Once the
rst thread has completed the other threads simply obtagrctiche entry and return.

The BlockingCache can scale up to very busy systems.

18.5.2 SelfPopulatingCache

You want to use the BlockingCache, but the requirement t@gdwelease the lock creates gnarly code.
You also want to think about what you are doing without thingkabout the caching.

Enter the SelfPopulatingCache. The name SelfPopulaticly€s synonymous with Pull-through cache,
which is a common caching term. SelfPopulatingCache thalgays is in addition to a BlockingCache.

SelfPopulatingCache use€acheEntryFactory |, that given a key, knows how to populate the entry.

18.5.3 CachingFilter

You want to use the BlockingCache with web pages, but theireaent to always release the lock creates
gnarly code. You also want to think about what you are doinfeuit thinking about the caching.

Enter the CachingFilter, a Servlet 2.3 compliant Ilter. Wiyt just do a JSP tag library, like OSCache? The
answer is that you want the caching of your responses to lepérdient of the rendering technology. The
Iter chain is reexcuted every time a RequestDispatchemislived. This is on every jsp:include and every
Servlet. And you can programmatically add your own. If yowehaontent generated by JSP, Velocity,
XSLT, Servlet output or anything else, it can all be cache€hghingFilter. A separation of concerns.

How do you determine what the key of a page is? The lter hashkastract calculateKey method, so it is
up to you.

You notice a problem and an opportunity. The problem is thatweb pages you are caching are huge.
That chews up either a lot of memory (MemoryStore) or a lotisk@dpace (DiskStore). Also you notive
that these pages take their time going over the Internet.oppertunity is that you notice that all modern
browsers support gzip encoding. A survey of logs reveals86%6 of the time the browser accepts gzip-
ping. (The majority of the 15% that does not is IE behind a gjo®k, so gzip the response before caching
it. Ungzipping is fast - so just ungzip for the 15% of the tirhe browser does not accept gzipping.

18.5.4 SimplePageCachingFilter

What if you just want to get started with the CachingFilted @lon't want to think too hard? Just use Sim-
plePageCachingFilter which has a calculateKey methoddjrenplemented. It uséstpRequest.getRequestURI()).append(http
for the key. This works most of the time. It tends to get le$sative when referrals and af liates are added

to the query, which is the case for a lot of e-commerce sites.

SimplePageCachingFilter is 10 lines of code.

18.5.5 PageFragmentCachingFilter

You notice that an entire page cannot be cached becausettherdd vary in staleness. Say, an address
which changes very infrequently, and the price and avditgloif inventory, which changes quite a lot. Or
you have a portal, with lots of components and with diffegatenesses. Or you use the replicated cache
functionality in ehcache and you only want to rebuild thetpdthe page that got invalidated.

Enter the PageFragmentCachingFilter. It does everytiagSimplePageCachingFilter does, except it never
gzips, so the fragments can be combined.

98 Ehcache v1.2.3 User Guide

18.5.6 SimplePageFragmentCachingFilter

What if you just want to get started with the PageFragmertiDaé-ilter and don't want to think too
hard? Just use SimplePageFragmentCachingFilter which talsulateKey method already implemented.
It useshttpRequest.getRequestURI()).append(httpRequest.get QueryString() for the key.
This works most of the time. It tends to get less effective mheferrals and af liates are added to the
query, which is the case for a lot of e-commerce sites.

SimplePageFragmentCachingFilter is 10 lines of code.

18.5.7 AsynchronousCommandExecutor

What happens if your JMS server is down? The usual answehé#ve two of them. Unfortunately, not all
JMS servers do a good job of clustering. Plus it takes twieentirdware.

Once a message makes it to a JMS server, they can usually lgeimghto store the message in a database.
You are pretty safe after that if there is a crash.

Enter AsynchronousCommandExecutor. It lets you createratand for future execution. The command
is cached and is then immediately executed in another thr&hds the asynchronous bit. If it fails, it
retries on a set interval up to a set number of times. Thudatik-tolerant.

Use this where you really don't want to lose messages or camsithat execute against another system.

18.6 Real-life problems in the constructs package and thesolutions

At the time of revising this document, ehcache is almostethyears old. That leaves plenty of time to
observe some concurrency failures. The problems that arasbow they were xed are illustrative of the
subtleties of concurrent programming.

18.6.1 The Blocking Cache Stampede

The rst BlockingCache implementation ran for almost a yeara very busy application before the rst
problems came to light. It was using notifyAll() togethertivicoarse grained synchronization on the
BlockingCache instance.

Once the load on the cache got very high indeed, the thre&dmétlock would notifyAll. Then hundreds
of threads would "stampede” - they would each attempt tolgetdck. Gradually more and more CPU
time was spent resolving contention for the object lockradch notifyAll. Eventually the server threads
went to 1500 and server output dropped to almost nothing.

The solution was to create a Mutex representing each keywasitequested and to lock on that rather than
the BlockingCache itself. That gave a 10 times improvemestalability. See Scalability Test vs the old
ScalabilityTest.

18.6.2 The Blank Page problem

About a year into the use of the CachingFilter, the idea tp g&s born. Having implemented it, it worked

ne. A few weeks into production use strange reports caméat people were occasionally getting blank
pages. Timing suggested the gzip change, but how? A testee eaross similar issues that had been
reported with Apache mod_gzip. It looked like there was a ade path that was somehow screwing up.

In the end, that was how the Iters made their way into the ehegproject. The level of testing required
to focus on the issue was way beyond what you would normallind®d business app. In the end | sat
down with the Servlet speci cation and looked at everyththgt could go wrong. | ended up creating

Ehcache v1.2.3 User Guide 99

FilterNonReentrantException, AlreadyGzippedExceptiad ResponseHeadersNotModi ableException.
These conditions are detected and an exception throwrr rihidne a blank page. Then the developer xes
the coding error that produced it.

The exception contain comments on how each issue happeit$ are reproduced below:

FilterNonReentrantException - Thrown when it is detecteat 1 caching Iter's doFilter method is reen-
tered by the same thread. Reentrant calls will block indelyi because the rst request has not yet
unblocked the cache. Nasty.

AlreadyGzippedException - The web package performs gagppperations. One cause of problems on
web browsers is getting content that is double or triple gegh They will either get gobblydeegook or a
blank page. This exception is thrown when a gzip is attemptealready gzipped content.

ResponseHeadersNotModi ableException - A gzip encodieader needs to be added for gzipped content.
The HttpServletResponse#setHeader() method is useddioptinpose. If the header had already been set,
the new value normally overwrites the previous one. In soases according to the servlet speci cation,
setHeader silently fails. Two scenarios where this happesis

The response is committed.

RequestDispatcher#include method caused the request.

This issue is extremely subtle and nasty.

There are tests that reproduce each of these issues. Thin@kitter and its subclasses have been in
production for nearly two years with no more reports of tleub

18.6.3 Blocking Cascade

Let's say you do use the BlockingCache but something goeagwpstream. Maybe it is something like
a database backup that slows the database down for 10 miutgseedy SQL. With the BlockingCache
the JDBC connection will eventually timeout. The rst thekfails. The next queued thread then attempts
the same thing. It fails. And so on. While this is going on, enand more threads queue up. The result
is a Blocking cascade. Eventually, if the slow upstreameseoy process does not pick up you exhaust the
thread limit on your server and it goes down with an OutOfMeyBwror.

Is this what you want? Or would you prefer to have the affegtad of the system degrade with errors
while the rest of the system keeps ticking? That is a judge¢cedh

BlockingCache has a parameter in its constructor callegdintMillis. If you set that then any queued
thread will immediately timeout when its turn comes in thewabscenario. Some requests get exceptions,
but you do not lose your VM.

100 Ehcache v1.2.3 User Guide

Chapter 19

CacheManager Event Listeners

Con guration

Implementing a CacheManagerEventListenerFactory antiédManagerEventListener
CacheManager event listeners allow implementers to egisilback methods that will be executed when
aCacheManager event occurs. Cache listeners implement the CacheManegetiEstener interface.

The events include:

adding aCache

removing aCache

Callbacks to these methods are synchronous and unsynzédotiiis the responsibility of the implementer
to safely handle the potential performance and threadysiafeies depending on what their listener is doing.

19.1 Con guration

One CacheManagerEventListenerFactory and hence one KlanhgerEventListener can be speci ed per
CacheManager instance.

The factory is con gured as below:

<cacheManagerEventListenerFactory class=
properties=""/>

The entry speci es a CacheManagerEventListenerFactorghwhill be used to create a CacheManager-
PeerProvider, which is noti ed when Caches are added or veshérom the CacheManager.

The attributes of CacheManagerEventListenerFactory are:

class - afully quali ed factory class name

properties - comma separated properties having meaning only to therfact

Callbacks to listener methods are synchronous and unsynizied. It is the responsibility of the
implementer to safely handle the potential performancetrehd safety issues depending on what
their listener is doing.

If no class is speci ed, or there is no cacheManagerEvertghisrFactory element, no listener is
created. There is no default.

101

102

Ehcache v1.2.3 User Guide

19.2

ManagerEventListener

Implementing a CacheManagerEventListenerFactory ath Cache-

CacheManagerEventListenerFactory is an abstract faéborgreating cache manager listeners. Imple-
menters should provide their own concrete factory extaptlirs abstract factory. It can then be con gured
in ehcache.xml.

The factory class needs to be a concrete subclass of thaetfsittory CacheManagerEventListenerFac-
tory, which is reproduced below:

*

L

*

An abstract factory for creating {@link CacheManagerEvent
provide their own concrete factory extending this factory.
ehcache.xml

@author Greg Luck
@version $ld: cachemanager_event_listeners.apt 135 2006
@see "http://ehcache.sourceforge.net/documentation/c

Listener}s. Implementers should
It can then be configured in

-06-26 06:55:03Z gregluck $
achemanager_event_listeners.html"

*/
public abstract class CacheManagerEventListenerFactory {
| *x
* Create a <code>CacheEventListener</code>
*
* @param properties implementation specific properties. Th ese are configured as comma
* separated name value pairs in ehcache.xml. Properties may b e null

* @return a constructed CacheManagerEventListener
*/
public abstract CacheManagerEventListener

createCacheManagerEventListener(Properties propertie

s);

The factory creates a concrete implementation of CachelyEaentListener, which is reproduced below:

L S S I T N B N i

*

*/

Allows implementers to register callback methods that will
<code>CacheManager</code> event occurs.

The events include:

adding a <code>Cache</code>

removing a <code>Cache</code>

<p/>

Callbacks to these methods are synchronous and unsynchroni
the implementer to safely handle the potential performance
depending on what their listener is doing.

@author Greg Luck

@version $Id: cachemanager_event_listeners.apt 135 2006
@since 1.2

@see CacheEventListener

public interface CacheManagerEventListener {

[*x

be executed when a

zed. It is the responsibility of
and thread safety issues

-06-26 06:55:03Z gregluck $

* Called immediately after a cache has been added and activate d.

* <p/>

Ehcache v1.2.3 User Guide 103

E R T S S N I I . N I N N S .

*

*/

Note that the CacheManager calls this method from a synchron ized method. Any attempt to
call a synchronized method on CacheManager from this method will cause a deadlock.
<p/>

Note that activation will also cause a CacheEventListener s tatus change notification
from {@link net.sf.ehcache.Status#STATUS_UNINITIALISE D} to

{@link net.sf.ehcache.Status#STATUS_ALIVE}. Care shoul d be taken on processing that
notification because:

the cache will not yet be accessible from the CacheManag er.

the addCaches methods whih cause this notification are synchronized on the
CacheManager. An attempt to call {@link net.sf.ehcache.Ca cheManager#getCache(String)}
will cause a deadlock.

The calling method will block until this method returns.

<p/>

@param cacheName the name of the <code>Cache</code> the ope ration relates to

@see CacheEventListener

void notifyCacheAdded(String cacheName);

| *x

*
*
*
*
*
*
*
*
*

*

*/

Called immediately after a cache has been disposed and remov ed. The calling method will
block until this method returns.

<p/>

Note that the CacheManager calls this method from a synchron ized method. Any attempt to
call a synchronized method on CacheManager from this method will cause a deadlock.

<p/>

Note that a {@link CacheEventListener} status changed will also be triggered. Any
attempt from that notification to access CacheManager will also result in a deadlock.
@param cacheName the name of the <code>Cache</code> the ope ration relates to

void notifyCacheRemoved(String cacheName);

The implementations need to be placed in the classpathsibleto ehcache. Ehcache uses the Class-
Loader returned b¥hread.currentThread().getContextClassLoader() to load classes.

104 Ehcache v1.2.3 User Guide

Chapter 20

Cache Event Listeners

Cache listeners allow implementers to register callbacthots that will be executed when a cache event
occurs. Cache listeners implement the CacheEventListeteface.

The events include:
an Element has been put

an Element has been updated. Updated means that an Elerissirethe Cache with the same key
as the Element being put.

an Element has been removed

an Element expires, either because timeToLive or time€didive been reached.

Callbacks to these methods are synchronous and unsynezadofiiis the responsibility of the implementer
to safely handle the potential performance and threadysiafeies depending on what their listener is doing.

Listeners are guaranteed to be noti ed of events in the drdehich they occurred.

Elements can be put or removed from a Cache without notifiisigners by using the putQuiet and re-
moveQuiet methods.

20.1 Con guration

Cache event listeners are con gured per cache. Each cacheava multiple listeners.
Each listener is con gured by adding a cacheManagerEvstgherFactory element as follows:

<cache ...>

</cache>

The entry speci es a CacheManagerEventListenerFactoigiwis used to create a CachePeerProvider,
which then receives noti cations.

The attributes of CacheManagerEventListenerFactory are:

105

106 Ehcache v1.2.3 User Guide

class - a fully quali ed factory class hame * properties - gtional comma separated properties
having meaning only to the factory.

Callbacks to listener methods are synchronous and unsynizled. It is the responsibility of the
implementer to safely handle the potential performancethrehd safety issues depending on what
their listener is doing.

20.2 Implementing a CacheEventListenerFactory and CachekentLis-
tener

CacheEventListenerFactory is an abstract factory forttrg@ache event listeners. Implementers should
provide their own concrete factory, extending this absfieatory. It can then be con gured in ehcache.xml

The factory class needs to be a concrete subclass of thaettfsittory class CacheEventListenerFactory,
which is reproduced below:

| *x
* An abstract factory for creating listeners. Implementers s hould provide their own
* concrete factory extending this factory. It can then be conf igured in ehcache.xml

*

* @author Greg Luck

* @version $Id: cache_event_listeners.apt 135 2006-06-26 0 6:55:03Z gregluck $
*/

public abstract class CacheEventListenerFactory {

/

*

Create a <code>CacheEventListener</code>

@param properties implementation specific properties. Th ese are configured as comma
separated name value pairs in ehcache.xml

* @return a constructed CacheEventListener

*/

public abstract CacheEventListener createCacheEventLis tener(Properties properties);

E R R

The factory creates a concrete implementation of the CadmgEistener interface, which is reproduced
below:

*

Allows implementers to register callback methods that will be executed when a cache event
occurs.

The events include:

put Element

update Element

remove Element

an Element expires, either because timeToLive or timeT oldle has been reached.

<p/>

Callbacks to these methods are synchronous and unsynchroni zed. It is the responsibility of
the implementer to safely handle the potential performance and thread safety issues
depending on what their listener is doing.

<p/>

Events are guaranteed to be notified in the order in which the y occurred.

<p/>

E I I I S I . T N S T I

Ehcache v1.2.3 User Guide 107

* % * X

*

*/

Cache also has putQuiet and removeQuiet methods which do not notify listeners.

@author Greg Luck

@version $Id: cache_event_listeners.apt 135 2006-06-26 0 6:55:03Z gregluck $
@see CacheManagerEventListener

@since 1.2

public interface CacheEventListener extends Cloneable {

| *x

*
*
*
*
*
*
*
*
*
*
*

*

Called immediately after an element has been removed. The re move method will block until
this method returns.

<p/>

Ehcache does not chech for

<p/>

As the {@link net.sf.ehcache.Element} has been removed, on ly what was the key of the
element is known.

<p/>

@param cache the cache emitting the notification
@param element just deleted

*/

void notifyElementRemoved(final Ehcache cache, final Ele ment element) throws CacheException;
| **

* Called immediately after an element has been put into the cac he. The

* {@link net.sf.ehcache.Cache#put(net.sf.ehcache.Eleme nt)} method

* will block until this method returns.

* <p/>

* Implementers may wish to have access to the Element's fields , including value, so the
* element is provided. Implementers should be careful not to m odify the element. The

+ effect of any modifications is undefined.

*

* @param cache the cache emitting the notification

* @param element the element which was just put into the cache.

*/

void notifyElementPut(final Ehcache cache, final Element element) throws CacheException;
| *x

* Called immediately after an element has been put into the cac he and the element already
* existed in the cache. This is thus an update.

* <p/>

* The {@link net.sf.ehcache.Cache#put(net.sf.ehcache.El ement)} method

* will block until this method returns.

* <p/>

* |Implementers may wish to have access to the Element's fields , including value, so the
* element is provided. Implementers should be careful not to m odify the element. The

+ effect of any modifications is undefined.

*

* @param cache the cache emitting the notification

* @param element the element which was just put into the cache.

*/

void notifyElementUpdated(final Ehcache cache, final Ele ment element) throws CacheException;
| *x

*

*

Called immediately after an element is <i>found</i> to be ex pired. The
{@link net.sf.ehcache.Cache#remove(Object)} method wil | block until this method returns.

108 Ehcache v1.2.3 User Guide

@param cache the cache emitting the notification

@param element the element that has just expired
<p/>
Deadlock Warning: expiry will often come from the <code>Dis
expiry thread. It holds a lock to the DiskStorea the time the
notification is sent. If the implementation of this method c
synchronized <code>Cache</code> method and that subseque
DiskStore a deadlock will result. Accordingly implementer
should not call back into Cache.

E I I D S I . . N N S N S I I R .

*

<p/>

As the {@link Element} has been expired, only what was the key of the element is known.
<p/>

Elements are checked for expiry in ehcache at the following t imes:

When a get request is made

When an element is spooled to the diskStore in accordanc e with a MemoryStore
eviction policy

In the DiskStore when the expiry thread runs, which by de fault is

{@link net.sf.ehcache.Cache#DEFAULT_EXPIRY_THREAD_IN TERVAL_SECONDS}

If an element is found to be expired, it is deleted and this met hod is notified.

kStore</code>

alls into a
ntly calls into
s of this method

* [

void notifyElementExpired(final Ehcache cache, final Ele ment element);

| *x

* Give the replicator a chance to cleanup and free resources wh en no longer needed
*/

void dispose();

| *x
* Creates a clone of this listener. This method will only be cal led by ehcache before a
* cache is initialized.
* <p/>
* This may not be possible for listeners after they have been in itialized. Implementations
* should throw CloneNotSupportedException if they do not sup port clone.
* @return a clone
* @throws CloneNotSupportedException if the listener could not be cloned.
* [

public Object clone() throws CloneNotSupportedException ;

The implementations need to be placed in the classpathsiblzeto ehcache.
See the chapter on Classloading for details on how cladsigadithese classes will be done.

Chapter 21

Frequently Asked Questions

21.1 Does ehcache run on JDK1.3?

Yes. It runs on JDK1.3, 1.4 and 5. The restriction for JDKE.8hiat you must either use the precompiled
ehcache.jar or build it using JDK1.4 with a target of 1.3. sTts because ehcache makes use of some
JDK1.4 features but substitutes alternatives at runtimelies not nd those features.

21.2 Canyou use more than one instance of ehcache in a singls¥

As of ehcache-1.2, yes. Create your CacheManager using aehe®anager(...) and keep hold of the
reference. The singleton approach accessible with thegatice(...) method is still available too. Re-
member that ehcache can supports hundreds of caches witliGacheManager. You would use separate
CacheManagers where you want quite different con guration

The Hibernate EhCacheProvider has also been updated torstipip behaviour.

21.3 Can you use ehcache with Hibernate and outside of Hibeate
at the same time?

Yes. You use 1 instance of ehcache and 1 ehcache.xml. Yowaooayour caches with Hibernate names
for use by Hibernate. You can have other caches which yotsicttavith directly outside of Hibernate.

That is how | use ehcache in the original project it was dgwedbin. For Hibernate we have about 80
Domain Object caches, 10 StandardQueryCaches, 15 Domgct@pllection caches.

We have around 5 general caches we interact with directlyguBlockingCacheManager. We have 15
general caches we interact with directly using SelfPojnd&acheManager. You can use one of those or
you can just use CacheManager directly.

| have updated the documentation extensively over the &@stdays. Check it out and let me know if
you have any questions. See the tests for example code apthsirtaches directly. Look at CacheMan-
agerTest, CacheTest and SelfPopulatingCacheTest.

109

110 Ehcache v1.2.3 User Guide

21.4 What happens when maxElementsinMemory is reached? Are
the oldest items are expired when new ones come in?

When the maximum number of elements in memory is reachedediserecently used ("LRU") element is
removed. Used in this case means inserted with a put or axtesth a get.

If the over owToDisk cache attribute is false, the LRU Elemés discarded. If true, it is transferred
asynchronously to the DiskStore.

21.5 Isitthread safe to modify Element values after retrieal from a
Cache?

Remember that a value in a cache element is globally acdée$sin multiple threads. It is inherently not
thread safe to modify the value. It is safer to retrieve a@alielete the cache element and then reinsert the
value.

The UpdatingCacheEntryFactory does work by modifying thr&tents of values in place in the cache. This
is outside of the core of ehcache and is targeted at highpeafoce CacheEntryFactories for SelfPopulat-
ingCaches.

21.6 Can non-Serializable objects be stored in a cache?

As of ehcache-1.2, they can be stored in caches with Memoirgst

Elements attempted to be replicated or over owed to disk bél removed and a warning logged if not
Serializable.

21.7 Why is there an expiry thread for the DiskStore but not fa the
MemoryStore?

Because the memory store has a xed maximum number of elanientll have a maximum memory use
equal to the number of elements * the average size. When areatds added beyond the maximum size,
the LRU element gets pushed into the DiskStore.

While we could have an expiry thread to expire elements deadly, it is far more ef cient to only check
when we need to. The tradeoff is higher average memory use.

The DiskStore's size is unbounded. The expiry thread keepslisk store clean. There is hopefully less
contention for the DiskStore's locks because commonly wsdges are in the MemoryStore. We mount
our DiskStore on Linux using RAMFS so it is using OS memory. ie/lwe have more of this than the

2GB 32 bit process size limit it is still an expensive reseuithe DiskStore thread keeps it under control.

If you are concerned about cpu utilisation and locking indiekStore, you can set the diskExpiryThread-
IntervalSeconds to a high number - say 1 day. Or you can efédgturn it off by setting the diskExpiry-
ThreadIntervalSeconds to a very large value.

21.8 What elements are mandatory in ehcache.xml?

The documentation has been updated with comprehensiveage/ef the schema for ehcache and all
elements and attributes, including whether they are mangleee the Declarative Con guration chapter.

Ehcache v1.2.3 User Guide 111

21.9 Can | use ehcache as a memory cache only?

Yes. Just set the over owToDisk attribute of cache to false.

21.10 Can | use ehcache as a disk cache only?

Yes. Set the maxElementsinMemory attribute of cache to O.

This is strongly not recommended however. The minimum renended value is 1. Performance is as
much as 10 times higher when to one rather than 0. If not sétéast 1 a warning will be issued at Cache
creation time.

21.11 Where is the source code? The source code is distribdten
the root directory of the download.

Itis called ehcache-x.x.zip. It is also available from Smorge online or through cvs.

21.12 How do you get statistics on an Element without affeaig them?

Use the Cache.getQuiet() method. It returns an Elemenbwithpdating statistics.

21.13 How do you get WebSphere to work with ehcache?

It has been reported that IBM Websphere 5.1 running on IBM J3Kequires commons-collection.jar in
its classpath even though ehcache will not use it for IDKadHKS5.

21.14 Do you need to call CacheManager.getinstance().slatvn()
when you nish with ehcache?

Yes, it is recommended. If the JVM keeps running after yop stsing ehcache, you should call Cache-
Manager.getinstance().shutdown() so that the threadstepped and cache memory released back to the
JVM. Calling shutdown also insures that your persisterk disres get written to disk in a consistent state
and will be usable the next time they are used.

If the CacheManager does not get shutdown it should not belagm. There is a shutdown hook which
calls the shutdown on JVM exit. This is explained in the doeuatation here.

21.15 Canyou use ehcache after a CacheManager.shutdown()?

Yes. When you call CacheManager.shutdown() is sets théesimgin CacheManager to null. If you try an
use a cache after this you will get a CacheException.

You need to call CacheManager.create(). It will create adbreew one good to go. Internally the Cache-
Manager singleton gets set to the new one. So you can credighatdown as many times as you like.

There is a test which expliciyly con rms this behaviour. SescheManagerTest#testCreateShutdownCreate()

112 Ehcache v1.2.3 User Guide

21.16 |have created a new cache and its statusis STATUS _UNINALISED.
How do | initialise it?

You need to add a newly created cache to a CacheManager liefmts intialised. Use code like the
following:

CacheManager manager = CacheManager.create();
Cache myCache = new Cache("testDiskOnly", 0, true, false, 5 , 2);
manager.addCache(myCache);

21.17 Isthere a simple way to disable ehcache when testing?

Yes. There is a System Property based method of disabliragbbcIf disabled no elements will be added
to a cache. Set the property "net.sf.ehcache.disablegl%ttrdisable ehcache.

This can easily be done usirDnet.sf.ehcache.disabled=true >in the command line.

21.18 Isthere a Maven bundle for ehcache?

Yes. http://www.ibiblio.org/maven/net.sf.ehcache/débcache-1.2 and higher.
http://www.ibiblio.org/maven/ehcache/ for earlier vierss.

21.19 How do | dynamically change Cache attributes at runtine?

You can't but you can achieve the same result as follows:
Cache cache = new Cache("test2", 1, true, true, 0, O, tri®,.1P cacheManager.addCache(cache);
See the JavaDoc for the full parameters, also reproduced her

Having created the new cache, get a list of keys using caetieys, then get each one and put it in the
new cache. None of this will use much memory because the nelwecement have values that reference
the same data as the original cache. Then use cacheMaeragwraCache("oldcachename") to remove the
original cache.

21.20 | get net.sf.ehcache.distribution.RemoteCacheEsption: Er-
ror doing put to remote peerremote peer. Message was: Error
unmarshaling return header; nested exception is: java.neSocketTimeoutEXce
Read timed out. What does this mean.

It typically means you need to increase your socketTimedlgM This is the amount of time a sender
should wait for the call to the remote peer to complete. Havglit takes depends on the network and the
size of the Elements being replicated.

The con guration that controls this is the socketTimeoultiglisetting in cacheManagerPeerListenerFac-
tory. 120000 seems to work well for most scenarios.

<cacheManagerPeerListenerFactory
class="net.sf.ehcache.distribution.RMICacheManagerP eerListenerFactory"

Ehcache v1.2.3 User Guide 113

properties="hostName=fully_qualified_hostname_or_ip ,
port=40001,
socketTimeoutMillis=120000"/>

21.21 Should | use this directive when doing distributed cdung?
cacheManagerEventListenerFactory class="" propertie$#

No. Itis unrelated. It is for listening to changes in yourdb€acheManager.

21.22 What is the minimum con g to get distributed caching gong?
The minimum con guration you need to get distributed goisg i

<cacheManagerPeerProviderFactory
class="net.sf.ehcache.distribution.RMICacheManagerP eerProviderFactory"
properties="peerDiscovery=automatic,
multicastGroupAddress=230.0.0.1,
multicastGroupPort=4446"/>

<cacheManagerPeerListenerFactory
class="net.sf.ehcache.distribution.RMICacheManagerP eerListenerFactory"/>

and then at least one cache declaration with

<cacheEventListenerFactory class="net.sf.ehcache.dis tribution.RMICacheReplicatorFactory"/>>>>

in it. An example cache is:

<cache name="sampleDistributedCachel"
maxElementsinMemory="10"
eternal="false"
timeToldleSeconds="100"
timeToLiveSeconds="100"
overflowToDisk="false">
<cacheEventListenerFactory class="net.sf.ehcache.dis tribution.RMICacheReplicatorFactory"/>

</cache>

Each server in the cluster can have the same con g.

21.23 How can | see if distributed caching is working?

You should see the listener port open on each server.
You can use the distributed debug tool to see what is goingSee).

114 Ehcache v1.2.3 User Guide

21.24 |getnet.sf.ehcache.CacheException: Problem starg listener
for RMICachePeer ... java.rmi.UnmarshalException: error
unmarshalling arguments; nested exceptionis: java.net.MlformedURLEXxcep
no protocol: Files/Apache. What is going on?

This issue occurs to any RMI listener started on Tomcat, wiitencat has spaces in its installation path.

Itis is a JDK bug which can be worked around in Tomcat but is Bee http://archives.java.sun.com/cgi-
bin/wa?A2=ind0205&L=rmi-users&P=797 and http://wwwtotext.com/kim/doc/sys-doc/faq-howto-bugs/known-
bugs.html.

The workaround is to remove the spaces in your tomcat iasi@atl path.

21.25 Why can't | run multiple applications using ehcache onone
machine?

Because of an RMI bug, in JDKs before JDK1.5 such as JDK1efi@che is limited to one CacheManager
operating in distributed mode per virtual machine. (The lwnits the number of RMI registries to one
per virtual machine). Because this is the expected deplayemn guration, however, there should be
no practical effect. The tell tail error java.rmi.server.ExportException: internal error:

ObjID already in use

On JDK1.5 and higher it is possible to have multiple Cachedd@ns per VM each participating in the
same or different clusters. Indeed the replication testthidowith 5 CacheManagers on the same VM all
run from JUnit.

21.26 How many threads does ehcache use, and how much memory
does that consume?

The amount of memory consumed per thread is determined Wytduk Size. This is set using -Xss. The
amount varies by OS. It is 512KB for Linux. | tend to overritte default and set it to 100kb.

The threads are created per cache as follows:

DiskStore expiry thread - if DiskStore is used
DiskStore spool thread - if DiskStore is used

Replication thread - if asyncrhonous replication is correal.
If you are not doing any of the above, no extra threads araentea

Chapter 22

About the encache name and logo

Adam Murdoch (an all round top Java coder) came up with theeniara moment of inspiration while we
were stuck on the SourceForge project create page. Ehcaehgdlindrome. We thought the name was
wicked cool.

The logo is similarly symmetrical, and is evocative of thagiam symbol for a doubly-linked list. The
JDK1.4 LinkedHashMap, and Apache's LRUMap are a HashMap avidoubly-linked list running through
all of its entries. These structures lie at the heart of efieac

115

Index

A DEBUG. ... 47
About Eviction Algorithms 36Disk Persistenceondemand................... 42
About the ehcache name and logo.......... 12, 1DBSKStOre 68
AdamMurdoch......................... 12, 11®istributed o 25
Adding and Removing Caches Programmatically 40istributed Caching.......................... 26
Amdahl'sLaw ..., 18Distributed Failure 94
Apache 2.0licensecoinnnn. 29
AsynchronousCommandExecutor.............. d8
Automated Load, Limit and Performance System ﬁgf@.che 34
28 ehcacheconstructsooooo... 93
Automatic Peer DISCOVErY gghcache's Eviction Algorithms 36
ehcachexsd i 57
B ehcache-1.x-remote-debugger.jar.............. 48
BlockingCache...........c.ovvviiininnnn... offlement......... 35
B|ocking Cache to avoid dup"cate processing fdEFRROR 47
concurrent operations _______________ 2Exp|ry Strategy 67
B|ockingCache ______________________________ 5Extensib|e 26
Bootstrapping fromPeers..................... 27
Browsethe JUnitTests 4
Fast. ... 22
C Features....... ... 21
Cache Con guUrationoeeeeeein.. 5FIFO ... RIS 36
Cache Decoratorsoooeveeennennn... gdushtodiskondemand...................... 25
Cache EventlListeners....................... 1dg/ll public information on the history of every bug
Cache eventlisteners......................... 26 29
Cache Eviction Algorithms 3éully documented ... 29
Cache Usage Patterns......................... 7
g:gﬂgiﬁi%ﬂ:@ﬁ@? '' 3%eneral PurposeCaching..................... 19
CacheManager Event Listeners............... 14
CacheManager Ilsteners """"""""""" FRDEMNALE ..o 73
CacheManagerEventListener................. 1@8bernate Cachingc.coveeeeeeenn... 73
CachgMapagerEventLlstenerFactory """"" 108hernate DOCIEto 75
CachingFilter............ ... i 9%ibernate Mapping Files.oooveeeeeiin, 74
Code Samples ... High Quality 28
Commons Logging.........ooovinieiin 4ligh Test COVErageovveeeeeeinnn, 28
Conguration..........cooiiiiiiin i 105
Conservative Commitpolicy 29
Copy Or Invalidate Replication................ 24/0 bound Applications....................... 14
CPU bound Applications 14mplementing a CacheEventListenerFactory and CacheEigent
Creating a new cache fromdefaults 43 ONET . o oo 106
Creating a new cache with custom parameters. . .#dtance Modecoeevneenn.... 32
D J
Deadlock. 942EE and Applied Caching.................... 27

116

Ehcache v1.2.3 User Guide 117

J2EE Gzipping Servlet Filter 2Provides Memory and Disk stores for scalabilty into
Java Requirements 45 gigabytes.................. ... 24
JDKL. 3 .. 109
IDKL.410gGING .. .o 4R
Reliable Delivery, 26
K Remote Network debugging and monitoring for Dis-
Key Ehcache Concepts 31 tributed Caches..................... 48
replaceCacheWithDecoratedCache............. 53
L Resource Exhaustion......................... 94
LeastRecentlyUsed 36, gResponsiveness to seriousbugs................ 29
Less FrequentlyUsed 36, 68
LFU . oo , ,
Listeners may be pluggedin................... ogafety Failures.................... L 94
Livelock ... ggScalable to hundreds of caches 24
Liveness Failuresocvvveeennnn.. gzelfPopulating Cache for pull through caching of
Loading of ehcache.xml resources 50 expensive operations 27
Locality of Reference...............cccooui... 1$elfPopulatingCache...................... 56, 97
1o 4petting encache as the cache provider ... 73
LRU .. 36, gonutdown the CacheManager................... 41
L SIMPlE . 23
M SimpleLog ..o 47
Manual Peer DiSCOVErYc.ouvvn... ggimplePageCachingFilter..................... o7
MEMOry StOF€ot ee e, ePimplePageFragmentCachingFilter............ 98
Minimal dependencies........................ ogingleton Mode ... 32
Missed Signals.ccooveeueenennnn... g@ingleton versus Instance 39
Mixed Singleton and Instance Mode 3§mal! footprint.......... R R R RREEE 23
Multiple CacheManagers per virtual machine . . . ngecyc Concurrency Testing. 28
SPooliNg ... 67
N Stampede ... 94
Nested monitor lockouts gtarvation....... R R ... 94
Support cache-wide or Element-based expiry poli-
o) CIBS. ..\t 24
Obtaining a referencetoa Cache Apipports Object or Serializable caching ... 24
Obtaining Cache Sizes........................ gynchronous Or Asynchronous Replication..... . 26
Obtaining Statistics of Cache Hits and Misses. . g
Open Source LICeNnSINgoovvvrven helongTailccoviviiiiie, 13
p Transparent Replication....................... 26
PageFragmentCachingFilter................... usted by Popular Frameworks 29
Peer Discovery 26. 8 uned for high concurrent load on large multi-cpu
Peer Discovery, Replicators and Listeners may be SEIVEIS . .ot 24
pluggedin..............ooit. 2%
Performgnce Con5|derat|pns """""""""" 5E}sing Caches. ... 41
Perfc_)rmmg CRUD operations................... 4EJsing the CacheManager 39
Pers!stence_ P R EERRRERE sing the ehcache provider from the Hibernate project
Persistent disk store which stores data between VM 74
restartS. ..., 25
Pluginclassloading.......................... 49
Productiontested 2Birtual Machine Shutdown Considerations. 71
Programmatic setting of the Hibernate Cache Provider
74 W
Provides LRU, LFU and FIFO cache eviction poliWARNING., 47
ClBS. 24Nays of loading Cache Con guration........... 40

Provides Memory and Disk stores 2B/orks with Hibernate 28

